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Chapter 0

Why Quantum Field Theory?

The fundamental challenge of every physical theory is to describe Nature and its phenom-
ena in as much detail as possible. Furthermore, this should be possible for the microcosm
and the macrocosm i.e. we are looking for theories that are valid at short distance scales
and long distance scales.

Classical physics is able to give a satisfactory description of many physical phenomena,
and its validity is not limited to the macroscopic regime alone. Certain aspects of the
microcosm can be treated with classical physics, e.g. certain aspects of kinetic gas theory.
But in general classical physics gives only an approximation that breaks down when we
reach a certain energy or distance scale.

The deficiencies of the classical viewpoint are most pronounced in the physics of the
microcosm and in the subnuclear regime. Many phenomena of molecular physics, atomic
physics, nuclear physics and elementary particle physics simply cannot be explained using
ideas from classical physics. Also the inclusion of Quantum Mechanics (QM) alone is often
insufficient, to explain physical problems of the microcosm. As was realised in the last
century, only the inclusion of Einstein’s Theory of Special Relativity (SR) leads to the
desired success.

Today Quantum Field Theory (QFT) provides the unified framework to describe all
particles and its interactions (forces) that we observe in Nature, including electromag-
netism, the weak and the strong nuclear force, and probably gravity. QFT was born out
of the attempt to combine the rules of Quantum Mechanics with the principles of Special
Relativity and field theory. The prime example for the success of QFT is Quantum Elec-
trodynamics (QED), which with its extremely accurate predictions of physical quantities,
like the anomalous magnetic moment of the electron, is also called ”the jewel of physics”.
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Chapter 1

Quantum Mechanics and Special
Relativity

In this chapter we want to review and introduce basic concepts of Quantum Mechanics and
Special Relativity. At this stage we treat these two topics separately before we attempt
to unify them in Chapter 2 trying to preserve most features of usual non-relativistic QM.
This will lead only to partial success since a couple of conceptual problems will arise.
As was understood in the last century, the main reason for these problems is that the
inclusion of SR implies the existence of anti-particles and leads to a multi-particle theory
in which probability is not preserved, because particles can be destroyed and created
(death and birth of particles). These issues can be addressed properly if we adopt the
formalism of Quantum Field Theory, which will be developed from Chapter 3 on.

1.1 Quantum Mechanics

1.1.1 Principles of Non-Relativistic Quantum Mechanics

In this section I will remind you of the most important axioms of Quantum Mechanics
(QM). I expect that you are familiar with most of these facts, but it is good to repeat
them to see which ones we will be forced to give up once we include SR.

Axioms of QM:

• The state of the system is represented by a wave function |Ψ〉 (also called a
vector in Hilbert space). Note that Ψ = Ψ(qi, si, t) is a function of the coordinates
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6 CHAPTER 1. QUANTUM MECHANICS AND SPECIAL RELATIVITY

of individual particles qi, some internal degrees of freedom like spin si and, if we are
in the Schödinger picture also on time t (if you are not familiar with this concept
either wait until I will review it later in the course or check your favourite book
on QM). Most importantly Ψ itself has no direct physical meaning whatsover; only
expression like the probability density ρ = |Ψ|2 ≥ 0.

• Physical observables are in one-to-one correspondence with linear, Hermitian
operators. Hermiticity Â = Â† implies that all eigenvalues of the operators are
real. Example: momentum p̂x = −i~ ∂

∂x
.

• The system can be in an eigenstate ψn which obeys Âψn = λnψn with real eigen-
value λn. A general state Ψ can be written as a linear combination of a complete
set of eigenfunctions of a complete set of commuting operators [Âi, Âj] = 0
(thanks to linearity of the QM operators). So Ψ =

∑
n anψn where the an are com-

plex coefficients. If the eigenfunctions are properly orthonormalised (= orthogonal
and normalised to one) i.e.

∫
d3xψ∗

nψm = δnm then |an|2 is the probability to find
the system in the state ψn.

• The result of a QM measurement of Â is one of its eigenvalues λn (with probability
|an|2). The QM expectation value — the average over many measurements — is

〈A〉 = 〈Ψ|Â|Ψ〉 =

∫
d3xΨ∗ÂΨ =

∑
n

|an|2λn . (1.1.1)

• The time evolution of the system is desribed by the Schrödinger equation i~∂Ψ
∂t

=

ĤΨ. The QM Hamiltionian Ĥ is obtained from its classical counterpart H by
the replacements ~p → −i~~∇ and E → +i~ ∂

∂t
. For example: H = ~p2

2m
+ V (~x) →

H = − ~2

2m
~∇2 + V (~x). Since Ĥ is linear we can apply the superposition principle

to wavefunctions. Furthermore, Hermiticiy Ĥ = Ĥ† implies the conservation of
probability. Proof:

d

dt
〈Ψ|Ψ〉 =

d

dt

∫
Ψ∗Ψ =

∫
(
∂Ψ∗

∂t
Ψ + Ψ∗∂Ψ

∂t
Ψ)

=

∫
((− i

~
ĤΨ)∗Ψ + Ψ∗(− i

~
ĤΨ))

=
i

~

∫
((ĤΨ)∗Ψ−Ψ∗ĤΨ) =

i

~
(〈ĤΨ|Ψ〉 − 〈Ψ|ĤΨ〉) = 0 . (1.1.2)
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1.1.2 Symmetries and Angular Momentum

Symmetries and Conservation Laws

In Quantum Mechanics (QM), for an observable A without explicit time dependence1 we
have

i~
d〈A〉
dt

= 〈Ψ|[Â, Ĥ]|Ψ〉 , (1.1.3)

for any state |Ψ〉 and where 〈A〉 = 〈Ψ|Â|Ψ〉 , is the QM expectation value of A.
Proof:

i~
d〈A〉
dt

= i~
d

dt

∫
Ψ∗ÂΨ

= i~
∫
∂Ψ∗

∂t
ÂΨ + Ψ∗Â

∂Ψ

∂t

=

∫
−(i~

∂Ψ

∂t
)∗ÂΨ + Ψ∗Â(i~

∂Ψ

∂t
)

=

∫
−(ĤΨ)∗ÂΨ + Ψ∗ÂĤΨ

=

∫
−Ψ∗ĤÂΨ + Ψ∗ÂĤΨ

= 〈Ψ|
[
Â, Ĥ

]
|Ψ〉 . (1.1.4)

Therefore, if

[Â, Ĥ] = 0 , (1.1.5)

then

d〈A〉
dt

= 0 , (1.1.6)

and we say that A is a conserved quantitity or constant of motion.

A symmetry is a transformation on the coordinates of a system which leaves the
Hamiltonian H invariant. We shall see that conservation laws are the consequence of
symmetries of a system. Symmetries are very powerful since they can be used to derive
results for a system even when we do not know the details of the dynamics involved.

1i.e. the QM operator Â corresponding to the observable A obeys ∂Â/∂t = 0.
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Translational Invariance

First consider a single particle. If ~x is the position vector, then a translation is the
operation

~x→ ~x′ = ~x+ ~a . (1.1.7)

If Ĥ is invariant then
Ĥ(~x′) = Ĥ(~x+ ~a) = Ĥ(~x) . (1.1.8)

For an infinitesimal displacement we can make a Taylor expansion2

Ĥ(~x+ ~a) ∼= Ĥ(~x) + ~a · ~∇Ĥ(~x) , (1.1.9)

ignoring higher powers of ~a. Thus, if Ĥ is invariant,

0 = Ĥ(~x+ ~a)− Ĥ(~x) = ~a · ~∇Ĥ(~x) . (1.1.10)

In general for the momentum operator ~̂P and any other operator Ô(~x) we have

[ ~̂P , Ô]Ψ = [−i~~∇, Ô]Ψ

= −i~~∇(ÔΨ)− Ô(−i~Ψ)

= −i~(~∇Ô)Ψ , (1.1.11)

where we have suppressed the explicit ~x and t dependence. Since eqn. (1.1.11) is true for
arbitrary wavefunctions Ψ

[ ~̂P , Ô(~x)] = −i~~∇Ô(~x) . (1.1.12)

In particular for Ô = Ĥ

[ ~̂P , Ĥ] = −i~~∇Ĥ . (1.1.13)

Now,

0 = −i~~a · ~∇Ĥ = ~a · [ ~̂P , Ĥ] (1.1.14)

and since this is true for an arbitrary displacement vector ~a we find

[ ~̂P , Ĥ] = 0 . (1.1.15)

We conclude that momentum is a conserved quantity d〈~P 〉
dt

= 0 if the Ĥ is translationally
invariant.

Take e.g.

Ĥ = − ~2

2m
~∇2 + V (~x) (1.1.16)

2The symbol ∼= indicates that we only expand to first order in ~a and suppress all higher order terms.
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For the translation, ~x′ = ~x+ ~a, in particular x′ = x+ a

⇒ ∂

∂x
=
∂x′

∂x

∂

∂x′
=

∂

∂x′
(1.1.17)

and similarly for y and z. Thus ~∇ and ~∇2 are invariant under translations and

Ĥ(~x′) = Ĥ(~x+ ~a) = − ~2

2m
~∇′2 + V (~x′)

= − ~2

2m
~∇2 + V (~x+ ~a) . (1.1.18)

Hence, for a translationally invariant Hamiltonian we must require

V (~x+ ~a) = V (~x) , (1.1.19)

which is only true for a (trivial) constant potential, i.e. for a free particle. Thus, the
momentum of a free particle is conserved in QM in the sense

d〈~P 〉
dt

= 0 . (1.1.20)

Consider now a two particle system (easily generalised to N particles). If the two
particles have position vectors ~x1 and ~x2, the invariance condition for the translation of
the system through ~a reads

Ĥ(~x1, ~x2) = Ĥ(~x1 + ~a, ~x2 + ~a) . (1.1.21)

Then for an infinitesimal translation

Ĥ(~x1 + ~a, ~x2 + ~a) ∼= Ĥ(~x1, ~x2) + ~a · ~∇1Ĥ(~x1, ~x2) + ~a · ~∇2Ĥ(~x1, ~x2) , (1.1.22)

we find that translational invariance implies

0 = ~a · (~∇1 + ~∇2)Ĥ(~x1, ~x2) , (1.1.23)

and the total momentum operator is

~̂P = ~̂P 1 + ~̂P 2 , (1.1.24)

where
~̂P 1 = −i~~∇1 and ~̂P 2 = −i~~∇2 . (1.1.25)

Identical to the one particle case, for any operator Ô(~x1, ~x2),

[ ~̂P 1, Ô(~x1, ~x2)] = −i~~∇1Ô(~x1, ~x2) and [ ~̂P 2, Ô(~x1, ~x2)] = −i~~∇2Ô(~x1, ~x2) , (1.1.26)
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and so

[ ~̂P , Ô(~x1, ~x2)] = −i~(~∇1 + ~∇2)Ô(~x1, ~x2) . (1.1.27)

This is true in particular for Ô = Ĥ. Thus,

0 = −i~~a · (~∇1 + ~∇2)Ĥ = ~a · [ ~̂P , Ĥ] . (1.1.28)

Since this must be true for arbitrary translation vector ~a, we have

[ ~̂P , Ĥ] = 0 , (1.1.29)

and total momentum is conserved in the sense of QM i.e. d〈~P 〉
dt

= 0.

