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Chapter 1

Introduction

1.1 Quantum field theory

In quantum field theory the theories of quantum mechanics and special relativity are united. In
quantum mechanics a special role is played by Planck’s constant h, usually given divided by 2π,

h̄ ≡ h/2π = 1.054 571 68 (18) × 10−34 J s

= 6.582 119 15 (56) × 10−22 MeV s. (1.1)

In the limit that the action S is much larger than h̄, S ≫ h̄, quantum effects do not play a role
anymore and one is in the classical domain. In special relativity a special role is played by the velocity
of light c,

c = 299 792 458 m s−1. (1.2)

In the limit that v ≪ c one reaches the non-relativistic domain.
In the framework of classical mechanics as well as quantum mechanics the position of a particle

is a well-defined concept and the position coordinates can be used as dynamical variables in the
description of the particles and their interactions. In quantum mechanics, the position can in principle
be determined at any time with any accuracy, being eigenvalues of the position operators. One can
talk about states |r〉 and the wave function ψ(r) = 〈r||ψ〉. In this coordinate representation the
position operators rop simply acts as

rop ψ(r) = r ψ(r). (1.3)

The uncertainty principle tells us that in this representation the momenta cannot be fully determined.
Corresponding position and momentum operators do not commute. They satisfy the well-known
(canonical) operator commutation relations

[ri, pj ] = ih̄ δij , (1.4)

where δij is the Kronecker δ function. Indeed, the action of the momentum operator in the coordinate
representation is not as simple as the position operator. It is given by

popψ(r) = −ih̄∇ψ(r). (1.5)

One can also choose a representation in which the momenta of the particles are the dynamical variables.
The corresponding states are |p〉 and the wave functions ψ̃(p) = 〈p||ψ〉 are the Fourier transforms of
the coordinate space wave functions,

ψ̃(p) =

∫

d3r exp

(

− i

h̄
p · r

)

ψ(r), (1.6)

1



Introduction 2

and

ψ(r) =

∫
d3p

(2πh̄)3
exp

(
i

h̄
p · r

)

ψ̃(p). (1.7)

The existence of a limiting velocity, however, leads to new fundamental limitations on the possible
measurements of physical quantities. Let us consider the measurement of the position of a particle.
This position cannot be measured with infinite precision. Any device that wants to locate the position
of say a particle within an interval ∆x will contain momentum components p ∝ h̄/∆x. Therefore if
we want ∆x ≤ h̄/mc (where m is the rest mass of the particle), momenta of the order p ∝ mc and
energies of the order E ∝ mc2 are involved. It is then possible to create a particle - antiparticle pair
and it is no longer clear of which particle we are measuring the position. As a result, we find that the
original particle cannot be located better than within a distance h̄/mc, its Compton wavelength,

∆x ≥ h̄

mc
. (1.8)

For a moving particle mc2 → E (or by considering the Lorentz contraction of length) one has ∆x ≥
h̄c/E. If the particle momentum becomes relativistic, one has E ≈ pc and ∆x ≥ h̄/p, which says that
a particle cannot be located better than its de Broglie wavelength.
Thus the coordinates of a particle cannot act as dynamical variables (since these must have a precise
meaning).

Some consequences are that only in cases where we restrict ourselves to distances ≫ h̄/mc, the
concept of a wave function becomes a meaningful (albeit approximate) concept. For a massless particle
one gets ∆x ≫ h̄/p = λ/2π, i.e. the coordinates of a photon only become meaningful in cases where
the typical dimensions are much larger than the wavelength.

For the momentum or energy of a particle we know that in a finite time ∆t, the energy uncertainty
is given by ∆E ≥ h̄/∆t. This implies that the momenta of particles can only be measured exactly
when one has an infinite time available. For a particle in interaction, the momentum changes with time
and a measurement over a long time interval is meaningless. The only case in which the momentum
of a particle can be measured exactly is when the particle is free and stable against decay. In this case
the momentum is conserved and one can let ∆t become infinitely large.

The result thus is that the only observable quantities that can serve as dynamical coordinates are
the momenta (and further the internal degrees of freedom like polarizations, . . . ) of free particles.
These are the particles in the initial and final state of a scattering process. The theory will not give
an observable meaning to the time dependence of interaction processes. The description of such a
process as occurring in the course of time is just as unreal as classical paths are in non-relativistic
quantum mechanics.

The main problem in Quantum Field Theory is to determine the probability amplitudes be-
tween well-defined initial and final states of a system of free particles. The set of such amplitudes
〈p′1,p′2; out|p1,p2; in〉 ≡ 〈p′1,p′2; in|S|p1,p2; in〉 determines the scattering matrix or S-matrix.

Another point that needs to be emphasized is the meaning of particle in the above context. Actu-
ally, the better name might be ’degree of freedom’. If the energy is low enough to avoid excitation of
internal degrees of freedom, an atom is a perfect example of a particle. In fact, it is the behavior under
Poincaré transformations or in the limit v ≪ c Gallilei transformations that determine the description
of a particle state, in particular the free particle state.

1.2 Units

It is important to choose an appropriate set of units when one considers a specific problem, because
physical sizes and magnitudes only acquire a meaning when they are considered in relation to each
other. This is true specifically for the domain of atomic, nuclear and high energy physics, where
the typical numbers are difficult to conceive on a macroscopic scale. They are governed by a few
fundamental units and constants, which have been discussed in the previous section, namely h̄ and
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c. By making use of these fundamental constants, we can work with less units. For instance, the
quantity c is used to define the meter. We could as well have set c = 1. This would mean that one of
the two units, meter or second, is eliminated, e.g. given a length l the quantity l/c has the dimension
of time and one finds 1 m = 0.33× 10−8 s or eliminating the second one would use that, given a time
t, the quantity ct has dimension of length and hence 1 s = 3 × 108 m.

Table 1.1: Physical quantities and their canonical dimensions d, determining units (energy)d.

quantity quantity with dimension canonical
dimension energyd dimension d

time t t/h̄ (energy)−1 -1
length l l/(h̄c) (energy)−1 -1
energy E E (energy)1 1

momentum p pc (energy)1 1
angular momentum ℓ ℓ/h̄ (energy)0 0

mass m mc2 (energy)1 1
area A A/(h̄c)2 (energy)−2 -2
force F F h̄c (energy)2 2

charge (squared) e2 α = e2/4πǫ0 h̄c (energy)0 0
Newton’s constant GN GN/(h̄c

5) (energy)−2 -2
velocity v v/c (energy)0 0

In field theory, it turns out to be convenient to work with units such that h̄ and c are set to one.
All length, time and energy or mass units then can be expressed in one unit and powers thereof, for
which one can use energy (see table 1.1). The elementary unit that is most relevant depends on the
domain of applications, e.g. the eV for atomic physics, the MeV or GeV for nuclear physics and the
GeV or TeV for high energy physics. To convert to other units of length or time we use appropriate
combinations of h̄ and c, e.g. for lengths

h̄c = 0.197 326 968 (17) GeV fm (1.9)

or for order of magnitude estimates h̄c ≈ 0.2 GeV fm = 200 eVnm, implying (when h̄ = c = 1) that
1 fm = 10−15 m ≈ 5 GeV−1. For areas, e.g. cross sections, one needs

h̄2c2 = 0.389 379 323 (67) GeV2 mbarn (1.10)

(1 barn = 10−28 m2 = 102 fm2). For times one needs

h̄ = 6.582 119 15 (56) × 10−22 MeV s, (1.11)

implying (when h̄ = c = 1) that 1 s ≈ 1.5 × 1024 GeV−1. Depending on the specific situation, of
course masses come in that one needs to know or look up, e.g. those of the electron or proton,

me = 9.109 382 6 (16)× 10−31 kg = 0.510 998 918 (44) MeV/c
2
, (1.12)

mp = 1.672 621 71 (29)× 10−27 kg = 0.938 272 029 (80) GeV/c
2
. (1.13)

Furthermore one encounters the strength of the various interactions. In some cases like the electro-
magnetic and strong interactions, these can be written as dimensionless quantities, e.g. for electro-
magnetism the fine structure constant

α =
e2

4π ǫ0 h̄c
= 1/137.035 999 11 (46). (1.14)
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For weak interactions and gravity one has quantities with a dimension, e.g. for gravity Newton’s
constant,

GN

h̄c5
= 6.708 7 (10)× 10−39 GeV−2. (1.15)

By putting this quantity equal to 1, one can also eliminate the last dimension. All masses, lengths
and energies are compared with the Planck mass or length (see exercises). Having many particles,
the concept of temperature becomes relevant. A relation with energy is established via the average
energy of a particle being of the order of kT , with the Boltzmann constant given by

k = 1.380 650 5(24)× 10−23 J/K = 8.617 343(15)× 10−5 eV/K. (1.16)

Quantities that do not contain h̄ or c are classical quantities, e.g. the mass of the electron me.
Quantities that contain only h̄ are expected to play a role in non-relativistic quantum mechanics,
e.g. the Bohr radius, a∞ = 4πǫ0h̄

2/mee
2 or the Bohr magneton µe = eh̄/2me. Quantities that only

contain c occur in classical relativity, e.g. the electron rest energy mec
2 and the classical electron

radius re = e2/4πǫ0 mec
2. Quantities that contain both h̄ and c play a role in relativistic quantum

mechanics, e.g. the electron Compton wavelength −λe = h̄/mec. It remains useful, however, to use h̄
and c to simplify the calculation of quantities.