Rotational Invariance

Just as translational invariande is associated with conservation of momentum, it turns out
that rotational invariance is associated with conservation of angular momentum (AM).

Take spherical polar coordinates and take the axis of rotation to be the z-axis. Spec-
ify the position vector ~x in spherical polar coordinates (r, θ, φ) of the point. Then the
symmetry operation ~x→ ~x′ corresponding to a rotation by an angle α about the z−axis
is

(r, θ, φ) → (r′, θ′, φ′) = (r, θ, φ+ α) . (1.1.30)

For the Hamiltonian to be invariant under rotations about the z-axis

Ĥ(~x′) = Ĥ(~x)

⇐⇒ Ĥ(r′, θ′, φ′) = Ĥ(r, θ, φ)

⇐⇒ Ĥ(r, θ, φ+ α) = Ĥ(r, θ, φ) . (1.1.31)

For an infinitesimal rotation

Ĥ(r, θ, φ+ α) ∼= Ĥ(r, θ, φ) + α
∂

∂φ
Ĥ(r, θ, φ) , (1.1.32)

and, hence, for invariance of Ĥ

0 = Ĥ(r, θ, φ+ α)− Ĥ(r, θ, φ) = α
∂

∂φ
Ĥ(r, θ, φ)

−→ ∂

∂φ
Ĥ(r, θ, φ) = 0 . (1.1.33)

The z−component of the orbital AM operator written in spherical coordinates is3

L̂z = −i~ ∂

∂φ
(1.1.34)

3In cartesian coordinates ~x = (x, y, z): L̂z = (~̂x× ~̂P )z = −i~(x ∂
∂y − y ∂

∂x ) . The other components, L̂x

and L̂y, can be obtained by cyclic permutation of (x, y, z).
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In general, for any other operator Ô,

[L̂z, Ô]Ψ = −i~[
∂

∂φ
, Ô] = −i~(

∂

∂φ
(ÔΨ)− Ô

∂

∂φ
Ψ) = −i~∂Ô

∂φ
Ψ . (1.1.35)

This is true for arbitrary wavefuntions Ψ, thus

[L̂z, Ô] = −i~∂Ô
∂φ

, (1.1.36)

and in particular for Ô = Ĥ,

[L̂z, Ĥ] = −i~∂Ĥ
∂φ

. (1.1.37)

If the Hamiltonian is invariant under rotation about the z-axis, we now conclude that

[L̂z, Ĥ] = 0 . (1.1.38)

We can define angles φx and φy analogous to φz ≡ φ for rotations about the x and y-axis.

If Ĥ is also invariant under rotations about the x and y-axis we will conclude that

[L̂x, Ĥ] = [L̂y, Ĥ] = [L̂z, Ĥ] = 0 i.e. [~̂L, Ĥ] = 0 . (1.1.39)

Thus AM is a constant of motion
d〈~L〉
dt

= 0 . (1.1.40)

Any rotation can be built out of successive rotations about the x, y and z-axis.

Whenever Ĥ is invariant under arbitrary rotations the AM ~L is a conserved quantity.
We must construct such an Ĥ out of scalars i.e. invariants under rotations. The simplest
examples of scalars are the magnitude (length) of a vector or the scalar product of two
vectors. For example, consider the Hamiltonian for a particle moving in a central potential
such as the Coulomb potential

Ĥ = − ~2

2m
~∇2 + V (|~x|) . (1.1.41)

Because ~∇2 = ~∇· ~∇ and |~x| are scalars, so is the Hamiltonian and orbital AM is conserved.

This discussion generalizes immediately to two (or more) particles:

For 2 particles, the Hamiltonian is a function of two sets of spherical coordinates
(r1, θ1, φ1) and (r2, θ2, φ2) so that

Ĥ = Ĥ(r1, θ1, φ1; r2, θ2, φ2) . (1.1.42)
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The invariance condition for rotation of the system by an angle α about the z-axis is

Ĥ(r1, θ1, φ1; r2, θ2, φ2) = Ĥ(r1, θ1, φ1 + α; r2, θ2, φ2 + α) , (1.1.43)

and for an infinitesimal rotation

Ĥ(r1, θ1, φ1 + α; r2, θ2, φ2 + α) ∼= Ĥ(r1, θ1, φ1; r2, θ2, φ2) + α∂φ1Ĥ + α∂φ2Ĥ , (1.1.44)

where we defined ∂φ ≡ ∂
∂φ

. Invariance of Ĥ gives

0 = Ĥ(r1, θ1, φ1 + α; r2, θ2, φ2 + α)− Ĥ(r1, θ1, φ1; r2, θ2, φ2)

= α(∂φ1 + ∂φ2)Ĥ

−→ (∂φ1 + ∂φ2)Ĥ = 0 . (1.1.45)

The z-components of the orbital AM operator for the two particles are

L̂1z = −i~∂φ1 , L̂2z = −i~∂φ2 . (1.1.46)

The z-component of the total orbital AM is:

L̂z = L̂1z + L̂2z . (1.1.47)

Much as before, for any operator O,

[L̂z, Ô] = −i~(∂φ1 + ∂φ2)Ô , (1.1.48)

and in particular
[L̂z, Ĥ] = −i~(∂φ1 + ∂φ2)Ĥ . (1.1.49)

If the Hamiltonian is invariant under rotations about the z-axis, we now conclude that

[L̂z, Ĥ] = 0 . (1.1.50)

By also considering rotations about the x and y-axis we conclude that if Ĥ is invariant
under arbitrary rotations then

[~̂L, Ĥ] = 0 , (1.1.51)

so total AM is a constant of motion

d〈~L〉
dt

= 0 . (1.1.52)

As usual the orbital AM operators obey the (SO(3) or SU(2)) algebra

[L̂x, L̂y] = i~L̂z , [L̂x, L̂y] = i~L̂z , [L̂x, L̂y] = i~L̂z . (1.1.53)
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Consequently, it is only possible to know simultaneously the values of one component ~L
and ~L2, for example, Lz and ~L2. Therefore, we may take the conserved quantities to be
Lz and ~L2.

An atom with atomic number Z with Coulomb forces between the nucleus and the
electrons and between the electrons is an example of a system with the necessary rotational
invariance for conservation of AM. In this case:

Ĥ = − ~2

2m

Z∑
i=1

~∇2
i −

Z∑
i=1

Ze2

4πε0|~xi|
+

Z∑
i,j=1,i<j

e2

4πε0|~xi − ~xj|
, (1.1.54)

where ~∇i acts on the coordinates of the i-th electron, and ~xi is the position vector of
the i-th electron relative to the nucleus. As before, ~∇2

i and |~xi| are scalars (rotationally

invariant) and so is |~xi − ~xj|, so that Ĥ is rotationally invariant.

Remark: Generally for a system with spin it is the total AM

~̂J = ~̂L+ ~̂S (1.1.55)

that commutes with the Hamiltonian

[ ~̂J, Ĥ] = 0 (1.1.56)

if Ĥ is rotationally invariant, and then 〈Jz〉 and 〈 ~J2〉 are constants of motion.

For the atomic (non-relativistic) Hamiltonian above, 〈Lz〉 and 〈~L2〉 are also constants
of motion, because the spin does not appear explicitly in the Hamiltion. This is a mani-
festation of the fact that spin is an effect of Special Relativity as we will see later in the
course. However, if we include the Spin-Orbit interaction due to Relativistic effects

ĤSpin−Orbit =
1

2m2
ec

2

1

r

dV

dr
~̂L · ~̂S , (1.1.57)

for an electron moving in a central potential V (r), then ~̂L does not commute with the

complete Hamiltonian. Then, only 〈Jz〉 and 〈 ~J2〉 are conserved quantities.

1.2 Special Relativity

Topics we are covering in this section include: Lorentz transformations, 4-vectors, covari-
ance, contravariance, forminvariance, Lorentz and Poincare group, Maxwell equations as
an example of a relativistic wave equations.

Einstein’s Theory of Special Relativity (1905) rests on two postulates:
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1. The speed of light c in vacuum is absolut. It is the same in all inertial frames (these
are reference frames moving at constant velocity with respect to each other).

2. Principle of Relativity. The laws of physics are the same in all inertial frames. Or
in other words there is no preferred reference frame and, in particular, there is no
absolute time.

Two observers in two different inertial frames K and K ′ using coordinate systems
(t, x, y, z) and (t′, x′, y′, z′) should agree on the predicted results of all experiments. In
other words the form of all dynamical equations should be invariant (Forminvariance).

An important example are the Maxwell equations written for ~E and ~B. The fields
do transform under Lorentz transformations, but the Maxwell equations take the same
form when written in terms of the new (t′, x′, y′, z′) coordinates and the Lorentz trans-

formed fields ~E ′ and ~B′. Actually, if Maxwell had looked more carefully he should have
discovered special relativity, since Maxwell equations are not forminvariant under Galilei
transformations but only under Lorentz transformations!

1.2.1 Lorentz Transformations

You are all familiar with Lorentz transformations (LT), say a boost in the x direction:

ct′ =
ct− vx/c√
1− v2/c2

= γ(ct− βx)

x′ =
x− vt√
1− v2/c2

= γ(−βct+ x)

y′ = y

z′ = z (1.2.1)

with β = v/c and γ = 1/
√

1− v2/c2. This LT can be neatly rewritten in matrix form as
ct′

x′

y′

z′

 =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1




ct
x
y
z

 . (1.2.2)

Note that general LTs are linear transformations of the coordinates. If we were to consider
general relativity we would have to relax this condition and consider general non-linear
transformations.

An important consequence of Einstein’s postulates is that the quantity

(ct)2 − x2 − y2 − z2 (1.2.3)
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is Lorentz invariant. Try this with the LT given above

(ct′)2 − (x′)2 − (y′)2 − (z′)2 = γ2(c2t2 − 2βctx+ β2x2) + γ2(β2c2t2 + x2 − 2cβtx)− y2 − z2

= γ2(c2(1− β2)t2 − (1− β2)x2)− y2 − z2

= c2t2 − x2 − y2 − z2 , (1.2.4)

where we have used γ2(1− β2) = 1.

This explains why the speed of light is constant in two frames K and K ′. Assume that
a spherical light wave starts at t = 0 expanding from the origin x = y = z = 0. Then for
t > 0 the equation c2t2 − x2 − y2 − z2 describes a spherical wave front with radius r = ct
i.e. it is expanding with the speed of light. Obviously, using the identity derived above
this holds true also in the frame K ′ and actually for any other frame, hence the speed of
light is consant.

It is very useful to think of Lorentz Transformations (LTs) as generalised rotations.
In order to see this remember γ2 − γ2β2 = 1 = γ2 − (βγ)2 and compare this with the
identity cosh2 ω − sinh2 ω = 1. Hence, we can set

γ ≡ coshω , βγ ≡ sinhω , (1.2.5)

and the boost in the x direction can be written as
coshω − sinhω 0 0
− sinhω coshω 0 0

0 0 1 0
0 0 0 1

 (1.2.6)

where similar expressions exist for boosts in the y and z directions. Compare this now
with a spatial rotation around, say, the z axis by an angle θ

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (1.2.7)

where cos2 θ+sin2 θ = 1. Note that under a spatial rotation also x2 + y2 + z2 is invariant.
Also there are similar transformation matrices for rotations around the x and y axis.
This implies that the Lorentz group is six dimensional: there are 3 proper LTs (boost)
and 3 spatial rotations. Why is this a group? Because any combination of two LTs which
corresponds to matrix multiplication of the transformation matrices produces another LT.