1.3 Conventions for vectors and tensors

We start with vectors in Euclidean 3-space E(3). A vector x can be expanded with respect to a basis
êi (i = 1, 2, 3 or i = x, y, z),

x =
3∑

i=1

xi êi = xi êi, (1.17)

to get the three components of a vector, xi. When a repeated index appears, such as on the right
hand side of this equation, summation over this index is assumed (Einstein summation convention).
Choosing an orthonormal basis, the metric in E(3) is given by êi · êj = δij , where the Kronecker delta
is given by

δij =

{
1 if i = j
0 if i 6= j,

. (1.18)

The inner product of two vectors is given by

x · y = xi yi êi · êj = xi yj δij = xiyi. (1.19)

The inner product of a vector with itself gives its length squared. A vector can be rotated, x′ = Rx

or x′i = Rijxj leading to a new vector with different components. Actually, rotations are those real,
linear transformations that do not change the length of a vector. Tensors of rank n are objects with n
components that transform according to T ′i1...in

= Ri1j1 . . . Rinjn
Tj1...jn

. A vector is a tensor of rank
1. The inner product of two vectors is a rank 0 tensor or scalar. The Kronecker delta is a constant
rank-2 tensor. It is an invariant tensor that does not change under rotations. The only other invariant
constant tensor in E(3) is the Levi-Civita tensor

ǫijk =







1 if ijk is an even permutation of 123
−1 if ijk is an odd permutation of 123
0 otherwise.

(1.20)
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that can be used in the cross product of two vectors z = x × y, in which case zi = ǫijk xjyk. Useful
relations are

ǫijk ǫℓmn =

∣
∣
∣
∣
∣
∣

δiℓ δim δin
δjℓ δjm δjn

δkℓ δkm δkn

∣
∣
∣
∣
∣
∣

, (1.21)

ǫijk ǫimn = δjm δkn − δjn δkm, (1.22)

ǫijk ǫijl = 2 δkl. (1.23)

We note that for Euclidean spaces (with a positive definite metric) vectors and tensors there is only
one type of indices. No difference is made between upper or lower. So we could have used all upper
indices in the above equations. When 3-dimensional space is considered as part of Minkowski space,
however, we will use upper indices for the three-vectors.

In special relativity we start with a four-dimensional real vector space E(1,3) with basis n̂µ (µ =
0,1,2,3). Vectors are denoted x = xµn̂µ. The length (squared) of a vector is obtained from the scalar
product,

x2 = x · x = xµxν n̂µ · n̂ν = xµxνgµν . (1.24)

The quantity gµν ≡ n̂µ · n̂ν is the metric tensor, given by g00 = −g11 = −g22 = −g33 = 1 (the
other components are zero). For four-vectors in Minkowski space we will use the notation with upper
indices and write x = (t,x) = (x0, x1, x2, x3), where the coordinate t = x0 is referred to as the time
component, xi are the three space components. Because of the different signs occurring in gµν , it is
convenient to distinguish lower indices from upper indices. The lower indices are constructed in the
following way, xµ = gµνx

ν , and are given by (x0, x1, x2, x3) = (t,−x). One has

x2 = xµxµ = t2 − x2. (1.25)

The scalar product of two different vectors x and y is denoted

x · y = xµyνgµν = xµyµ = xµy
µ = x0y0 − x · y. (1.26)

Within Minkowski space the real, linear transformations that do not change the length of a four-vector
are called the Lorentz transformations. These transformations do change the components of a vector,
denoted as V ′µ = Λµ

ν V
ν , The (invariant) lengths often have special names, such as eigentime τ for the

position vector τ2 ≡ x2 = t2 − x2. The invariant distance between two points x and y in Minkowski
space is determined from the length dsµ = (x − y)µ. The real, linear transformations that leave the
length of a vector invariant are called (homogeneous) Lorentz transformations. The transformations
that leave invariant the distance ds2 = dt2 − (dx2 + dy2 + dz2) between two points are called inhomo-
geneous Lorentz transformations or Poincaré transformations. The Poincaré transformations include
Lorentz transformations and translations.

Unlike in Euclidean space, the invariant length or distance (squared) is not positive definite. One
can distinguish:

• ds2 > 0 (timelike intervals); in this case an inertial system exists in which the two points are at
the same space point and in that frame ds2 just represents the time difference ds2 = dt2;

• ds2 < 0 (spacelike intervals); in this case an inertial system exists in which the two points are
at the same time and ds2 just represents minus the spatial distance squred ds2 = −dx2;

• ds2 = 0 (lightlike or null intervals); the points lie on the lightcone and they can be connected
by a light signal.

Many other four vectors and tensors transforming like T ′µ1...µn = Λµ1
ν1
. . .Λµn

νn
T ν1...νn can be con-

structed. In Minkowski space, one must distinguish tensors with upper or lower indices and one can
have mixed tensors. Relations relating tensor expressions, independent of a coordinate system, are
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called covariant. Examples are the scalar products above but also relations like pµ = mdxµ/dτ for the
momentum four vector. Note that in this equation one has on left- and righthandside a four vector
because τ is a scalar quantity! The equation with t = x0 instead of τ simply would not make sense!
The momentum four vector, explicitly written as (p0,p) = (E,p), is timelike with invariant length
(squared) p2 = p · p = pµpµ = E2 − p2 = m2, where m is called the mass of the system.

The derivative ∂µ is defined ∂µ = ∂/∂xµ and we have a four vector ∂ with components

(∂0, ∂1, ∂2, ∂3) =

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)

=

(
∂

∂t
,∇

)

. (1.27)

It is easy to convince oneself of the nature of the indices in the above equation, because one has

∂µ x
ν = gν

µ. (1.28)

Note that gν
µ with one upper and lower index, constructed via the metric tensor itself, gν

µ = gµρg
ρν and

is in essence a ’Kronecker delta’, g0
0 = g1

1 = g2
2 = g3

3 = 1. The length squared of ∂ is the d’Alembertian
operator, defined by

2 = ∂µ∂µ =
∂2

∂t2
− ∇

2. (1.29)

The value of the antisymmetric tensor ǫµνρσ is determined in the same way as for ǫijk, starting
from

ǫ0123 = 1. (1.30)

(Note that there are different conventions around and sometimes the opposite sign is used). It is an
invariant tensor, not affected by Lorentz transformations. The product of two epsilon tensors is given
by

ǫµνρσǫµ
′ν′ρ′σ′

= −

∣
∣
∣
∣
∣
∣
∣
∣

gµµ′

gµν′

gµρ′

gµσ′

gνµ′

gνν′

gνρ′

gνσ′

gρµ′

gρν′

gρρ′

gρσ′

gσµ′

gσν′

gσρ′

gσσ′

∣
∣
∣
∣
∣
∣
∣
∣

, (1.31)

ǫµνρσǫ ν′ρ′σ′

µ = −

∣
∣
∣
∣
∣
∣

gνν′

gνρ′

gνσ′

gρν′

gρρ′

gρσ′

gσν′

gσρ′

gσσ′

∣
∣
∣
∣
∣
∣

, (1.32)

ǫµνρσǫ ρ′σ′

µν = −2
(

gρρ′

gσσ′ − gρσ′

gσρ′
)

, (1.33)

ǫµνρσǫ σ′

µνρ = −6gσσ′

, (1.34)

ǫµνρσǫµνρσ = −24. (1.35)

The first identity, for instance, is easily proven for ǫ0123 ǫ0123 from which the general case can be
obtained by making permutations of indices on the lefthandside and permutations of rows or columns
on the righthandside. Each of these permutations leads to a minus sign, but more important has the
same effect on lefthandside and righthandside. For the contraction of a vector with the antisymmetric
tensor one often uses the shorthand notation

ǫABCD = ǫµνρσAµBνCρDσ. (1.36)

Exercises

Exercise 1.1

(a) In the the Hydrogen atom (quantum system) the scale is set by the Bohr radius, a∞ =
4πǫ0h̄

2/mee
2. Relate this quantity to the electron Compton wavelength −λe via the dimensionless

fine structure constant α.
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(b) Relate the classical radius of the electron (a relativistic concept), re = e2/4πǫ0 mec
2 to the

Compton wavelength.

(c) Calculate the Compton wavelength of the electron and the quantities under (a) and (b) using
the value of h̄c, α and mec

2 = 0.511 MeV. This demonstrates how a careful use of units can save
a lot of work. One does not need to know h̄, c, ǫ0, me, e, but only appropriate combinations.