1.2.2 4-Vector Notation and Tensors

Recall that c2t2 − x2 − y2 − z2 is rather similar to the dot-product of 3-vectors ~x · ~x =
x2 + y2 + z2 (which is invariant under spatial rotations) except for the funny minus signs.
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In order to deal with this one introduces a metric tensor η, which is a 4-by-4 matrix, and
two types of 4-vectors, covariant ones and contravariant ones.

We can write the relativistic inner product c2t2 − x2 − y2 − x2 as

(ct, x, y, z)


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


︸ ︷︷ ︸

≡η


ct
x
y
z

 (1.2.8)

Another way to deal with this is to introduce two types of vectors

xµ ≡ (x0, x1, x2, x3) = (ct, x, y, z) = (ct, ~x) contravariant

xµ ≡ (x0, x1, x2, x3) = (ct,−x,−y,−z) = (ct,−~x) covariant (1.2.9)

so that
3∑

µ=0

xµxµ = c2t2 − x2 − y2 − x2 ≡ x · x . (1.2.10)

Also if we introduce the Minkowski metric ηµν then

3∑
µ=0

3∑
ν=0

ηµνxνxµ = c2t2 − x2 − y2 − x2 ≡ x · x , (1.2.11)

because

3∑
ν=0

ηµνxν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




ct
−x
−y
−z

 =


ct
x
y
z

 = xµ . (1.2.12)

The metric tensor ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 and the inverse metric ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


are used to raise and lower indices:

3∑
ν=0

ηµνxν = xµ ,

3∑
ν=0

ηµνx
ν = xµ . (1.2.13)

Note also that the metric is symmetric ηµν = ηνµ and

3∑
α=0

ηµαη
αν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ≡ δµ
ν . (1.2.14)
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Finally, one introduces the Einstein summation convention in order to avoid writing the
boring sums over and over again: repeated upper and lower index pairs are automatically
summed over (unless stated otherwise). Note that this only makes sense if one index
is upper and the other is lower, otherwise one gets expressions that do not transform
properly under LTs.

Examples

c2t2 − x2 − y2 − z2 = xµxµ = xµx
µ = ηµνxµxν (1.2.15)

xµ = ηµνxν (1.2.16)

xµ = ηµνx
ν (1.2.17)

1.2.3 Lorentz transformations, again

Now LTs can be written very compactly as

x′µ = Λµ
νx

ν , (1.2.18)

where Λ can be any LT matrix.

This was for a contravariant vector, what about a covariant one?

x′α = ηαµx
′µ = ηαµΛµ

ρx
ρ = ηαµΛµ

ρη
ρβxβ ≡ Λα

βxβ (1.2.19)

Therefore,
x′α = Λα

βxβ with Λα
β = ηαµΛµ

νη
νβ . (1.2.20)

Now the Lorentz transformations are those Λ’s that leave xµxµ invariant. Note that a
priori Λ has 16 components which should be reduced to 6. Let’s see how this works. We
require that the norm of a 4-vector xµ is Lorentz invariant. So we have

ηµνx
′µx′ν = ηµνΛ

µ
αΛν

βx
αxβ = ηαβx

αxβ , (1.2.21)

which implies
ηµνΛ

µ
αΛν

β = ηαβ . (1.2.22)

This is a matrix equation for Λ with 16 components. But only 10 components are inde-
pendent because both sides of the equation are symmetric under exchange of α and β.
Hence the number of independent components of Λ is reduced to 16 − 10 = 6. This is
just the right number to incorporate 3 boosts and 3 spatial rotations!

General tensors with n contravariant indices and m covariant indices transform as
follows

T ′µ1...µn
ν1...νm = Λµ1

α1 . . .Λ
µn

αnΛν1

β1 . . .Λνm

βmTα1...αn
β1...βm . (1.2.23)
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This is the general transformation law for tensors that transform covariantly, however we
usually do not account tensors with more than two indices (unless we consider General
Relativity).

It is also important to know how differentials and partial derivatives transform under
LTs.

From
x′µ = Λµ

νx
ν (1.2.24)

we learn that
dx′µ = Λµ

νdx
ν , (1.2.25)

so dx′µ transforms like a contra-variant vector. It is also known that for general coordinate
transformations we have

dx′µ =
∂x′µ

∂xν
dxν , (1.2.26)

where for the special case of LTs ∂x′µ

∂xν = Λµ
ν .

Furthermore, application of the chain rule yields

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
=

(
∂x′µ

∂xν

)−1
∂

∂xν
. (1.2.27)

Hence, partial derivatives ∂
∂xµ transform inversely to dxµ i.e. they transform like a co-

variant vector (index downstairs). It is common to introduce the co-variant 4-vector

∂µ =
∂

∂xµ
=

(
∂

∂t
, ~∇
)

(1.2.28)

and the contra-variant vector

∂µ =
∂

∂xµ

=

(
∂

∂t
,−~∇

)
. (1.2.29)

Important Lorentz invariant contractions:

• The d’Alembertian operator or ”box”

∂µ∂
µ ≡ ∂ · ∂ =

1

c2
∂2

∂t2
− ~∇2 = � (1.2.30)

is a relativistic wave operator.

• The energy momentum 4-vector is pµ = (E/c, ~p) from which we can form the in-
variant pµpµ = p · p = p2 = E2

c2
− ~p2 = m2c2. Another important invariant is

p · x = pµxµ = Et − ~p · ~x. Note that Ψ = exp(±ip · x) is a plane wave solution to
the wave equation �Ψ = 0 if p2 = 0.

• Note that any dot product of two 4-vectors is a Lorentz invariant a · b = aµbµ =
ηµνaµbν .



1.2. SPECIAL RELATIVITY 19

1.2.4 Lorentz Group

We will set ~ = c = 1 from now on.

Let us think a moment about infinitesimal LTs Λµ
ν = δµ

ν + ωµ
ν , where ωµ

ν is small
and obeys ωµν = −ωνµ.

For a boost in the x-direction
coshω − sinhω 0 0
− sinhω coshω 0 0

0 0 1 0
0 0 0 1

 ∼ I4 − iωKx , with Kx =


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 , (1.2.31)

where we call Kx the generator of the boost in the x-direction. (Check for yourself
that exp(−iωKx) gives back the finite Lorentz transformation.) Similarly we find the
generators for boosts in the y and z direction.

Ky =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , Kz =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 . (1.2.32)

For a rotation around the x-axis
1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

 ∼ I4 − iφJx , with Jx =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , (1.2.33)

where Jx is the generator for rotations around the x axis. Similarly we find the generators
for rotations around the y and z axis.

Jy =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , Jz =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (1.2.34)

The boost and rotation generators obey the following set of commutation relations.

[Jx, Jy] = iJz ,+cyclic permutations

[Kx, Ky] = −iJz ,+cyclic permutations

[Jx, Kx] = [Jy, Ky] = [Jz, Kz] = 0

[Jx, Ky] = iKz ,+cyclic permutations (1.2.35)
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Note that the first line is just the standard SU(2) algebra for angular momentum opera-
tors.

This commutator algebra reveals a more interesting structure if we introduce the linear
combinations

~N =
1

2

(
~J + i ~K

)
~M =

1

2

(
~J − i ~K

)
. (1.2.36)

Note that these are two 3-vectors where each component of the 3-vectors is a 4-by-4
matrix. These two sets of matrix generators obey the following commutator algebra

[Nx,Mx] = [Nx,My] = [Nx,Mz] = . . . = 0

[Nx, Ny] = iNz ,+cyclic permutations

[Mx,My] = iMz ,+cyclic permutations , (1.2.37)

which are two commuting sets of SU(2) algebras.

Until now we have considered a particular representation of the operators Kx,y,z and
Jx,y,z in terms of 4-by-4 matrices which are the generators of boosts and rotations acting
on 4-vectors (and tensors by multiple action of Λs). But this algebra could be represented
by differential operators (as we are used to from QM) or different sets of 4-by-4 matrices
(as we will find later for the spinors which are spin 1/2 particles). All these have one
thing in common: they obey the same algebra. So let us now consider the operators
abstractly and assume that the only thing we know about them is that they obey the
Lorentz algebra (1.2.37).

Then we know on general grounds that ~N2 and ~M2 have eigenvalues jN(jN + 1) and
jM(jM + 1) respectively, where jN , jM can be integer or half-integer. This statement is
true for any set of matrices or operators that obey the same algebra as above and is not
restricted to our particular choice of generators for boost and rotations. Representations
(particles) are labelled by (jN , jM), where the spin of the particle is jN + jM .

Important examples include:

• (0, 0): spin zero, scalar particle

• (1
2
, 0): spin 1

2
, left handed fermion

• (0, 1
2
): spin 1

2
, right handed fermion

• (1
2
, 1

2
): spin 1, transforms like a 4-vector, e.g. photon, gluon, W and Z bosons
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1.2.5 Poincaré Group

This is a bonus section and will NOT be part of the exam. A nice exposition of the
material in this and the previous section can be found in the book by Ryder [4].

So far we have only considered rotations and generalised rotations i.e. boosts, but
you might have wondered what has happened to translations in space and time that
we discussed in the context of non-relativistic QM. We will remedy this situation now
and introduce the Poincaré Group which is the natural extension of the Lorentz group
including translations in space-time:

x′µ = Λµ
νx

ν + aµ (1.2.38)

The first part of this transformation are just the LTs, which are generated by Jx,y,z

and Kx,y,z and the second, inhomogenous, part are the translations generated by the
4-momentum pµ.

In QM we are used to expressions for Ĵx,y,z or ~̂p in terms of differential operators. For

example ~p→ ~̂p = −i~∇ and E → i∂/∂t which can be combined into the 4-vector

pµ → p̂µ = i∇µ . (1.2.39)

The QM angular momentum operators are Ĵx = −i
(
y ∂

∂z
− z ∂

∂y

)
, Ĵy = −i

(
z ∂

∂x
− x ∂

∂z

)
,

Ĵz = −i
(
x ∂

∂y
− y ∂

∂x

)
. Similar operators exist for the boosts (however they are not her-

mitian): K̂x = i
(
t ∂

∂x
+ x ∂

∂t

)
, K̂y = i

(
t ∂

∂y
+ y ∂

∂t

)
, K̂z = i

(
t ∂

∂z
+ z ∂

∂t

)
.

Notably, this set of operators obeys the same algebra (1.2.35) that we found in the
last section for the generators Jx,y,z and Kx,y,z in matrix form.

These differential operators are defined through their action on functions, while the
matrices act directly on the coordinates which appear as arguments of spacetime depen-
dent functions. So these two viewpoints are naturally related, e.g. consider an infinitesi-
mal boost in the x-direction. Recalling

Λµ
ν = δµ

ν + iωx(Kx)
µ

ν

x′µ = xµ + iωx(Kx)
µ

νx
ν , (1.2.40)

it is easy to see that (infinitesimally)

iωxK̂xf(x) = f(x′)− f(x) , (1.2.41)

where the argument x of f(x) stands for a point in spacetime i.e. a 4-vector.
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Another common form of the algebra of the K ′s and J ′s is written in terms of the
anti-symmetric tensor M̂µν which is defined as follows:

M̂ij = −M̂ji = εijkĴk

M̂i0 = −M̂0i = −K̂i (1.2.42)

where i, j, k = 1 . . . 3. Now the Lorentz algebra becomes[
M̂µν , M̂ρσ

]
= i
(
ηνρM̂µσ − ηµρM̂νσ + ηµσM̂νρ − ηνσM̂µρ

)
. (1.2.43)

Including translations generated by p̂µ = i∂µ one finds the additional commutation rela-
tions

[p̂µ, p̂ν ] = 0 , (1.2.44)[
p̂µ, M̂ρσ

]
= i (ηµρp̂σ − ηµσp̂ρ) . (1.2.45)

This is the Poincaré algebra (the Poincaré group is obtained by exponentiating the gen-
erators). A mathematical problem with the Lorentz group is that it does not have finite
dimensional unitary representations; the representations we listed in the last section are
finite dimensional but non-unitary! The problem comes from the boosts, whose generators
are not Hermitian and hence their exponentiation gives non-unitary matrices or opera-
tors. But in QM we seek unitary finite dimensional representations and here the Poincaré
group comes to the rescue, since it does have finite dimensional unitary representations
corresponding to particles with various spins.

This result allows us to answer with mathematical rigour the following fundamental
question: What is a particle?
The mathematicians answer: An irreducible representation of the Poincaré group.

In order to classify representations we have to look for operators that commute with

all operators of the Poincaré group. (This is the analogue to the operator ~̂J
2

for the
angular momentum operators.) It turns out that there exist exactly two such operators,
which are also called Casimir operators of the Poincaré algebra:

C1 = p̂µp̂µ , (1.2.46)

which for a momentum eigenstate becomes p2 = E2 − ~p2 = m2, so this is just the mass

squared. Now interestingly ~̂J
2

is not a Casimir since it does not commute with boosts ~̂K.
To constructe the second Casimir one introduces the Pauli-Lubanski vector Ŵµ

Ŵµ = −1

2
εµνρσM̂

νρP̂ σ

ŴµP̂
µ = 0 , (1.2.47)

so that
C2 = ŴµŴ

µ . (1.2.48)
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As an example consider a massive, spin s particle in its rest frame where pµ = (m,~0).

Now in the rest frame the orbital angular momentum ~L = 0 so that the total angular
momentum ~J = ~L+ ~S = ~S. For Wµ we find

W0 = −1

2
ε0ijkJ

ijP k = 0

Wi = −1

2
εiµνρJ

µνP ρ = −m
2
εiµν0J

µν = −m
2
εijkJ

jk = −mJi (1.2.49)

and, hence,

C2 = WµW
µ = (W0)

2 − ~W 2 = −m2 ~J2 = −m2~S2 = −m2s(s+ 1) . (1.2.50)

So we find that a relativistic particle is characterised by its mass m and its spin s.

1.2.6 The Maxwell Equation — First Glimpse at a Relativistic
Wave Equation

Remember Maxwell’s equations (where again ~ = c = 1)

~∇ · ~E = ρ
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B =
∂ ~E

∂t
+~j (1.2.51)

This does not look manisfestly Lorentz covariant since it is written in terms of 3-vectors
~E, ~B and ~j.

Let us introduce the 4-vector potential Aµ = (φ, ~A) in terms of which ~B = ~∇× ~A and
~E = −∂ ~A

∂t
− ~∇φ. This implies the 2nd and 3rd Maxwell equation since

~∇ · ~B = ~∇ · (~∇× ~A) = 0 ,

~∇× (−∂
~A

∂t
− ~∇φ) = −~∇× ∂ ~A

∂t
= −∂

~B

∂t
. (1.2.52)

Now we define the anti-symmetric electro-magnetic fieldstrength tensor F µν (remember

∂µ = ( ∂
∂t
,−~∇):

F µν = −F νµ = ∂µAν − ∂νAµ

F 0i = ∂0Ai − ∂iA0 = (
∂ ~A

∂t
+ ~∇φ)i = −Ei

F ij = ∂iAj − ∂jAi = −εijkBk . (1.2.53)
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So

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 (1.2.54)

Under Lorentz transformations

F µν → F ′µν = Λµ
αΛν

βF
αβ (1.2.55)

which can also be written as a matrix equation F → F ′ = Λ ·F ·ΛT . The second and the
third Maxwell equation are encoded in the so-called Bianchi identity

∂µF νρ + ∂νF ρµ + ∂ρF µν = 0, (1.2.56)

while the first and the fourth Maxwell equation are encoded in the equation

∂µF
µν = jν (1.2.57)

with jν = (ρ,~j). This is an example of an equation that is forminvariant under Lorentz
transformations, i.e. it transforms covariantly under LTs.

An important feature of the electromagnetic fieldstrength tensor F µν is that it is
invariant under gauge transformations. Gauge transformations are redefinition of Aµ by
a total derivative

Aµ → Aµ + ∂µχ(x) . (1.2.58)

Proof: under such a gauge transformation

F µν → ∂µ(Aν + ∂νχ(x))− ∂ν(Aµ + ∂µχ(x)) =

F µν + (∂µ∂ν − ∂ν∂µ)χ(x) = F µν . (1.2.59)

This gauge invariance implies that out of the four degrees of freedom (components) of
Aµ one is redundant and we can impose a convenient gauge condition to eliminate this
redundancy. A popular choice is the so-called Lorentz gauge ∂ ·A = ∂µA

µ = 0 because it
is a Lorentz invariant condition.

In this gauge

∂µF
µν = ∂µ(∂µAν − ∂νAµ) = �Aν − ∂ν(∂µA

µ) = jν (1.2.60)

becomes
�Aν = jν . (1.2.61)

Furthermore, for jν = 0 (in vacuo) we obtain

�Aν , (1.2.62)

which is a relativistic wave equation for massless spin 1 particles called photons. The
equation implies in particular that the waves/photons are travelling at the speed of light
as any massless particle does (independent of its spin).



Chapter 2

Relativistic Quantum Mechanics

2.1 The Klein-Gordon Equation

In non-relativistic QM, the free Hamiltonian H = E = ~p2

2m
is quantised by the substitution

H → i~
∂

∂t
, ~p→ −i~~∇ (2.1.1)

to give the Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m
~∇2Ψ . (2.1.2)

A relativistic free particle has Hamiltonian

H = E =
√
~p2c2 +m2c4 (2.1.3)

and hence the same, naive substitution gives

i~
∂Ψ

∂t
=

√
m2c4 − ~2c2~∇2Ψ . (2.1.4)

But what to do about the square root of the operator? One interpretation is to make a
series expansion, but then we get a Hamiltonian with derivatives of arbitrarily high order.

A more sensible route is to start from H2 = ~p2c2 +m2c4 to get

−~2 ∂
2

∂t2
Ψ =

(
−~2c2~∇2 +m2c4

)
Ψ

⇒
(

1

c2
∂2

∂t2
− ~∇2

)
Ψ +

(mc
~

)2

Ψ = 0

⇒
(

� +
(mc

~

)2
)

Ψ = 0 (2.1.5)

25
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By analogy with the Schrödinger equation it is possible to derive a continuity equation
for the Klein-Gordon (KG) equation

∂ρ

∂t
+ ~∇ · ~J = 0 (2.1.6)

where ρ is the probability density and ~J is the probability current.1

Derivation: Subtracting the following two equations

Ψ∗
(

� +
(mc

~

)2
)

Ψ = 0

Ψ

(
� +

(mc
~

)2
)

Ψ∗ = 0 (2.1.7)

gives
Ψ∗∂µ∂

µΨ−Ψ∂µ∂
µΨ∗ = 0 . (2.1.8)

Furthermore, this implies
∂µ (Ψ∗∂µΨ−Ψ∂µΨ∗) = 0

⇒ ∂

∂t

(
1

c2
(Ψ∗∂tΨ−Ψ∂tΨ

∗)

)
− ~∇ ·

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
= 0 . (2.1.9)

After multiplying through by ic2, in order to make ρ real, we can write this as desired as
a continuity equation with

ρ = i (Ψ∗∂tΨ−Ψ∂tΨ
∗) and ~J = −ic2

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
. (2.1.10)

Now because of the negative sign between the two terms in ρ, the probability density can
both take positive and negative values (in contrast to non-relativistic QM where ρ = |Ψ|2
is positive definite)! This is an absurd and nonsensical result for a probability density!!

Junk the KG equation for the moment and try harder. Schrödinger was the first to
write down this relativistic wave equation, but discarded it for a different reason; the
spectrum is not bounded from below.

2.2 The Dirac Equation

Let us go back to our starting point

ĤΨ = i~
∂Ψ

∂t
(2.2.1)

1Integrating the probability density over a volume V bounded by the surface S we find
∫

V
∂ρ
∂t d3x =

d
dt

∫
V

ρd3x = −
∫

V
~∇ ·~jd3x = −

∫
S
~j · d~S. This implies that probability cannot be created or destroyed;

it can only flow from one point to another.
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and try to give a meaning to the square root in

Ĥ =

√
m2c4 + ~̂pc2 =

√
m2c4 − ~2c2~∇2 . (2.2.2)

Since the equation is linear in ∂
∂t

, Lorentz covariance suggests it should be linear also
in the ∂

∂xi , i = 1, 2, 3.

So we write

Ĥ = c~α · ~̂p+ βmc2

= −i~c~α · ~∇+ βmc2 , (2.2.3)

where αi and β are coefficients to be determined. More explicitly this equation can be
written

Ĥ = −i~c
(
α1 ∂

∂x1
+ α2 ∂

∂x2
+ α3 ∂

∂x3

)
+ βmc2 . (2.2.4)

Now we determine the coefficients αi and β by requiring that this linear operator ”squares”
to the KG operator

Ĥ2 = −~2c2~∇2 +m2c4 . (2.2.5)

We find

Ĥ2 = −~2c2
(

(α1)2 ∂2

∂(x1)2
+ (α2)2 ∂2

∂(x2)2
+ (α3)2 ∂2

∂(x3)2

)
+ β2m2c4

−i~mc3
(

(α1β + βα1)
∂

∂x1
+ . . .

)
−~2c2

(
(α1α2 + α2α1)

∂2

∂x1∂x2
+ . . .

)
. (2.2.6)

Thus we need to solve

(αi)2 = I , i = 1, 2, 3

αiαj + αjαi = 0 , i 6= j

β2 = I
αiβ + βαi = 0 , i = 1, 2, 3 , (2.2.7)

where I denotes a unit matrix (if a subscript is added it denotes the dimensionality, e.g.
I2 denotes a 2× 2 unit matrix).