(d) Use the value of the gravitational constant GN/h̄c
5 = 6.71 × 10−39 GeV−2 to construct a mass

Mpl (Planck mass). Compare it with the proton mass and use Eq. 1.13 to give its actual value
in kg. Also construct and calculate the Planck length Lpl, which is the Compton wavelength for
the Planck mass.

(e) Note that h̄/m = −λ c and use this to calculate in a simple way (avoiding putting in the value of
e) the Bohr magneton µe = eh̄/2me and the nuclear magneton µp = eh̄/2mp in electronvolt per
Tesla (eV/T ).
[Note: what is the MKS unit for V/T?]

Exercise 1.2

Prove the identity A× (B ×C) = (A ·C)B - (A ·B)C using the properties of the tensor ǫijk given
in section 1.3.

Exercise 1.3

Prove the following relation

ǫµνρσ gαβ = ǫανρσ gµβ + ǫµαρσ gνβ + ǫµνασ gρβ + ǫµνρα gσβ .

by a simple few-line reasoning [For instance: If {µ, ν, ρ, σ} is a permutation of {0, 1, 2, 3} the index α
can only be equal to one of the indices in ǫµνρσ, . . . ].

Exercise 1.4

Lightcone coordinates for a four vector a (which we will denote with square brackets as [a−, a+, a1, a2]
or [a−, a+,aT ]) are defined through

a± ≡ (a0 ± a3)/
√

2.

(a) Express the scalar product a · b in lightcone coordinates and deduce from this the values of g++,
g−−, g+− and g−+. How are a+ and a− related to a+ and a−.

(b) The coordinates (a0, a1, a2, a3) are the expansion coefficients using the basis vectors n̂0, n̂1, n̂2, n̂3;
These are

n̂1 = (0, 1, 0, 0)

n̂2 = (0, 0, 1, 0)

n̂0 = (1, 0, 0, 0)

n̂3 = (0, 0, 0, 1)

.

Also for the coordinates [a−, a+, a1, a2] we can find basis vectors n̂−, n̂+, n̂1, n̂2. Note that
a · n̂α = aα and derive from that the components n̂µ

α of the four vector n̂α. Use that to give the
components of the basis vectors n̂+ and n̂−.



Chapter 2

Relativistic wave equations

2.1 The Klein-Gordon equation

In this chapter, we just want to play a bit with covariant equations and study their behavior under
Lorentz transformations. The Schrödinger equation in quantum mechanics is the operator equation
corresponding to the non-relativistic expression for the energy,

E =
p2

2M
, (2.1)

under the substitution (in coordinate representation)

E −→ Eop = i
∂

∂t
, p −→ pop = −i∇. (2.2)

Acting on the wave function one finds for a free particle,

i
∂

∂t
ψ(r, t) = − ∇

2

2M
ψ(r, t). (2.3)

Equations 2.1 and 2.3 are not covariant. But the replacement 2.2, written as pµ −→ i∂µ is covariant
(the same in every frame of reference). Thus a covariant equation can be obtained by starting with
the (covariant) equation for the invariant length of the four vector (E,p),

p2 = pµpµ = E2 − p2 = M2, (2.4)

where M is the particle mass. Substitution of operators gives the Klein-Gordon (KG) equation for a
real or complex function φ,

(
2 +M2

)
φ(r, t) =

(
∂2

∂t2
− ∇

2 +M2

)

φ(r, t) = 0. (2.5)

Although it is straightforward to find the solutions of this equation, namely plane waves characterized
by a wave number k,

φk(r, t) = exp(−i k0t+ ik · r), (2.6)

with (k0)2 = k2 +M2, the interpretation of this equation as a single-particle equation in which φ is a
complex wave function poses problems because the energy spectrum is not bounded from below and
the probability is not positive definite.

The energy spectrum is not bounded from below: considering the above stationary plane wave solutions,
one obtains

k0 = ±
√

k2 +M2 = ±Ek, (2.7)

8
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i.e. there are solutions with negative energy.

Probability is not positive: in quantum mechanics one has the probability and probability current

ρ = ψ∗ψ (2.8)

j = − i

2M
(ψ∗∇ψ − (∇ψ∗)ψ) ≡ − i

2M
ψ∗
↔
∇ ψ. (2.9)

They satisfy the continuity equation,
∂ρ

∂t
= −∇ · j, (2.10)

which follows directly from the Schrödinger equation. This continuity equation can be written down
covariantly using the components (ρ, j) of the four-current j,

∂µj
µ = 0. (2.11)

Therefore, relativistically the density is not a scalar quantity, but rather the zero component of a four
vector. The appropriate current corresponding to the KG equation (see Excercise 2.2) is

jµ = i φ∗
↔
∂µ φ or (ρ, j) =

(

i φ∗
↔
∂0 φ,−i φ∗

↔
∇ φ

)

. (2.12)

It is easy to see that this current is conserved if φ (and φ∗) satisfy the KG equation. The KG equation,
however, is a second order equation and φ and ∂φ/∂t can be fixed arbitrarily at a given time. This
leads to the existence of negative densities.

As we will see later both problems are related and have to do with the existence of particles and
antiparticles, for which we need the interpretation of φ itself as an operator, rather than as a wave
function. This operator has all possible solutions in it multiplied with creation (and annihilation)
operators. At that point the dependence on position r and time t is just a dependence on num-
bers/parameters on which the operator depends, just as the dependence on time was in ordinary
quantum mechanics. Then, there are no longer fundamental objections to mix up space and time,
which is what Lorentz transformations do. And, it is simply a matter of being careful to find a
consistent (covariant) theory.

2.2 Mode expansion of solutions of the KG equation

Before quantizing fields, having the KG equation as a space-time symmetric (classical) equation, we
want the most general solution. For this we note that an arbitrary solution for the field φ can always
be written as a superposition of plane waves,

φ(x) =

∫
d4k

(2π)4
2π δ(k2 −M2) e−i k·x φ̃(k) (2.13)

with (in principle complex) coefficients φ̃(k). The integration over k-modes clearly is covariant and
restricted to the ‘mass’-shell (as required by Eq. 2.5). It is possible to rewrite it as an integration over
positive energies only but this gives two terms (use the result of exercise 2.3),

φ(x) =

∫
d3k

(2π)3 2Ek

(

e−i k·x φ̃(Ek,k) + ei k·x φ̃(−Ek,−k)
)

. (2.14)

Introducing φ̃(Ek,k) ≡ a(k) and φ̃(−Ek,−k) ≡ b∗(k) one has

φ(x) =

∫
d3k

(2π)3 2Ek

(
e−i k·x a(k) + ei k·x b∗(k)

)
= φ+(x) + φ−(x). (2.15)
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In Eqs 2.14 and 2.15 one has elimated k0 and in both equations k · x = Ekt− k · x. The coefficients
a(k) and b∗(k) are the amplitudes of the two independent solutions (two, after restricting the energies
to be positive). They are referred to as mode and anti-mode amplitudes (or because of their origin
positive and negative energy modes). The choice of a and b∗ allows an easier distinction between the
cases that φ is real (a = b) or complex (a and b are independent amplitudes).

2.3 Symmetries of the Klein-Gordon equation

We arrived at the Klein-Gordon equation by constructing a covariant operator (∂µ∂
µ + M2) acting

on a complex function φ. Performing some Lorentz transformation x→ x′ = Λx, one thus must have
that the function φ→ φ′ such that

φ′(x′) = φ(x) or φ′(x) = φ(Λ−1x). (2.16)

The consequence of this is discussed in Exercise 2.6
We will explicitly discuss the example of a discrete symmetry, for which we consider space inversion,

i.e. changing the sign of the spatial coordinates, which implies

(xµ) = (t,x) → (t,−x) ≡ (x̃µ). (2.17)

Transforming everywhere in the KG equation x→ x̃ one obtains
(

∂̃µ∂̃
µ +M2

)

φ(x̃) = 0. (2.18)

Since a · b = ã · b̃, it is easy to see that
(
∂µ∂

µ +M2
)
φ(x̃) = 0, (2.19)

implying that for each solution φ(x) there exists a corresponding solution with the same energy,
φP (x) ≡ φ(x̃) (P for parity). It is easy to show that

φP (x) = φ(x̃) =

∫
d3k

(2π)3 2Ek

(
e−i k·x̃ a(k) + ei k·x̃ b∗(k)

)

=

∫
d3k

(2π)3 2Ek

(

e−i k̃·x a(k) + ei k̃·x b∗(k)
)

=

∫
d3k

(2π)3 2Ek

(
e−i k·x a(−k) + ei k·x b∗(−k)

)
, (2.20)

or since one can define

φP (x) ≡
∫

d3k

(2π)3 2Ek

(
e−i k·x aP (k) + ei k·x bP∗(k)

)
, (2.21)

one has for the mode amplitudes aP (k) = a(−k) and bP (k) = b(−k). This shows how parity trans-
forms k-modes into −k modes.