It is obviously NOT possible to solve those equations if the coefficients are simply
complex numbers. So let us assume that they are N×N matrices. With some (guess)work
it can be shown that the smallest value of N for which eq. (2.2.7) can be solved is N = 4.
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This implies that the Dirac wave function is a 4-component column vector

Ψ(x) =


Ψ1(x)
Ψ2(x)
Ψ3(x)
Ψ4(x)

 (2.2.8)

where x ≡ (x0, ~x) and the Dirac equation becomes a matrix equation

i~
∂Ψ

∂t
= ĤΨ = (c~α · ~̂p+ βmc2)Ψ = (−i~c~α · ~∇+ βmc2)Ψ . (2.2.9)

This is a set of 4 first order linear differential equations to determine Ψ1, . . . ,Ψ4.

2.3 Representation of the Dirac Matrices

A particular set of solutions of (2.2.7) for the 4 × 4 matrices αi , β can be written with
the help of the 2× 2 Pauli matrices σi , i = 1, 2, 3,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.3.1)

which obey the following identities(
σi
)2

= I2 , i = 1, 2, 3

σiσj + σjσi = 0 , i 6= j . (2.3.2)

We may satisfy the first two lines in eq. (2.2.7) by taking αi to be the 4× 4 matrices

αi =

(
0 σi

σi 0

)
, i = 1, 2, 3 . (2.3.3)

Now we may satisfy the remaining two lines in eq. (2.2.7) by taking

β =

(
I2 0
0 −I2

)
. (2.3.4)

Because the σi are Hermitian, so are the αi and β, i.e.

(αi)† = αi , β† = β . (2.3.5)

(† ↔ complex conjugate transposed)
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2.4 Probability Density for the Dirac Equation

The Dirac equation is given by

i~
∂Ψ

∂t
= −i~~α · ~∇Ψ +mc2βΨ (2.4.1)

and its Hermitian conjugate is

−i~∂Ψ†

∂t
= i~~∇Ψ† · ~α+mc2Ψ†β . (2.4.2)

(Recall that αi and β are hermitian and (AB)† = B†A†.)

Now take Ψ†×(Dirac eqn.) and (Hermitian conjugate eqn.)×Ψ and subtract the two
to obtain:

i~
(

Ψ†∂Ψ

∂t
+
∂(Ψ†)

∂t
Ψ

)
= −i~c

(
Ψ†~α · ~∇Ψ + ~∇(Ψ†) · ~αΨ

)
. (2.4.3)

Dividing this equation by i~ we obtain a Continuity Equation

∂ρ

∂t
+ ~∇ · ~J = 0 (2.4.4)

with the positive definite probability density given by

ρ = Ψ†Ψ =
4∑

k=1

Ψ∗
kΨk =

4∑
k=1

|Ψk|2 > 0 , (2.4.5)

and the probability current
~J = cΨ†~αΨ . (2.4.6)

2.5 Extreme Non-Relativistic Limit of the Dirac Equa-

tion

For a particle at rest (~p = 0) the Dirac equation becomes

i~
∂Ψ

∂t
= βmc2Ψ

⇒ ∂Ψ

∂t
= −imc

2

~
βΨ . (2.5.1)
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Taking β =

(
I2 0
0 −I2

)
the four equations for the components of Ψ turn into

∂Ψ1

∂t
= −imc

2

~
Ψ1

∂Ψ2

∂t
= −imc

2

~
Ψ2

∂Ψ3

∂t
= +i

mc2

~
Ψ3

∂Ψ4

∂t
= +i

mc2

~
Ψ4 (2.5.2)

⇒ Ψ1 = c1e
−i mc2

~ t e.t.c. (2.5.3)

where c1 is an arbitrary constant.

Thus the general solution takes the form

Ψ =


c1e

−i mc2

~ t

c2e
−i mc2

~ t

c3e
i mc2

~ t

c4e
i mc2

~ t

 (2.5.4)

which can be rewritten as

Ψ = e−i mc2

~ t


c1
c2
0
0

+ ei mc2

~ t


0
0
c3
c4

 (2.5.5)

By acting with the Hamiltonian operator Ĥ = i~ ∂
∂t

we find that the first term in the
solution (2.5.5) carries positive energy (+mc2) whereas the second term carries negative
energy (−mc2).

Although we found a positive probability density (contrary to the KG equation) we
find that also the Dirac equation has both positive and negative energy solutions. We
shall later interpret the negative energy part as due to Anti-particles.

2.6 Spin of the Dirac Particles

The (free) Dirac equation is

i~∂tΨ = ĤΨ with Ĥ = c~α · ~̂p+ βmc2 (2.6.1)
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with ~̂p = −i~~∇.

Consider the total angular momentum operator

~J = ~L+ ~S = ~x× ~̂p+
~
2
~Σ where ~Σ =

(
~σ 0
0 ~σ

)
(2.6.2)

Using the Uncertainty Principle

[xi, p̂j] = i~δij , (2.6.3)

it can be shown with some effort that

[Ĥ, ~S] = i~c(~α× ~̂p) (2.6.4)

and
[Ĥ, ~L] = −i~c(~α× ~̂p) , (2.6.5)

thus, [Ĥ, ~̂J ]=0. So ~J is a conserved quantity which we interpret as the total angular
momentum.

The 3-component of Spin, Sz, is

S3 =
~
2
Σ3 (2.6.6)

is the matrix ~
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 which has eigenvalues ~
2
, −~

2
, ~

2
and −~

2
.

⇒ we are describing spin 1
2

particles (and anti-particles).

2.7 The Covariant Form of the Dirac Equation

Multiply the Dirac equation

i~
∂Ψ

∂t
= −i~c

3∑
i=1

αi ∂Ψ

∂xi
+ βmc2Ψ (2.7.1)

with β
c

to obtain

i~

(
β
∂Ψ

∂(ct)
+

3∑
i=1

βαi ∂Ψ

∂xi

)
= mcΨ . (2.7.2)
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Next define the matrices
γ0 = β , γi = βαi , i = 1, 2, 3 (2.7.3)

which are also called Gamma-Matrices and allow us to rewrite the Dirac equation as

i~

(
γ0 ∂Ψ

∂x0
+

3∑
i=1

γi ∂Ψ

∂xi

)
Ψ = mcΨ (2.7.4)

→ i~γ · ∂Ψ = mcΨ (2.7.5)

where ∂µ ≡
(

∂
∂x0 ,−~∇

)
as defined in section 2.1 and

γµ ≡
(
γ0, ~γ

)
=
(
γ0, γ1, γ2, γ3

)
, (2.7.6)

which makes the Dirac equation now look Lorentz covariant.

Dirac or Feynman Slash Notation

For any 4-vector Aµ, we define /A ≡ γ ·A = γ0A0 − ~γ · ~A. Then, the Dirac equation is

i~/∂Ψ = mcΨ (2.7.7)

or
/̂pΨ = mcΨ (2.7.8)

⇒ (/̂p−mc) Ψ = 0 (2.7.9)

where p̂µ = i~∇µ.

2.8 Properties of the γ-Matrices

Using the properties of the αi and β we may show that the gamma-matrices obey the
following anti-commutation identity

{γµ, γν} ≡ γµγν + γνγµ = 2gµνI4 , (2.8.1)

with gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

.

In particular, (γ0)2 = I4, (γi)2 = −I4, i = 1, 2, 3.

Furthermore (γ0) = β† = β i.e. γ0 is Hermitian, whereas (γi)† = (βαi)† = (αi)†β† =
αiβ = −βαi = −γi i.e. γi is anti-Hermitian, i = 1, 2, 3.



2.9. THE DIRAC EQUATION AND LORENTZ TRANSFORMATIONS 33

Using the explicit matrices αi and β of Section 2.4 we find

γ0 =

(
I2 0
0 −I2

)
, γi =

(
0 σi

−σi 0

)
. (2.8.2)

2.9 The Dirac Equation and Lorentz Transformations

In the previous sections we have introduced the covariant form of the Dirac equation

(iγµ∂µ −m) Ψ(x) = 0 , (2.9.1)

without actually justifying that name. Let us clarify this point now.

We start with two comments:

1. A Lorentz transformatin takes

Ψ(x) → Ψ′(x′) = Ψ′(Λ · x) . (2.9.2)

The Dirac wave function has four components but it does not transform like a
4-vector. Nevertheless we expect the transformation to be linear.

2. In the primed system Ψ′(x′) should obey an equation that has the same form as the
Dirac equation in the un-primed system.(

iγ̃µ ∂

∂x′µ
−m

)
Ψ′(x′) = 0 , (2.9.3)

where the γ̃µ are related to γµ by a unitary transformation γ̃µ = U †γµU with
U † = U−1 and obey {γ̃µ, γ̃ν} = 2I4η

µν .

From the first comment we see

Ψ′(x′) = Ψ′(Λ · x) = S(Λ)Ψ(x) = S(Λ)Ψ(Λ−1 · x′) (2.9.4)

or

Ψ(x) = S−1(Λ)Ψ′(x′) = S−1(Λ)Ψ′(Λ · x) . (2.9.5)

Combining eqns. (2.9.1) and (2.9.5) we can find an equation for Ψ′(x′)

(iγµ∂µ −m)S−1(Λ)Ψ′(x′) = 0 . (2.9.6)
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Multiplying this equation from the left with S we find(
iSγµS−1∂µ −m

)
Ψ′(x′) = 0 . (2.9.7)

Now ∂µ = ∂x′ν

∂xµ
∂

∂x′ν = Λν
µ

∂
∂x′ν = Λν

µ∂
′
ν and, hence, we get(

iSγµS−1Λν
µ∂

′
ν −m

)
Ψ′(x′) = 0 . (2.9.8)

Therefore, if we are able to find an S(Λ) such that

Λν
µSγ

µS−1 = γν (2.9.9)

then we would have proven form invariance (or commonly called convariance) of the Dirac
equation! We can write this condition also as

S−1γνS = Λν
µγ

µ . (2.9.10)

So let us consider infinitesimal Lorentz Transformations

Λν
µ = δν

µ − iδων
µ , (2.9.11)

and write the transformation matrix acting on the Dirac spinor also in infinitesimal form

S = I4 − iδσ . (2.9.12)

Its inverse is
S−1 = I4 + iδσ . (2.9.13)

Plugging these expressions into (2.9.10) we find

(I4 + iδσ) γν (I4 − iδσ) = (δν
µ − iδων

µ) γµ

⇒ [γν , σ] = ων
µγ

µ (2.9.14)

Solutions for this equation are easy to find and well known. For ων
µ = Kx,y,z; Jx,y,z

we find σ(Kx), σ(Ky), . . . , σ(Jz) with

σ(Ki) =
i

4

[
γ0, γi

]
=
i

2

(
0 σi

σi 0

)
, (2.9.15)

σ(Ji) =
i

8
εijk
[
γj, γk

]
=

1

2

(
σi 0
0 σi

)
=

1

2
Σi . (2.9.16)

Note that the σ(Ki) and σ(Ji) obey the same commutation relations as the Ki and
Ji. They correspond to a particular representation of the Lorentz group called the spinor
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representation. The σ(Ki) and σ(Ji) correspond to the vector representation which acts
by generalised rotations on Lorentz 4-vectors.

Finite LTs for Dirac spinors are again obtained by exponentiating the infinitesimal
LTs:

S = exp(−iδσ) , (2.9.17)

so that under a LT

Ψ → SΨ . (2.9.18)

Rotation of Dirac fermion:

S = exp(−i(φxσ(Jx) + φyσ(Jy) + φzσ(Jz)))

= exp(−i~φ · ~Σ/2) =

(
exp(− i

2
~φ · ~σ) 0

0 exp(− i
2
~φ · ~σ)

)
(2.9.19)

For a rotation around the z-axis φx = φy = 0 and φz = φ this becomes
exp(−iφ/2) 0 0 0

0 exp(+iφ/2) 0 0
0 0 exp(−iφ/2) 0
0 0 0 exp(+iφ/2)

 . (2.9.20)

In particular if φ = 2π, S = −I4, i.e. under a 2π-rotation Ψ → −Ψ and a Dirac fermion
is only invariant under a 4π rotation. This is in contrast to a 4-vector that comes back
to itself after a 2π rotation. One consequence of this is that physical observables always
contain an even number of fermions which is invariant under 2π rotations.

Boost of Dirac fermion: Consider a boost in the z direction

S = exp(−iωσ(Kz))

= exp

(
0 ω

2
σz

ω
2
σz 0

)

=


cosh(ω/2) 0 sinh(ω/2) 0

0 cosh(ω/2) 0 − sinh(ω/2)
sinh(ω/2) 0 cosh(ω/2) 0

0 − sinh(ω/2) 0 cosh(ω/2)

 (2.9.21)

Acting with this S on a plane wave solution with ~p = (0, 0, 0) we should obtain a plane
wave solution with ~p = (0, 0, pz). In order to show this it is helpful to use the identities

cosh(ω/2) =
√

E+m
2m

and sinh(ω/2) = pz√
2m(E+m)

with E =
√
m2 + p2

z. (Homework)
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2.10 Plane Wave Solutions of the Dirac Equation

From now on we will work in natural units ~ = c = 1. We look for plane wave solutions
of the Dirac equation of the form

Ψ = e∓ip·x
(
φ
χ

)
(2.10.1)

where φ are the upper two components and χ the lower two components of Ψ and p · x =
Et− ~p · ~x, with E > 0.

The factor e−ip·x gives solutions with positive energy E and momentum ~p, and the
factor e+ip·x gives solutions with negative energy −E and momentum −~p. Substituting
back into the Dirac equation (

−i~α · ~∇+ βm
)

Ψ = i
∂Ψ

∂t
, (2.10.2)

and using ∂tΨ = ∓iEΨ and ∂xΨ = ±ipxΨ e.t.c., we obtain

(−i(±i)~α · ~p+ βm)Ψ = i(∓iE)Ψ

→ (±~α · ~p+ βm)Ψ = ±EΨ . (2.10.3)

If we use the standard representation for the αi and β from Section 2.4 we obtain(
mI ±~σ · ~p
±~σ · ~p −mI

)(
φ
χ

)
= ±E

(
φ
χ

)
(2.10.4)

which gives the coupled set of equations

(m∓ E)φ± ~σ · ~pχ = 0

±~σ · ~pφ− (m± E)χ = 0 . (2.10.5)

We will construct the solutions in such a way that they have a straighforward ~p = 0 limit.

Positive Energy Solutions

(m− E)φ+ ~σ · ~pχ = 0

~σ · ~pφ− (m+ E)χ = 0 . (2.10.6)

For ~p = 0, E = m and χ = 0 (in agreement with Section 2.6).
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For ~p 6= 0 it is convenient to solve for χ in terms of φ using the second equation in
(2.10.6), i.e.

χ =
~σ · ~p

(E +m)
φ (2.10.7)

then,

Ψ = e−ip·x
(

φ
~σ·~p

(E+m)
φ

)
. (2.10.8)

Note that the first equation in (2.10.6) only gives the on-(mass)shell condition E2 =
~p2 +m2.

We can write φ in terms of φ1 =

(
1
0

)
and φ2 =

(
0
1

)
.

There are thus two independent positive energy solutions

Ψ = e−ip·xU(p, s) , s = 1, 2 (2.10.9)

where

U(p, s) =
√
E +m

(
φs

~σ·~p
(E+m)

φs

)
(2.10.10)

is a positive energy Dirac spinor. In the last expression a convenient normalization factor
has been introduced.

It can be checked that the first equation in (2.10.6) is automatically satisfied by using
the identity (~σ · ~p)2 = ~p2I2.

Negative Energy Solutions

(m+ E)φ− ~σ · ~pχ = 0

−~σ · ~pφ− (m− E)χ = 0 . (2.10.11)

For ~p = 0, E = m and φ = 0 (in agreement with Section 2.6).

For ~p 6= 0 it is convenient to solve for φ in terms of χ using the first equation in
(2.10.11), i.e.

φ =
~σ · ~p

(E +m)
χ (2.10.12)

then,

Ψ = e+ip·x
( ~σ·~p

(E+m)
χ

χ

)
. (2.10.13)
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Note that the second equation in (2.10.11) only gives the on-(mass)shell condition E2 =
~p2 +m2.

We can write χ in terms of χ1 =

(
0
1

)
and χ2 =

(
1
0

)
.

There are thus two independent negative energy solutions

Ψ = e+ip·xV (p, s) , s = 1, 2 (2.10.14)

where

V (p, s) =
√
E +m

( ~σ·~p
(E+m)

χs

χs

)
(2.10.15)

is a negative energy Dirac spinor. In the last expression a convenient normalization factor
has been introduced.

It can be checked that the second equation in (2.10.11) is automatically satisfied by
using the identity (~σ · ~p)2 = ~p2I2.

Interpretation

To find the physical interpretation for the four independent solutions we consider the
rest frame ~p = 0. Then:

U(p, 1) =
√

2m

(
φ1

0

)
=
√

2m


1
0
0
0



U(p, 2) =
√

2m

(
φ2

0

)
=
√

2m


0
1
0
0



V (p, 1) =
√

2m

(
0
χ1

)
=
√

2m


0
0
0
1



V (p, 2) =
√

2m

(
0
χ2

)
=
√

2m


0
0
1
0

 (2.10.16)

Furthermore, for ~p = 0 we have ~L = ~x × ~p = 0 so that the total angular momentum
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operator becomes

~J = ~L+ ~S = ~S =
1

2
~Σ

⇒ Sz =

(
1
2
σ3 0
0 1

2
σ3

)
(2.10.17)

Thus, U(p, 1) and U(p, 2) are positive energy solutions with Sz eigenvalues sz = +1/2
and sz = −1/2 respectively, whereas V (p, 1) and V (p, 2) are negative energy solutions
with Sz eigenvalues sz = −1/2 and sz = +1/2 respectively.

In general, U and V are the Lorentz boosts of these solutions to a frame where ~p 6= 0.
Interpret the negative energy solutions later.

2.11 Properties of Solutions

Since e−ip·xU(p, s) is a solution of the Dirac equation

(iγ · ∂ −m)(e−p·xU(p, s)) = 0

→
(
iγ0 ∂

∂t
+ i~γ · ~∇−m

)
e−i(Et−~p·~x)U(p, s) = 0

→ (Eγ0 − ~p · ~γ −m)U = 0

→ (p · γ −m)U = 0

⇒ (p/−m)U(p, s) = 0 (2.11.1)

i.e. U(p, s) obeys the Dirac equations with p̂µ simply replaced by pµ. Similarly, we find

(p/+m)V (p, s) = 0 . (2.11.2)

We will often make use of the adjoint spinors which are defined as

U(p, s) ≡ U †(p, s)γ0 , V (p, s) ≡ V †(p, s)γ0 . (2.11.3)

By taking the Hermitian adjoint of the equation obeyed by U and V we find

U(p, s)(p/−m) = 0 , V (p, s)(p/+m) = 0 . (2.11.4)

One may also check directly (using again (~σ · ~p)2 = ~p2I2) that

U †(p, s)U(p, s) = V †(p, s)V (p, s) = 2E , s = 1, 2 , (2.11.5)

and
U(p, s)U(p, s) = 2m, V (p, s)V (p, s) = −2m, s = 1, 2 . (2.11.6)
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2.12 Anti-Particles — Hole Theory

Since the Dirac equation has negative energy solutions, why do positive energy electrons
not radiate energy and fall into a negative energy state? Dirac: Negative energy states
are completely filled and the Pauli exclusion principle (which applies to fermions) forbids
the transition. Consequently, the Vacuum is a state with all positive energy states empty
but all negative energy states filled.

(picture goes here)

If a photon excites a negative energy e− of energy −|E2| into a positive energy e−

of energy |E1|, we observe the production of an e− of mass m, charge −|e| and energy
|E1|, and a Hole in the negative energy sea (Pair production). Note that there is a gap
of 2mc2 between the negative and positive energy states and, hence, the photon energy
hν = |E1| + |E2| must be larger than 2mc2 for this to happen. The hole appears as a
particle of mass m, charge +|e| and energy +|E2|.
⇒ The existence of the Positron (and Anti-particles in general) is predicted!

(picture goes here)

The absence of a spin-up electron of energy −|E| and momentum −~p is equivalent to
the presence of a spin-down positron of energy +|E| and momentum +~p. (Think about
time running backwards or the arrow in a Feynman diagram reversed)

(picture goes here)

Thus, the electron wavefunction eip·xV (p, s) corresponding to energy −E and momen-
tum −~p describes a positron of energy +E and momentum +~p. Also, V (p, 1) and V (p, 2)
which describe spin down and spin up negative energy electrons must describe spin up
and spin down positrons.

2.13 Vacuum Polarization

In general the infinite negative charge of the vacuum produces no effect because the
distribution of charge is homogeneous.

However, consider the effect of a positive energy electron with charge −|e| on the
vacuum. It repels the negative energy electrons and electrically polarises the vacuum.
Thus the physical charge −|e| seen by a test charge at a large distance from the electron
is numerically smaller than the bare charge −|e0|, i.e. |e| < |e0|.
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(picture goes here)

However, if the test charge comes very close it will see the bare charge −|e0|. For
S-wave electrons (l = 0) in an atom, the proton sees a charge numerically greater than
the ordinary electric charge |e|. Note that for l > 0 the wavefunction vanishes at the
origin and the proton feels a numerically smaller charge. This effect leads to measurable
shifts of the energy levels of atoms.

2.14 Charge Conjugation Symmetry C

We construct an operator acting on the Dirac wave function

C : Ψ → ΨC (2.14.1)

which turns a positive energy electron wavefunction (e−) into a negative energy wave
function (e+) with the same momentum and spin state. If Ψ = e−ip·xU(p, s) then ΨC =
eip·xV (p, s). The required operation turns out to be

C : Ψ → ΨC = Cγ0Ψ∗ , (2.14.2)

where C = iγ2γ0. Useful properties: C† = −C, C2 = −I, C−1 = −C and CγµC = (γµ)T .

A symmetry of a wave equation is an operation on a wave function Ψ → Ψ′ and on the
space-time coordinates x→ x′ such that Ψ′ obeys the same equation as Ψ, with x replaced
by x′.