Another symmetry is found by complex conjugating the KG equation. It is trivial to see that
(
∂µ∂

µ +M2
)
φ∗(x) = 0, (2.22)

showing that with each solution there is a corresponding charge conjugated solution φC(x) = φ∗(x).
In terms of modes one has

φC(x) = φ∗(x) =

∫
d3k

(2π)3 2Ek

(
e−i k·x b(k) + ei k·x a∗(k)

)

≡
∫

d3k

(2π)3 2Ek

(
e−i k·x aC(k) + ei k·x bC∗(k)

)
, (2.23)
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i.e. for the mode amplitudes aC(k) = b(k) and bC(k) = a(k). For the real field one has aC(k) = a(k).
This shows how charge conjugation transforms ’particle’ modes into ’antiparticle’ modes and vice
versa.

Exercises

Exercise 2.1

Show that for a conserved current (∂µj
µ = 0) the charge in a finite volume, QV ≡

∫

V d
3x j0(x),

satisfies

Q̇V = −
∫

S

ds · j,

and thus for any normalized solution the full ‘charge’, letting V → ∞, is conserved, Q̇ = 0.

Exercise 2.2

Show that if φ and φ∗ are solutions of the KG equation, that

jµ = i φ∗
↔
∂µ φ

is a conserved current

Note: A
↔
∂µ B ≡ A∂µB − (∂µA)B).

Exercise 2.3

Show that1 ∫
d4k

(2π)4
2π δ(k2 −M2) θ(k0) F (k0,k) =

∫
d3k

(2π)3 2Ek
F (Ek,k),

where Ek =
√

k2 +M2.

Exercise 2.4

write down the 3-dimensional Fourier transform φ̃(k, t) ≡
∫
d3x φ(x, t) exp(−ik · x) and its time

derivative i∂0φ̃(k, t) for the mode expansion in Eq. 2.15. Use these to show that

a(k) = ei Ekt i
↔
∂0 φ̃(k, t) = ei Ekt (i∂0 + Ek) φ̃(k, t),

b(k) = ei Ekt i
↔
∂0 φ̃∗(−k, t),

Note that a(k) and b(k) are independent of t.

1Use the following property of delta functions

δ (f(x)) =
X

zeros xn

1

|f ′(xn)|
δ(x − xn).
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Exercise 2.5

(a) As an introduction to parts (b) and (c), show that for two fields φ1 (with coefficients a1 and b∗1)
and φ2 (with coefficients a2 and b∗2) one has

∫

d3x φ∗1(x)φ2(x) =

∫
d3k

(2π)3 4E2
k

(

a∗1(k)a2(k) + b1(k)b∗2(k)

+ a∗1(k)b∗2(−k) e2iEkt + b1(k)a2(−k) e−2iEkt

)

.

(b) Express now the full charge QV (exercise 2.1) for a complex scalar field current (exercise 2.2) in
terms of the a(k) and b(k) using the expansion in Eq. 2.15.

After you have found the result, note that replacing a∗(k) → a†op(k) and a(k) → aop(k) with aop

and a†op being annihilation and creation operators (as known from a harmonic oscillator) and
the same for the coefficients b(k), one sees that Q is expressed as an infinite sum over number
operators a†a (particles) and b†b (anti-particles). This will be the topic of chapter 7.

(c) Similarly, also using the result in (a), express the quantities

E =

∫

d3x
(
(∂0φ)∗(∂0φ) + ∇φ∗ · ∇φ+M2φ∗φ

)
,

P i =

∫

d3x (∂{0φ)∗(∂i}φ),

in terms of the a(k) and b(k). Note that a{µbν} indicates symmetrization, a{µbν} ≡ aµbν +aνbµ.
We will encounter these quantities later as energy and momentum.

Exercise 2.6

Write down the mode expansion for the Lorentz transformed scalar field φ′(x) and show that it implies
that the Lorentz transformed modes satisfy a′(Λk) = a(k).

Exercise 2.7

To solve the problem with positive and negative energies and get a positive definite density, an attempt
to construct a first order differential equation for the time evolution would be to write,

i
∂

∂t
ψ(r, t) = (−iα · ∇ +mβ)ψ(r, t),

where ψ is a wave function and the nature of α and β are left open for the moment.

(a) Show that relativistic invariance, i.e. making sure that each component of ψ satisfies the Klein-
Gordon equation (in terms of differential operators ∂µ∂

µ+m2 = 0) requires the anticommutation
relation2

{αi, αj} = 2 δij I, {αi, β} = 0, and β2 = I.

From this one concludes that α and β must be matrix-valued and ψ must be a multi-component
wave function.

(b) Show that one has current conservation for the current

j0 = ψ†ψ and j = ψ†αψ.

2We denote the commutator as [A,B] = AB − BA and the anticommutator as {A,B} = AB + BA.



Chapter 3

Groups and their representations

The simple systems that we want to describe in a relativistically invariant way are free particles
with spin, e.g. electrons. In this section we will investigate the requirements imposed by Poincaré
invariance. In particular, we want to investigate if there exist objects other than just a scalar (real or
complex) field φ, e.g. two-component fields in analogy to the two-component wave functions used to
include spin in a quantum mechanical description of an electron in the atom.

Since the KG equation expresses just the relativistic relation between energy and momentum, we
also want it to hold for particles with spin. In quantum mechanics spin is described by a vector, i.e.
it has 3 components that we know the behavior of under rotations. In a relativistic theory, however,
the symmetry group describing rotations is embedded in the Lorentz group, and we must study the
representations of the Lorentz group. Particles with spin then will be described by certain spinors.
The KG equation will actually remain valid, in particular each component of these spinors will satisfy
this equation.

Before proceeding with the Lorentz group we will first discuss the rotation group as an example
of a Lie group with and a group we are familiar with in ordinary quantum mechanics.

3.1 The rotation group and SU(2)

The rotation groups SO(3) and SU(2) are examples of Lie groups, that is groups characterized by a
finite number of real parameters, in which the parameter space forms locally a Euclidean space. A
general rotation — we will consider SO(3) as an example — is of the form





V ′x
V ′y
V ′z




=





cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1









Vx

Vy

Vz




(3.1)

for a rotation around the z-axis or shorthand V ′ = R(ϕ, ẑ)V . The parameter-space of SO(3) is a
sphere with radius π. Any rotation can be uniquely written as R(ϕ, n̂) where n̂ is a unit vector and
ϕ is the rotation angle, 0 ≤ ϕ ≤ π, provided we identify the antipodes, i.e. R(π, n̂) ≡ R(π,−n̂).
Locally this parameter-space is 3-dimensional and correspondingly one has three generators. For an
infinitesimal rotation around the z-axis one has

R(δϕ, ẑ) = 1 + i δϕ Lz (3.2)

with as generator

Lz =
1

i

∂R(ϕ, ẑ)

∂ϕ

∣
∣
∣
∣
ϕ=0

=





0 −i 0
i 0 0
0 0 0




. (3.3)
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(n,  )

-sphere -sphere

(n,2  )π

π π

π

π 2
(antipodes identified) (surface identified)

(-n,   )

Figure 3.1: the parameter spaces of SO(3) (left) and SU(2) (right).

In the same way we can consider rotations around the x- and y-axes that are generated by

Lx =





0 0 0
0 0 −i
0 i 0




, Ly =





0 0 i
0 0 0
−i 0 0




, (3.4)

or (Lk)ij = −i ǫijk. It is straightforward to check that any (finite) rotation can be obtained from a
combination of infinitesimal rotations, for rotations around z for instance,

R(ϕ, ẑ) = lim
N→∞

[

R
( ϕ

N
, ẑ
)]N

. (3.5)

Rotations in general do not commute, which reflects itself in the noncommutation of the generators.
They satisfy the commutation relations

[Li, Lj] = i ǫijk Lk. (3.6)

Summarizing, the rotations in SO(3) can be generated from infinitesimal rotations that can be ex-
pressed in terms of a basis of three generators Lx, Ly and Lz. These generators form a three-
dimensional Lie algebra SO(3). With matrix commutation this algebra satisfies the requirements for
a Lie algebra, namely that there exists a bilinear product [, ] that satisfies

• ∀ x, y ∈ A⇒ [x, y] ∈ A.

• [x, x] = 0 (thus [x, y] = −[y, x]).