Ψ → ΨC , x→ x′ can be shown to be a symmetry of the Dirac equation as follows:

Proof: We claim that the Dirac equation is charge conjugation invariant. The Dirac
equation may be written as

(iγµ∂µ −m)Ψ = 0, (2.14.3)

taking the complex conjugate gives

(−i(γµ)∗∂µ −m)Ψ∗ = 0 . (2.14.4)

Now multiply from the left with Cγ0

(−iCγ0(γµ)∗∂µ −m)Ψ∗ = 0

→ (iγµ(Cγ0))∂µ −mcγ0)Ψ∗ = 0

→ (iγµ∂µ −m)ΨC = 0 , (2.14.5)

where we have used the identity Cγ0(γµ)∗ = −γµ(Cγ0). This shows that ΨC obeys the
same equation as Ψ.
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2.15 Space Inversion P

The Dirac equation is also invariant under reflection of space coordinates in the origin

P : ~x→ ~x′ = −~x , t→ t′ = t . (2.15.1)

The corresponding operation2 on Dirac spinors is

P : Ψ → Ψ′ = PΨ (2.15.2)

with P = γ0. It can be checked by direct calculation that PU(~p, s) = U(−~p, s) i.e.
~p→ −~p as expected for space inversion, but the spin state is unchanged. Also PV (~p, s) =
−V (−~p, s). The −1 factor indicates that anti-particles have opposite Parity to particles.

In this case, to check invariance of the Dirac equation, it is necessary to replace ∂x,
∂y and ∂z by −∂x, −∂y and −∂z, as well as replacing Ψ by Ψ′, i.e. Ψ′ obeys the same
equation as Ψ with ∂x, ∂y and ∂z replaced by −∂x, −∂y and −∂z.

2.16 Time Reversal T

The Dirac equation also has a symmetry under time reversal

T : t→ t′ = −t , ~x→ ~x′ = ~x , (2.16.1)

the appropriate transformation of Ψ is

T : Ψ → Ψ′ = Tψ∗ (2.16.2)

with T = −γ1γ3. It can be checked directly that this is the correct transformation by
showing that

TU∗(~p, 1) = +U(−~p, 2) , TV ∗(~p, 1) = −V (−~p, 2) (2.16.3)

Thus, the transformation changes a solution of the Dirac equation with momentum ~p and
spin up into a solution with momentum −~p and spin down.

This is as expected for time reversal, since ~p = m~v/
√

1− ~v2/c2 and ~L = ~x × ~p, and

thus under time reversal ~p→ −~p and ~L→ −~L and in particular Lz → −Lz. We assume
that this applies to any AM operator, so that in particular Sz → −Sz . In this case, Ψ′

obeys the same equation as Ψ with ∂t replaced by −∂t.

2Since P also transforms the space time coordinates this operation should be written more properly
as Ψ(t, ~x) → Ψ′(t′, ~x′) = Ψ′(t,−~x) = PΨ(t, ~x). Hence Ψ′(t, ~x) = PΨ(t,−~x); a similar comment applies
to time reversal T .
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2.17 Dirac Covariants

It is important in the study of the Weak Interactions to know the properties of objects
like ΨγµΨ, Ψγµγ5Ψ, etc, where we introduced

γ5 ≡ iγ0γ1γ2γ3 =

(
0 I
I 0

)
. (2.17.1)

We list here the behaviour of some of the Dirac covariants under Lorentz transforma-
tions, P , C:

Covariant LT’s P C
ΨΨ scalar +ΨΨ −ΨΨ

Ψγ5Ψ pseudoscalar −Ψγ5Ψ −Ψγ5Ψ

ΨγµΨ 4-vector +Ψγ0Ψ +ΨγµΨ
−ΨγiΨ

Ψγµγ5Ψ (pseudo) 4-vector −Ψγ0γ5Ψ −Ψγµγ5Ψ
+Ψγiγ5Ψ

(γ5 has the properties {γ5, γ
µ} = 0, γ†5 = γ5)

For example under P the behaviour of the vector current is

ΨγµΨ → Ψ
′
γµΨ′

= (Ψ′)†γ0γµΨ′

= Ψ†(γ0)†γ0γµγ0Ψ

= Ψ†γ0γ0γµγ0Ψ

= Ψγ0γµγ0Ψ (2.17.2)

Thus,

Ψγ0Ψ → Ψγ0γ0γ0Ψ = Ψγ0Ψ (2.17.3)

ΨγiΨ → Ψγ0γiγ0Ψ

= −Ψ(γ0)2γiΨ

= −ΨγiΨ (2.17.4)

In the Relativistic version of Time Dependent Perturbation Theory (Feynman Dia-
grams) the probability amplitudes for Electromagnetic Scattering of 2 particles via photon
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exchange contains a factor

U(p2, s2)γµU(p1, s1)U(p4, s4)γ
µU(p3, s3)

= Uγ0UUγ0U −
3∑

i=1

UγiUUγiU , (2.17.5)

which is invariant under both P and C because the two negative signs for the UγiU
cancel for space inversion. Thus the Electromagnetic interactions are both space reflection
invariant and charge conjugation invariant.

(picture goes here)

The corresponding probability amplitude for the Weak Interaction has a factor

U(p2, s2)γµ(I− γ5)U(p1, s1)U(p4, s4)γ
µ(I− γ5)U(p3, s3)

= UγµUUγ
µU + Uγµγ5UUγ

µγ5U

−Uγµγ5UUγ
µU − UγµUUγ

µγ5U . (2.17.6)

The term

Uγµγ5UUγ
µU

= Uγ0γ5UUγ
0U −

3∑
i=1

Uγiγ5UUγ
iU (2.17.7)

changes sign under both P and C transformations, because ΨγµΨ and Ψγµγ5Ψ transform
with opposite signs both for µ = 0 and µ = i. Thus, the weak interactions break both
space inversion and charge conjugation invariance. This manifests itself in the angular
dependence of scattering processes (e.g. cos θ changes sign under space inversion: 0 →
π − 0). Note however that the combined action of C and P , CP , is a symmetry of this
interaction.

Note, that in a general theory C, P and T are not preserved, but the combination of
the three transformations CPT is always a symmetry.

2.18 Neutrinos

Some modification of RQM is needed in the physically important case of massless spin-1/2
particles — Neutrinos (with todays experimental evidence of Neutrino oscillations this is
not quite true, nevertheless it is a very good approximation.)
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First, define the Helicity of a particle as the component of its AM ~J = ~L+ ~Σ/2 in its
direction of motion. For a Dirac particle,

Helicity = ~J · ~p
|~p|

=
~Σ

2
· ~p
|~p|

(2.18.1)

because ~L · ~p = (~x× ~p) · ~p = 0.

Experimental observation shows that whereas an e− can have Helicity +1/2 or −1/2,
a Neutrino (which is massless) can only have Helicity −1/2 and an Anti-Neutrino can
only have Helicity +1/2.

Thus, whereas we need four degrees of freedom to describe the 2 spin states of an
electron or positron, we need only 2 degrees of freedom to describe the spin states of the
neutrino and anti-neutrino. We need to discard 2 spin states of the Dirac particle.

Now we return to the Dirac equation for a positive energy solution of energy E and
momentum ~p. However, we choose a different representation of the Dirac matrices (and
hence a different representation of the gamma-matrices). This does not effect the physics
but makes the proof much easier. It may be checked that

β =

(
0 I
I 0

)
, ~α =

(
~σ 0
0 −~σ

)
(2.18.2)

also obey the Dirac Algebra (2.2.7).

For Ψ = e−ip·x
(
φ
χ

)
the Dirac equation reduces to (~α · ~p+ βm)Ψ = EΨ (see Section

2.11), from which we get(
~σ · ~p mI
mI −~σ · ~p

)(
φ
χ

)
= E

(
φ
χ

)
, (2.18.3)

which gives the coupled equations

~σ · ~pφ+mχ = Eφ

mφ− ~σ · ~pχ = Eχ . (2.18.4)

Now taking m = 0 for a massless neutrino decouples the two equations,

~σ · ~pφ = Eφ

~σ · ~pχ = −Eχ , (2.18.5)

and since E = |~p| for m = 0,

~σ · ~p
2|~p|

φ =
1

2
φ

~σ · ~p
2|~p|

χ = −1

2
χ . (2.18.6)
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Thus the upper 2 components of Ψ describe Helicity 1/2, and the lower two describe
helicity −1/2 when Ψ has positive energy. To obtain an appropriate Ψ to describe a
Neutrino we perform a projection that removes the upper 2 components.

This may be achieved by using γ5 = iγ0γ1γ2γ3. With the above choice of ~α and β,

γ0 = β =

(
0 I
I 0

)
, γi = βαi =

(
0 −σi

σi 0

)
(2.18.7)

and

γ5 = i

(
−σ1σ2σ3 0

0 σ1σ2σ3

)
=

(
I 0
0 −I

)
(2.18.8)

If we form 1
2
(I−γ5) =

(
0 0
0 I

)
, then we may use it to project the upper 2 components

and leave the Helicity −1/2 components. Thus,

ΨL ≡
1

2
(I− γ5)Ψ , (2.18.9)

with Ψ a positive energy spinor, may be used to describe the neutrino.

If instead we start from a negative energy solution Ψ, the from Section 2.11

(−~α · ~p+ βm)Ψ = −EΨ . (2.18.10)

For Ψ = eip·x
(
φ
χ

)
we then have

(
−~σ · ~p mI
mI ~σ · ~p

)(
φ
χ

)
= −E

(
φ
χ

)
, (2.18.11)

which gives the coupled equations

−~σ · ~pφ+mχ = −Eφ
mφ+ ~σ · ~pχ = −Eχ . (2.18.12)

Now taking m = 0 for a massless anti-neutrino

~σ · ~pφ = Eφ

~σ · ~pχ = −Eχ , (2.18.13)

and since E = |~p| for m = 0,

~σ · ~p
2|~p|

φ =
1

2
φ

~σ · ~p
2|~p|

χ = −1

2
χ . (2.18.14)
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This is the same as for the positive energy solution. Thus, the upper 2 components of Ψ
still describe Helicity +1/2 and the lower 2 components describe Helicity −1/2. To obtain
an appropriate Ψ to describe an Anti-Neutrino with Helicity +1/2 we need a negative
energy state with Helicity −1/2.

Thus, ΨL = 1
2
(I− γ5)Ψ with Ψ a negative energy spinor, may be used to describe the

anti-neutrino with Helicity +1/2.

2.19 Feynman’s Interpretation of the Klein-Gordon

Equation

In Section 1.2 we abandoned the KG equation because the Probability density

ρ = i (φ∗∂tφ− φ∂tφ
∗) (2.19.1)

could give negative values (we have renamed the wavefuntion Ψ by φ).

It can be checked by direct substitution that the KG equation

(
∂2

∂t2
− ~∇2 +m2)φ = 0 (2.19.2)

has positive energy solutions

φ = Ne−ip·x = Ne−i(Et−~p·~x) (2.19.3)

and negative energy solutions

φ = Neip·x = Nei(Et−~p·~x) . (2.19.4)

The probability density of such solutions is

ρ = |N |2(±2E) . (2.19.5)

Thus, negative probabilities come from negative energy solutions. These are (as usual)
the problem.