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Next, we turn to the group SU(2) of special (det A = 1) unitary (A† = A−1) 2 × 2 matrices. These
matrices can be defined as acting on 2-component spinors (χ → Aχ) or equivalently as acting on 2 ×
2 matrices (B → ABA†). It is straightforward to check that the conditions require

A =




a0 + i a3 +i a1 + a2

+i a1 − a2 a0 − i a3



 = a0 1 + ia · σ

= a0




1 0
0 1



+ i a1




0 1
1 0



+ i a2




0 −i
i 0



+ i a3




1 0
0 −1



 (3.7)

with real a’s and
∑3

i=0(ai)
2 = 1. One way of viewing the parameter space, thus is as the surface

of a sphere in 4 Euclidean dimensions. Locally this is a 3-dimensional Euclidean space and SU(2),
therefore, is a 3-dimensional Lie-group. Writing a0 = cos(ϕ/2) and a = n̂ sin(ϕ/2) we have1

A = A(ϕ, n̂) = 1 cos
(ϕ

2

)

+ i (σ · n̂) sin
(ϕ

2

)

= exp
(

i
ϕ

2
σ · n̂

)

, (3.8)

1Note that (σ · a)(σ · b) = a · b + iσ · (a× b), and thus (σ · n̂)2 = 1.
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where we have used the (for operators new!) definition

eA ≡
∞∑

n=0

An

n!
= 1 +A+

1

2!
A2 + . . . . (3.9)

The parameter-space of SU(2), thus, also can be considered as a filled 3-sphere, now with radius 2π
and with all points at the surface identified (see figure). The infinitesimal generators of SU(2) are
obtained by considering infinitesimal transformations, i.e. for fixed n̂,

A(ϕ, n̂) ≈ 1 + i ϕJ · n̂, (3.10)

with

J · n̂ ≡ 1

i

∂A(ϕ, n̂)

∂ϕ

∣
∣
∣
∣
ϕ=0

=
σ

2
· n̂. (3.11)

Thus σx/2, σy/2 and σz/2 form the basis of the Lie-algebra SU(2). They satisfy

[σi

2
,
σj

2

]

= i ǫijk
σk

2
. (3.12)

One, thus, immediately sees that the Lie algebras are identical, SU(2) ≃ SO(3), i.e. one has a Lie
algebra isomorphism that is linear and preserves the bilinear product.

There exists a corresponding mapping of the groups given by

µ : SU(2) −→ SO(3)

A(ϕ, n̂) −→ R(ϕ, n̂) 0 ≤ ϕ ≤ π

−→ R(2π − ϕ, n̂) π ≤ ϕ ≤ 2π.

The relation
A(σ · a)A−1 = σ ·RAa (3.13)

(valid for any vector a) can be used to establish the homomorphism (Check that it satisfies the
requirements of a homomorphism, in particular that AB → RAB = RARB). Near the identity, the
above mapping corresponds to the trivial mapping of the Lie algebras. In the full parameter space,
however, the SU(2) → SO(3) mapping is a 2 : 1 mapping where both A = ±1 are mapped into R = I.

3.2 Representations of symmetry groups

The presence of symmetries simplifies the description of a physical system and is at the heart of physics.
Suppose we have a system described by a Hamiltonian H . The existence of symmetries means that
there are operators g belonging to a symmetry group G that commute with the Hamiltonian,

[g,H ] = 0 for g ∈ G. (3.14)

For a Lie group, it is sufficient that the generators commute with H , since any finite transformation
can be constructed from the infinitesimal ones, sometimes in more than one way (but this will be
discussed later), i.e.

[g,H ] = 0 for g ∈ G. (3.15)

The next issue is to find the appropriate symmetry operators in the Hilbert space. For instance in a
function space translations,

φ′(r) = φ(r + a) = φ(r) + a · ∇φ+
1

2!
(a · ∇)2 φ+ . . . ,
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are generated by the derivative acting on the functions, more precise φ(r + a) = U(a)φ(r) where

U(a) = exp
(
+iapop

)
, (3.16)

with pop = −i∇. Similarly one has the time translation operator φ(t+ τ) = U(τ)φ(t),

U(τ) = exp (−iτ H) , (3.17)

with H = i ∂/∂t and the rotation operator, φ(r, θ, ϕ + α) = U(α, ẑ)φ(r, θ, ϕ),

U(α, ẑ) = exp (+iα ℓz) , (3.18)

with ℓz = −i∂/∂ϕ = −i(x∂/∂y − y ∂/∂x) or ℓop = rop × pop. The above set of operators H ,
pop and ℓop work in Hilbert space and their commutators indeed follow the required commutation
relations as symmetry operators. In particular the quantum operators ℓop obey in quantum mechanics
commutation relations [ℓi, ℓj] = i ǫijk ℓk that are identical to those in Eq. 3.6. It may seem trivial, but
it is at the heart of being able to construct a suitable Hilbert space, e.g. for the function space, just
starting off with the (basic) canonical commutation relations [ri, pj ] = i δij. The latter is sufficient to
get the commutation relations of the (quantum) rotation operators.

Note that the same requirements would apply to classical mechanics. Somehow the nontrivial
structure of rotations should show up and it, indeed, does in the nontrivial behavior of Poisson
brackets of quantities A(x, p) and B(x, p) (we will come back to this also in Chapter 7). Indeed, the
Poisson bracket operation satisfies all properties of a Lie algebra.

In many cases one can simply construct a suitable Hilbert space or part of it by considering the
representations Φ of a group G. These are mappings of G into a finite dimensional vector space,
preserving the group structure. The finite dimensional vector space just represents new degrees of
freedom. In order to find local representations Φ of a Lie-group G, it is sufficient to consider the
representations Φ of the Lie-algebra G. These are mappings from G into the same finite dimensional
vector space (its dimension is the dimension of the representation), which preserve the Lie-algebra
structure, i.e. the commutation relations. The most well-known example is spin (or the total angular
momentum of a system) in non-relativistic quantum mechanics as representations of SU(2).

To get explicit representations, one looks among the generators for a maximal commuting set of
operators, for rotations the operator Jz and the (quadratic Casimir) operator J2. Casimir operators
commute with all the generators and the eigenvalue of J2 can be used to label the representation
(j). Within the (2j + 1)-dimensional representation space V (j) one can label the eigenstates |j,m〉
with eigenvalues of Jz . The other generators Jx and Jy (or J± ≡ Jx ± iJy) then transform between
the states in V (j). From the algebra one derives J2|j,m〉 = j(j + 1)|j,m〉, Jz |j,m〉 = m|j,m〉, while
J±|j,m〉 =

√

j(j + 1) −m(m± 1)|j,m± 1〉 with 2j + 1 being integer and m = j, j − 1, . . . ,−j.
Explicit representations using the basis states |j,m〉 with m-values running from the heighest to

the lowest, m = j, j − 1, . . . ,−j one has for j = 0:

Jz =


0


 , J+ =


0


 J− =


0


 ,

for j = 1/2:

Jz =




1/2 0
0 −1/2



 , J+ =




0 1
0 0



 , J− =




0 0
1 0



 ,

for j = 1:

Jz =





1 0 0
0 0 0
0 0 −1




, J+ =





0
√

2 0

0 0
√

2
0 0 0




, J− =





0 0 0√
2 0 0

0
√

2 0




,
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and for j = 3/2:

Jz =





3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2





, J+ =





0
√

2 0 0

0 0
√

3 0

0 0 0
√

2
0 0 0 0





, J− =





0 0 0 0√
2 0 0 0

0
√

3 0 0

0 0
√

2 0





.

If rotations leave H invariant, all states in the representation space have the same energy, or equiva-
lently the Hilbert space can be written as a direct product space of spaces V (j).

For j = 1 another commonly used representation starts with three Cartesian basis states ǫ

related to the previous basis via

|1, 1〉 ≡ ǫ1 ≡ − 1√
2

(ǫx + i ǫy) , |1, 0〉 ≡ ǫ0 ≡ ǫz, |1,−1〉 ≡ ǫ−1 ≡ 1√
2

(ǫx − i ǫy) .

The spin matrices for that Cartesian basis {ǫx, ǫy , ǫz} are

Jx =

8

>

>

>

>

>

>

:

0 0 0
0 0 −i
0 i 0

9

>

>

>

>

>

>

;

, Jy =

8

>

>

>

>

>

>

:

0 0 i
0 0 0
−i 0 0

9

>

>

>

>

>

>

;

, Jz =

8

>

>

>

>

>

>

:

0 −i 0
i 0 0
0 0 0

9

>

>

>

>

>

>

;

.

From the (hermitean) representation Φ(g) of G, one obtains the unitary representations Φ(g) =
exp(iΦ(g)) of the full group G. The matrix elements of these unitary representations are known as
D-functions. For an the elements A of SU(2) or R of SO(3) these are commonly parametrized with
Euler angles, UE(ϕ, θ, χ) ≡ e−iϕJz e−iθJy e−iχJz ,

〈j,m′|UE(ϕ, θ, χ)|j,m〉 = D
(j)
m′m(ϕ, θ, χ) = eim′ϕ d

(j)
m′m(θ) e−imχ. (3.19)

Infinitesimally (around the identity) the D-functions for SU(2) and SO(3) are the same, e.g.

d
(j)
m′m(θ) ≈ δm′m − iθ(J2)m′m. (3.20)

By moving through the parameter space the D-functions can be extended to global functions for all
allowed angles. For those global representations, however, the topological structure of the group is
important. If the group is simply connected, that is any closed curve in the parameter space can be
contracted to a point, any point in the parameter space can be reached in a unique way and any
local (infinitesimal) representation can be extended to a global one. This works for SU(2). The
group SO(3), however, is not simply connected. There exist two different types of paths, contractable
and paths that run from a point at the surface to its antipode. For an element in the group G
the corresponding point in the parameter space can be reached in two ways. For a decent (well-
defined) global representation, however, the extension from a local one must be unique. For SO(3),
the possibility thus exist that some extensions will not be well-defined representations. This turns out
to be the case for all half-integer representations of the Lie algebra. Of all groups of which the Lie
algebras are homeomorphic, the simply connected group is called the (universal) covering group, i.e.
SU(2) is the covering group of SO(3).

Given a representation, one can look at the conjugate representation. Consider the j = 1/2 repre-
sentation of SU(2). If a transformation U acts on χ, the conjugate transformation U∗ acts on χ∗. The
jump U → U∗ implies for the generators σ/2 → −σ∗/2. For SU(2), however, the conjugate represen-
tation is not a new one. Because there exists a matrix ǫ such that −σ∗ = ǫσǫ−1 one immediately
sees that appropriate linear combinations of conjugate states, to be precise the states ǫχ transform
via −σ∗. Explicitly, if χ → σχ, then ǫχ → ǫσχ = ǫσǫ−1ǫχ = −σ∗ǫχ. Therefore the representation
and conjugate representation are equivalent in this case (see Excercise 3.3).
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3.3 The Lorentz group

In the previous section spin has been introduced as a representation of the rotation group SU(2)
without worrying much about the rest of the symmetries of the world. We considered the generators
and looked for representations in finite dimensional spaces, e.g. σ/2 in a two-dimensional (spin 1/2)
case. In this section we consider the Poincaré group, consisting of the Lorentz group and translations.
To derive some of the properties of the Lorentz group, it is convenient to use a vector notation for the
points in Minkowski space. Writing x as a column vector and the metric tensor in matrix form,

G =





g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33





=





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





, (3.21)

the scalar product can be written as
x2 = xTGx (3.22)

(Note that xT is a row vector).
Denoted in terms of column vectors and 4-dimensional matrices one writes for the poincaré trans-

formations x′ = Λ x+ a, explicitly

x′µ = (Λ)µν xν + aµ or x′µ = Λµ
νx

ν + aµ. (3.23)

The proper tensor structure of the matrix element (Λ)µν is a tensor with one upper and one lower
index. Invariance of the length of a vector requires for the Lorentz transformations

x′2 = gµνx
′µx′ν = gµνΛµ

ρ x
ρ Λν

σx
σ = x2 = gρσx

ρxσ (3.24)

or
Λµ

ρgµνΛν
σ = gρσ, (3.25)

which as a matrix equation with (Λ)µν = Λµ
ν and (G)µν = gµν gives

(ΛT )ρµ(G)µν(Λ)νσ = (G)ρσ . (3.26)

Thus one has the (pseudo-orthogonality) relation

ΛTGΛ = G ⇔ GΛTG = Λ−1 ⇔ ΛGΛT = G. (3.27)

From this property, it is easy to derive some properties of the matrices Λ:

(i) det(Λ) = ±1.

proof: det(ΛTGΛ) = det(G) → (det Λ)2 = 1.
(det Λ = +1 is called proper, det Λ = −1 is called improper).

(ii) |Λ0
0| ≥ 1.

proof: (ΛTGΛ)00 = (G)00 = 1 → Λµ
0gµνΛν

0 = 1 → (Λ0
0)

2 −
∑

i(Λ
i
0)

2 = 1.
Using (i) and (ii) the Lorentz transformations can be divided into 4 classes (with disconnected
parameter spaces)

det Λ Λ0
0

L↑+ +1 ≥ 1 proper orthochrone

L↓+ +1 ≤ -1 proper non-orthochrone

L↑− -1 ≥ 1 improper orthochrone

L↓− -1 ≤ -1 improper non-orthochrone
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(iii)
∑3

i=1(Λ
i
0)

2 =
∑3

i=1(Λ
0
i )

2.

proof: use ΛTGΛ = G and ΛGΛT = G.

Note that Lorentz transformations generated from the identity must belong to L↑+, since I ∈ L↑+ and

det Λ and Λ0
0 change continuously along a path from the identity. In L↑+, one distinguishes rotations

and boosts. Rotations around the z-axis are given by ΛR(ϕ, ẑ) = exp(i ϕ J3), infinitesimally given by
ΛR(ϕ, ẑ) ≈ I + i ϕ J3. Thus





V 0′

V 1′

V 2′

V 3′





=





1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ cosϕ 0
0 0 0 1









V 0

V 1

V 2

V 3





−→ J3 =





0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0





. (3.28)

Boosts along the z-direction are given by ΛB(η, ẑ) = exp(−i ηK3), infinitesimally given by ΛB(η, ẑ) ≈
I − i η K3. Thus





V 0′

V 1′

V 2′

V 3′





=





cosh η 0 0 sinh η
0 1 0 0
0 0 1 0

sinh η 0 0 cosh η









V 0

V 1

V 2

V 3





−→ K3 =





0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0





. (3.29)

The parameter η runs from −∞ < η < ∞. Note that the velocity β = v = v/c and the Lorentz
contraction factor γ = (1 − β2)−1/2 corresponding to the boost are related to η as γ = cosh η,
βγ = sinh η. Using these explicit transformations, we have found the generators of rotations, J =
(J1, J2, J3), and those of the boosts, K = (K1,K2,K3), which satisfy the commutation relations
(check!)

[J i, Jj ] = i ǫijk Jk,

[J i,Kj] = i ǫijk Kk,

[Ki,Kj ] = −i ǫijk Jk.

The first two sets of commutation relations exhibit the rotational behavior of J and K as vectors
in E(3) under rotations. From the commutation relations one sees that the boosts (pure Lorentz
transformations) do not form a group, since the generators K do not form a closed algebra. The
commutator of two boosts in different directions (e.g. the difference of first performing a boost in the
y-direction and thereafter in the x-direction and the boosts in reversed order) contains a rotation (in
the example around the z-axis). This is the origin of the Thomas precession.

Returning to the global group, it is easy to find the following typical examples from each of the
four classes,

I =





+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1





∈ L↑+ (identity) (3.30)

It =





−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1





∈ L↓− (time inversion) (3.31)

Is =





+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





∈ L↑− (space inversion) (3.32)
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IsIt =





−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





∈ L↓+ (space-time inversion) (3.33)

These four transformations form the Vierer group (group of Klein). Multiplying the proper or-
thochrone transformations with one of them gives all Lorentz transformations.

Summarizing, the Lorentz transformations form a (Lie) group (Λ1Λ2 and Λ−1 are again Lorentz

transformations. There are six generators. Of the four parts only L↑+ forms a group. This is a
normal subgroup and the factor group is the Vierer group. The extension to the Poincaré group is
straightforward. Also this group can be divided into four parts, P ↑+ etc.

3.4 The generators of the Poincaré group

The transformations belonging to P ↑+ are denoted as (Λ, a), infinitesimally approximated by (I+ω, ǫ),
explicitly reading

x′µ = (Λ)µνxν + aµ inf
= ((I)µν + (ω)µν)xν + ǫµ (3.34)

= Λµ
νx

ν + aµ = (gµ
ν + ωµ

ν)xν + ǫµ.

The condition ΛTGΛ = G yields

(
gρ

µ + ωρ
µ

)
gρσ (gσ

ν + ωσ
ν) = gµν =⇒ ωνµ + ωµν = 0, (3.35)

thus (ω)ij = −(ω)ji and (ω)0i = (ω)i0. We therefore find (again) that there are six generators for the
Lorentz group, three of which only involve spatial coordinates (rotations) and three others involving
time components (boosts).

We now want to find a covariant form of the six generators of the Lorentz transformations, which
are obtained by writing the infinitesimal parameters (ω)µν in terms of six antisymmetric matrices
(Mαβ)µν . One can easily convince oneself that

(ω)µν = ωµ
ν = − i

2
ωαβ (Mαβ)µν , (3.36)

(Mαβ)µν = i
(
gαµgβ

ν − gα
νg

βµ
)

(3.37)

The algebra of the generators of the Lorentz transformations can be obtained by an explicit calcula-
tion2,

[Mµν ,Mρσ] = −i (gµρMνσ − gνρMµσ) − i (gµσMρν − gνσMρµ) . (3.38)

Explicitly, we have for the (infinitesimal) rotations (around z-axis)

ΛR = I + i ϕ3 J3 = I − i ω12M
12, (3.39)

with ϕi = − 1
2ǫ

ijkωjk and J i = 1
2ǫ

ijkM jk (e.g. J3 = M12) and for the (infinitesimal) boosts (along
z-axis),

ΛB = I + i η3K3 = I − i ω30M
30, (3.40)

with ηi = ωi0 and Ki = M i0 (e.g. K3 = M30). Thus the two vector operators J and K form under
Lorentz transformations an antisymmetric tensor Mµν .