We need an interpretation for the negative energy solutions of the KG equation. Dirac
Hole theory will NOT work for the spin-0 Bosons described by the KG equation, because
they do not obey the Dirac exclusion principle to give a filled negative energy sea.

Feynman gave an alternative way of interpreting negative energy solutions which works
for both bosons and fermions!
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The emission/absorption of an anti-particle with 4-momentum pµ is equivalent to the
absorption/emission of a negative energy particle with 4-momentum −pµ.

In Feynman diagrams, which are the rules of calculating scattering and decay am-
plitudes in RQM, when Anti-Particles are involved we draw lines for negative energy
particles propagating backwards in time and use Feynman’s interpretation. E.g. for elec-
tromagnetic Electron-Positron scattering via photon exchange there are two diagrams
that contribute:

(picture goes here)

2.20 Dirac Equation in an Electromagnetic Field

In classical relativistic mechanics the interaction of a particle carrying charge q in an
external electromagnetic field can be obtained by substituting the momentum as

pµ → pµ + qAµ , (2.20.1)

where Aµ is the 4-vector potential

Aµ ≡ (A0, ~A) = (φ, ~A) (2.20.2)

with φ the scalar potential and ~A the vector potential. (Remember: ~E = −~∇φ − ∂t
~A,

~B = ~∇× ~A).

This works also for RQM

p̂µ → p̂µ + qAµ (2.20.3)

or equivalently

∂µ → ∂µ − iqAµ . (2.20.4)

The free particle Dirac equation is (iγ · ∂ −m)Ψ = 0. Making the above substitution

γ · ∂ → γ · ∂ − iqγ · A (2.20.5)

the Dirac equation in an electromagnetic field is

(iγ · ∂ −m)Ψ = −qγ · A (2.20.6)

or

(i∂/−m)Ψ = −qA/ . (2.20.7)
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It is sometimes convenient to write the equation in terms of the Dirac matrices i.e. in
Hamiltonian form. Begin with the equation

(iγ0 ∂

∂t
+ i~γ · ~∇−m)Ψ = −q(A0γ0 − ~A · ~γ)Ψ (2.20.8)

and multiply from left with γ0 = β. Since (γ0)2 = I and γ0γi = ββαi = αi we obtain

i
∂Ψ

∂t
=
(
(−i~∇+ q ~A) · α+ βm

)
Ψ− qA0Ψ

→ i
∂Ψ

∂t
=

(
α · ~̂Π + βm

)
Ψ− qA0Ψ , (2.20.9)

where
~̂Π = −i~∇+ q ~A = ~̂p+ q ~A . (2.20.10)

Gauge Invariance

Remember that the EM field strength tensor Fµν = ∂µAν − ∂νAµ is invariant under
gauge transformations Aµ → Aµ +∂µχ ≡ Ãµ. However the Dirac equation is not invariant
under gauge transformation

(i∂/+ qA/−m)Ψ → (i∂/+ qÃ/−m)Ψ

= (i∂/+ qA/+ q∂/χ−m)Ψ . (2.20.11)

This can be fixed if we transform the Dirac wavefunction by a spacetime dependent phase
factor

Ψ → eiα(x)Ψ = Ψ̃ . (2.20.12)

So we find

(i∂/+ qA/−m)Ψ = 0 → (i∂/+ qÃ/−m)Ψ̃ = 0

→ eiα(x) (i∂/Ψ− (∂/α)Ψ + (qA/+ q∂/χ−m)Ψ) = 0 .(2.20.13)

If we now require that the 2nd term cancels the 4th term in the last line of that equation,
which simply implies

α(x) = qχ(x) , (2.20.14)

then we get

eiqχ(x) (i∂/+ qA/−m) Ψ = 0 . (2.20.15)

So up to an irrelevant overall phase factor we have recovered the original Dirac equation!
Hence the Dirac equation is forminvariance under gauge transformations:

Aµ → Ãµ = Aµ + ∂µχ(x) ,

Ψ → Ψ̃ = eiqχ(x)Ψ . (2.20.16)
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Charge Conjugation

It is interesting to see what happens to the Dirac equation coupled to the EM field
under charge conjugation:

C : Ψ → ΨC = Cγ0Ψ∗ , (2.20.17)

with C = iγ2γ0.

It turns out that

(i∂/+ qA/−m) Ψ = 0 → (i∂/− qA/−m) ΨC = 0 (2.20.18)

i.e. under charge conjugation the charge of the particle flips sign. (Proof in homework)

2.21 The Magnetic Moment of the Electron

In the non-relativistic limit the rest mass mc2 is the largest energy in the problem (since
|~v|2 << c2) and we can write for a positive energy solution

Ψ = e−imt

(
φ
χ

)
(2.21.1)

where φ and χ vary slowly with time and will be called large and small components for
reasons that will become clear in a moment.

Substituting in the Dirac equation (with the Dirac representation for β and αi, which
is more appropriat for studying non-relativistic limits) in an electromagnetic field

me−imt

(
φ
χ

)
+ ie−imt

(
∂tφ
∂tχ

)
= e−imt

(
(−qA0 +m)I ~σ · ~̂Π

~σ · ~̂Π (−qA0 −m)I

)(
φ
χ

)
,

(2.21.2)
multiplying with e+imt and subtracting the first term on the left hand side from both sides
we obtain (

i∂tφ
i∂tχ

)
=

(
−qA0I ~σ · ~̂Π
~σ · ~̂Π (−qA0 − 2m)I

)(
φ
χ

)
. (2.21.3)

The lower equtions is

i∂tχ = ~σ · ~̂Πφ− (qA0 + 2m)χ . (2.21.4)

For χ varying slowly with time and under the assumption 2m >> qA0

χ ∼ ~σ · ~̂Π
2m

φ (2.21.5)
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where ~̂Π = ~̂p+ q ~A. Hence, for momenta and EM fields small compared to the rest mass

χ << φ . (2.21.6)

Now using the top equation

i∂tφ = −qA0φ+ ~σ · ~̂Πχ , (2.21.7)

we get, using eqn. (2.21.5)

⇒ i∂tφ = −qA0φ+
(~σ · ~̂Π)2

2m
φ . (2.21.8)

To simplify this further we may use the identity

(~σ · ~a)(~σ ·~b) = ~a ·~bI + i~σ · (~a×~b) , (2.21.9)

which follows from
σiσj = δijI + iεijkσk (2.21.10)

where summation over k is understood. The Kronecker delta is defined as δij =

{
1, i = j
0, i 6= j

;

and ε123 = ε231 = ε312 = +1, ε132 = ε213 = ε321 = −1 and otherwise εijk = 0. In terms of
the ε-tensor (

~a×~b
)i

= εijkajbk (2.21.11)

and, hence,

(~σ · ~̂Π)2φ = (~σ · ~̂Π)(~σ · ~̂Π)φ = ~̂Π · ~̂ΠIφ+ i~σ · (~̂Π× ~̂Π)φ . (2.21.12)

Now (~ = 1),

(~̂Π× ~̂Π)φ = (~̂p+q ~A)×(~̂p+q ~A)φ = (−i~∇+q ~A)×(−i~∇+q ~A)φ = −(~∇+iq ~A)×(~∇+iq ~A)φ .
(2.21.13)

The x component of this expression is

−(∂y + iqAy)(∂z + iqAz)φ+ (∂z + iqAz)(∂y + iqAy)φ

= − [∂y(iqAzφ)− ∂z(iqAyφ) + iqAy∂zφ− iqAz∂yφ]

= −iq[∂yAz − ∂zAy]φ

= −iqBxφ , (2.21.14)

and hence

(~̂Π× ~̂Π)φ = −iq ~Bφ . (2.21.15)
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Now

(~σ · ~̂Π)2φ = ~̂Π · ~̂Πφ+ q~σ · ~Bφ , (2.21.16)

hence, the non-relativistic limit of the Dirac equation in an EM field (also called Pauli
equation) may be written as

i
∂φ

∂t
=

(
−qA0 +

(~̂p+ q ~A)2

2m
+
q~σ · ~B
2m

)
φ (2.21.17)

or writing ~S = ~
2
~σ for the spin of the electron (setting ~ = 1) we obtain

i
∂φ

∂t
=

(
−qA0 +

(~̂p+ q ~A)2

2m
+
q~S · ~B
m

)
φ (2.21.18)

where φ is a two-component wave function for the non-relativistic spin-1/2 particle.

Comparing with the usual form of the non-rel. Schrödinger equation

i
∂Ψ

∂t
=

(
− 1

2m
~∇2 + V

)
Ψ , (2.21.19)

we can interpret the last term in eqn. (2.21.18) as a potential energy −~µspin · ~B due to
the spin magnetic moment of the electron in an external magnetic field. Thus the spin
magnetic moment is

~µspin = −q
~S

m
≡ −g q

~S

2m
(2.21.20)

where g is the so-called gyromagnetic ration. Hence, the Dirac equation predicts g = 2
whereas classically we would expect g = 1. This prediction was confirmed experimentally
and is one of the spectacular successes of the Dirac equation! Including radiative correction
from Quantum Electrodynamics (QED) yields a more precise value of g = 2(1.0011 . . .)
which agrees up to nine digits after the dot with experiment!

2.22 Hydrogen Atom Spectrum

In the presence of an electrostatic potential V (r) the Dirac equation becomes

ĤΨ = (~α · ~̂p+ βm+ V (r))Ψ = i
∂Ψ

∂t
, (2.22.1)

for positive energy solutions with energy eigenvalue E > 0 we make an separation ansatz

Ψ = e−iEtΨ0(r, θ, φ) (2.22.2)
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so that
i∂tΨ = EΨ (2.22.3)

which gives a time independent equation

(~α · ~̂p+ βm+ V (r))Ψ = EΨ . (2.22.4)

For a Hydrogen-like atom we take

V (r) = −Zα
r

, α =
e2

4π
. (2.22.5)

The total AM operator ~J commutes with (~α · ~̂p+βm) as in section 2.7. Also ~J commutes
with V (r) because V (r) is independent of Spin and as in section 1.3, orbital AM operator
~L commutes with V (r). Thus [ ~J, Ĥ] = 0.

The problem can be solved using simultaneous eigenstates ψl
j,m of ~J2, Jz and the parity

operator P (which takes ~x→ −~x). The corresponding quantum numbers are j(j + 1), m
and (−1)l, where l is orbital angular momentum.

For the spin-1/2 electron, the allowed values of j are j = l ± 1/2. The gory details of
the calculation can be found in section 2.3.2 of [6], with the result for the energy levels

En,j = me

[
1− 1

2

Z2α2

n2
− 1

2

Z4α4

n3

(
1

j + 1/2
− 3

4n

)
+O((Zα)6)

]
(2.22.6)

This result predicts correctly the splitting of the energy levels with the same princi-
ple quantum number n but different j (Fine Splitting); It does not predict the observed
splitting of energy levels with the same n and j but different parity (−1)l (Lamb Shift).
This requires the quantization of the EM field Aµand, hence, the use of Quantum Elec-
trodynamics (QED). Other important quantum corrections are discussed in [6].

(draw the energy levels with n = 1 and n = 2)
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