In order to find the commutation relations including the translation generators, we continue using
covariance arguments. We will just require Poincaré invariance for the generators themselves. The

2These commutation relations are the same as those for the ’quantummechanics’ operators i(xµ∂ν − xν∂µ)
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infinitesimal form of any representation of the Poincaré group (thus including the translations) is of
the form

U(I + ω, ǫ) = 1 − i

2
ωαβ M

αβ + i ǫα P
α. (3.41)

At this point, the generatorsMαβ no longer exclusively act in Minkowski space. The generators of the
translations are the (momentum) operators Pµ. The requirement that Pµ transforms as a four-vector
(for which we know the explicit behavior from the defining four-dimensional representation), leads to

U(Λ, a)PµU †(Λ, a) = (Λ)µ
νP

ν or U †(Λ, a)PµU(Λ, a) = (Λ−1)µ
νP

ν , (3.42)

(to decide on where the inverse is, check that U1U2 corresponds with Λ1Λ2). Infinitesimally,

(1 + iǫγP
γ − i

2
ωαβM

αβ)Pµ(1 − iǫδP
δ +

i

2
ωρσM

ρσ) = Pµ + ωµ
νP

ν , (3.43)

giving the following commutation relations by equating the coefficients of ǫµ and ωµν ,

[Pµ, P ν ] = 0, (3.44)

[Mµν , P ρ] = −i (gµρP ν − gνρPµ) . (3.45)

Note that the commutation relations among the generators Mµν in Eq. 3.38 could have been obtained
in the same way. They just state that Mµν transforms as a tensor with two Lorentz indices. Explicitly,
writing the generator P = (H/c,P ) in terms of the Hamiltonian and the three-momentum operators,
the tensor Mµν in terms of boosts cKi = M i0 and rotations J i = 1

2 ǫ
ijkM jk, one obtains

[P i, P j ] = [P i, H ] = [J i, H ] = 0,

[J i, Jj ] = i ǫijkJk, [J i, P j] = i ǫijkP k, [J i,Kj] = i ǫijkKk,

[Ki, H ] = i P i, [Ki,Kj] = −i ǫijkJk/c2, [Ki, P j] = i δijH/c2. (3.46)

We have here reinstated c, because one then sees that by letting c→ ∞ the commutation relations of
the Galilei group, known from non-relativistic quantum mechanics are obtained.

3.5 Representations of the Poincaré group

In order to label the states in an irreducible representation we construct a maximal set of commuting
operators. These define states with specified quantum numbers that are eigenvalues of these genera-
tors. For instance, the generators J2 and J3 in the case of the rotation group. Taking any one of the
states in an irreducible representation, other states in that representation are obtained by the action
of operators outside the maximal commuting set. For instance, the generators J± in the case of the
rotation group.

Of the generators of the Poincaré group we choose first of all the generators Pµ, that commute
among themselves, as part of the set. The eigenvalues of these will be the four-momentum pµ of the
state,

Pµ|p, . . .〉 = pµ|p, . . .〉, (3.47)

where pµ is a set of four arbitrary real numbers. To find other generators that commute with Pµ we
look for Lorentz transformations that leave the four vector pµ invariant. These form a group called
the little group associated with that four vector.

Λµ
νp

ν = pµ + ωµ
νp

ν = pµ

⇒ ωµνp
ν = 0

⇒ ωµν = ǫµνρσp
ρsσ, (3.48)
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where s is an arbitrary vector of which the length and the component along pσ are irrelevant, which
can thus be chosen spacelike. The elements of the little group thus are

U(Λ(p)) = exp

(

− i

2
ωµνM

µν

)

= exp

(

− i

2
ǫµνρσM

µνpρsσ

)

(3.49)

and

U(Λ(p))|p, . . .〉 = exp

(

− i

2
ǫµνρσM

µνpρsσ

)

|p, . . .〉

= exp (−isµW
µ) |p, . . .〉 (3.50)

where the Pauli-Lubanski operators Wµ are given by

Wµ = −1

2
ǫµνρσM

νρP σ. (3.51)

The following properties follow from the fact that Wµ is a four-vector by construction, of which the
components generate the little group of pµ or (for the third of the following relations) from explicit
calculation

[Mµν ,Wα] = −i (gµαWν − gναWµ) , (3.52)

[Wµ, Pν ] = 0, (3.53)

[Wµ,Wν ] = i ǫµνρσW
ρP σ. (3.54)

This will enable us to pick a suitable commuting ’spin’ operator. From the algebra of the generators
one finds that

P 2 = PµP
µ and W 2 = WµW

µ (3.55)

commute with all generators and therefore are invariants under Poincaré transformations. These
operators are the Casimir operators of the algebra and can be used to define the representations of
P ↑+, for which we distinguish the following cases

p2 = m2 > 0 p0 > 0
p2 = 0 p0 > 0
pµ ≡ 0
p2 = m2 > 0 p0 < 0
p2 = 0 p0 < 0
p2 < 0

Only the first two cases correspond to physical states, the third case represents the vacuum, while the
others have no physical significance.

Massive particles: p2 = M2 > 0, p0 > 0.

Given the momentum four vector pµ we choose a tetrade consisting of three orthogonal spacelike unit
vectors ni(p), satisfying

gµνn
µ
i (p)nν

j (p) = −δij ,
nµ

i (p) pµ = 0,

ǫµνρσp
µnν

i n
ρ
jn

σ
k = M ǫijk. (3.56)
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We can write

Wµ(p) =

3∑

i=1

W i(p)nµ
i (p) (3.57)

(i.e. W i(p) = −W · ni(p)).
Having made a covariant decomposition, it is sufficient to choose a particular frame to investigate

the coefficients in Eq. 3.57 The best insight in the meaning of the operators Wµ is to sit in the rest
frame of the particle and put Pµ = (M,0). In that case the vectors ni(p) are just the space directions
and W = (0,MJ) with components W i = (M/2)ǫijkM jk. The commutation relations

[W i(p),W j(p)] = iM ǫijkW k(p), (3.58)

show that W /M can be interpreted as the intrinsic spin.

More generally (fully covariantly) one can proceed by defining Si(p) ≡W i(p)/M and obtain

[Si(p), Sj(p)] = −in
µ
i (p)nν

j (p)

M2
ǫµνρσW

ρP σ = i ǫijkSk(p), (3.59)

i.e. the Si(p) form the generators of an SU(2) subgroup that belongs to the maximal set of
commuting operators. Noting that

X

i

“

Si(p)
”2

=
1

M2
W µ(p)W ν(p)

X

i

niµ(p)niν(p), (3.60)

and using the completeness relation

X

i

nµ
i (p)nν

i (p) = −
„

gµν − pµpν

M2

«

, (3.61)

one sees that
X

i

“

Si(p)
”2

= −W
2

M2
. (3.62)

Thus W 2 has the eigenvalues −M2 s(s + 1) with s = 0, 1
2 , 1, . . .. Together with the four momentum

states thus can be labeled as
|M, s; p,ms〉, (3.63)

where E =
√

p2 +M2 and ms is the z-component of the spin −s ≤ ms ≤ +s (in steps of one).
The explicit construction of the wave function can be done using the D-functions (analogous as

the rotation functions). We will not do this but construct them as solutions of a wave equation to be
discussed explicitly in chapter 4

Massless particles: p2 = M2 = 0, p0 > 0.

In this case a set of four independent vectors is chosen starting with a reference frame in which pµ = pµ
0

in the following way:

p0 = (p0, 0, 0, |p3|),
n1(p0) ≡ (0, 1, 0, 0),

n2(p0) ≡ (0, 0, 1, 0),

s(p0) ≡ (1, 0, 0,−1) (3.64)

such that in an arbitrary frame where the four vectors p, n1(p), n2(p) and s(p) are obtained by a
Lorentz boost from the reference frame one has the property

ǫµνρσs
µnν

1n
ρ
2p

σ > 0. (3.65)
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The above does actually include the massive case. The vector Wµ(p) now can be expanded

Wµ(p) = W 1(p)nµ
1 (p) +W 2(p)nµ

2 (p) + λ(p) pµ +W s(p) sµ(p), (3.66)

where W · p = 0 implies that W s(p) = −(M2/p · s)λ(p). The algebra of W 1, W 2 and λ is derived
from the general commutation relations for [Wµ,Wν ], and gives

[W 1(p),W 2(p)] = iM2 λ(p), (3.67)

[λ(p),W 1(p)] = iW 2(p), (3.68)

[λ(p),W 2(p)] = −iW 1(p). (3.69)

We reproduce the algebra for the massive case with W 3(p) = M λ(p). But if M = 0 one has a
different algebra (Eq. 3.67 has a vanishing right hand side). This algebra is (for instance) isomorphic
to the one generated by rotations and translations in a 2-dimensional Euclidean plane (see exercises).
The eigenvalues of W 1 and W 2 (in that case corresponding to the translations) thus can take any
continuous values, implying continuous values for the spin (actually for W i = M Si). We don’t know
of any physical relevance, however, and the eigenvalues of W 1 and W 2 are set to zero (corresponding
to the limit M → 0 for the WµWµ eigenvalues of M2 s(s+ 1) → 0). Thus we have

P 2, Pµ, Wµ(p) = λ(p)Pµ, W 2 (3.70)

as a commuting set with zero eigenvalues for P 2 and W 2. The meaning of λ(p) is most easily seen by
comparing for a momentum eigenstate

W 0(p) = λ(p) |p|

with

W 0(p) = −1

2
ǫ0ijkMijpk = J · p.

Thus

λ(p) =
J · p
|p| , (3.71)

which is called the helicity. Note that angular momentum does not contribute to helicity as L ·p = 0.
A massless particle, thus, is characterized by its momentum and the helicity,

|p, λ〉, (3.72)

which can take any integer or half-integer value.

The vacuum: pµ = 0.

This state is in physical applications nondegenerate and is denoted by

|0〉. (3.73)

One has Pµ|0〉 = Wµ|0〉 = 0 and the state is invariant under Lorentz transformations, U(Λ, a)|0〉 = |0〉.

Exercises

Exercise 3.1

(a) Derive from the relation that defines the mapping of SU(2) matrices A into SO(3) matrices RA

in Eq. 3.13,

σ ·RAa ≡ A(σ · a)A−1
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(valid for any vector a), where A = exp(iϕ · σ/2) = exp(iϕσ · n̂/2), the action of RA

b · RAa = b · a cosϕ+ n̂ · (b × a) sinϕ+ 2(b · n̂)(a · n̂) sin2(ϕ/2)

= b · a + b · (â × n) sinϕ− 2 (b · a − (b · n̂)(a · n̂)) sin2(ϕ/2)

for any vectors a and b.

Note: Recall (or derive) that the Pauli matrices σ satisfy

σiσj = δij + i ǫijkσk

and

Tr(σiσj) = 2 δij,

Tr(σiσjσk) = 2i ǫijk,

Tr(σiσjσkσl) = 2 (δij δkl − δik δjl + δil δjk) .

(b) Use the result under (a) to derive the matrix elements of a rotation around the z-axis and show
that it indeed represents the SO(3) rotation RA = exp(i ϕLz) in which the Lz is one of the
(defining) generators of SO(3).

Exercise 3.2

Show that for a unitary operator U = exp[iαkJk] with real coefficients αk, the operators Jk must
be hermitean. Show that if det(U) = 1, the trace of the operator Jk is zero (Convince yourself that
det(eA) = eTrA by diagonalizing A.

Excercise 3.3

Consider the representation A = exp(iα ·J) with the Lie-algebra representations J = σ/2 describing
spin rotations for a spin 1/2 particle. For a spin 1/2 antiparticle the representation A∗ is needed.
Writing A∗ = exp(iα · Jc), what are the matrices Jc in the Lie-algebra representation describing the
spin rotations for two-component ’anti-spinors’. Show that the Lie-algebra representations J and Jc

are equivalent, i.e. show that one matrix ǫ exist such that Jc = ǫJ ǫ†.

Comment: this establishes that for spin 1/2 one doesn’t need to talk about ’anti-spin’ for the antipar-
ticle. Both particle and antiparticle have ’spin 1/2’. This is true for SU(2) but it is, for instance,
not true for SU(3) (flavor or color properties of particles know two distinct defining 3-dimensional
representation, triplet and anti-triplet representation, respectively).

Exercise 3.4

(a) Show that if the states in a Hilbert space (unitarily) transform as φ′ = U φ = eiJ φ and O is an
operator acting on φ (in that Hilbert space), that the transformation for the operators is given
by

O′ = U OU−1 = O + i [J,O] + . . . .

(b) Show that this transformation for the position operator in quantum mechanics indeed gives

U(a) rU−1(a) = exp (ia · p) r exp (−ia · p) = r + a.

and calculate U(a)pU−1(a)
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Exercise 3.5

In classical mechanics (Gallilean invariance) boosts describe invariance of physical laws when viewed
from a moving frame, i.e. they describe

r −→ r′ = r − u t.

(a) In classical mechanics, boost invariance leads to a conserved quantity. For a single free particle
or for the free-moving center of mass system that is the quantity K = mr − tp. Determine the
commutation relations for the corresponding operators Ki in quantum mechanics, in particular
those with the momentum operator pj and the Hamiltonian H = mc2 + p2/2m.

(b) In quantum mechanics one has the Ehrenfest relation

ih̄
d〈O〉
dt

= 〈[H,O]〉 + ih̄〈∂O
∂t

〉.

Show that boost invariance for a free-moving particle (the commutation relations under (a) being
valid), indeed assures d〈K〉/dt = 0, although that in this case is a relation that is found already
from the Ehrenfest relation for O = ri.

(c) Give the unitary operator for boosts, i.e. the operator U(u) that gives

U(u) rU−1(u) = r − u t,

U(u)pU−1(u) = p −mu.

Exercise 3.6

Consider rotations and translations in a plane (two-dimensional Euclidean space). Use a 3-dimensional
matrix representation or consider the generators of rotations and translations in the space of functions
on the (x-y) plane. From either of these, derive the commutation relations and show that the algebra is
isomorphic to (i.e., there is a one to one mapping) the algebra in Eqs 3.67 to 3.69 of the Pauli-Lubanski
operators for massless particles.

Exercise 3.7 (optional)

One might wonder if it is actually possible to write down a set of operators that generate the Poincaré
transformations, consistent with the (canonical) commutation relations of a quantum theory. This is
possible for a single particle. Do this by showing that the set of operators,

H =
√

p2 c2 +m2 c4,

P = p,

J = r × p + s,

K =
1

2c2
(rH +Hr) − tp +

p × s

H +mc2
.

satisfy the commutation relations of the Poincaré group if the position, momentum and spin operators
satisfy the canonical commutation relations, [ri, pj ] = iδij and [si, sj ] = iǫijk sk; the others vanish,
[ri, rj ] = [pi, pj] = [ri, sj] = [pi, sj ] = 0.

Hint: for the Hamiltonian, show first the operator identity [r, f(p)] = i∇pf(p); if you don’t want to
do this in general, you might just check relations involving J or K by taking some (relevant) explicit
components.

Comment: extending this to more particles is a highly non-trivial procedure, but it can be done,
although the presence of an interaction term V (r1, r2) inevitably leads to interaction terms in the
boost operators. These do not matter in the non-relativistic limit (c→ ∞), that’s why many-particle
non-relativistic quantum mechanics is ’easy’.



Chapter 4

The Dirac equation

4.1 The Lorentz group and SL(2, C)

Instead of the generators J and K of the homogeneous Lorentz transformations we can use the
(hermitean) combinations

A =
1

2
(J + iK), (4.1)

B =
1

2
(J − iK), (4.2)

which satisfy the commutation relations

[Ai, Aj ] = i ǫijkAk, (4.3)

[Bi, Bj ] = i ǫijkBk, (4.4)

[Ai, Bj ] = 0. (4.5)

This shows that the Lie algebra of the Lorentz group is identical to that of SU(2)⊗SU(2). This tells
us how to find the representations of the group. They will be labeled by two angular momenta corre-
sponding to the A and B groups, respectively, (j, j′). Special cases are the following representations:

Type I : (j, 0) K = −iJ (B = 0), (4.6)

Type II : (0, j) K = iJ (A = 0). (4.7)

From the considerations above, it also follows directly that the Lorentz group is homeomorphic
with the group SL(2, C), similarly as the homeomorphism between SO(3) and SU(2). The group
SL(2, C) is the group of complex 2 × 2 matrices with determinant one. It is simply connected and

forms the covering group of L↑+. It is easy to see that these matrices can be written as a product of a
unitary matrix U and a hermitean matrix H ,

M = exp

(
i

2
ϕ · σ

)

exp

(

±1

2
η · σ

)

=

{
U(ϕ)H(η)

U(ϕ)H(η)
, (4.8)

with η = ηn̂ and ϕ = ϕn̂, where we restrict (for fixed n̂) the parameters 0 ≤ ϕ ≤ 2π and 0 ≤
η < ∞. With this choice of parameter-spaces the plus and minus signs are actually relevant. They
precisely correspond to the two types of representations that we have seen before, becoming the
defining representations of SL(2, C):

Type I (denoted M): J =
σ

2
, K = −i σ

2
, (4.9)

Type II (denoted M): J =
σ

2
, K = +i

σ

2
, (4.10)

27
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Let us investigate the defining (two-dimensional) representations of SL(2, C). One defines spinors ξ
and η transforming similarly under unitary rotations (U † = U−1, U ≡ (U †)−1 = U)

ξ → Uξ, η → Uη, (4.11)

U(ϕ) = exp(iϕ · σ/2)

but differently under hermitean boosts (H† = H , H ≡ (H†)−1 = H−1), namely

ξ −→ Hξ, η → Hη, (4.12)

H(η) = exp(η · σ/2),

H(η) = exp(−η · σ/2).

A practical boost for the spinors is the one transforming from the rest frame to the frame with
momentum p. With E = Mγ = M cosh(η) and p = Mβγn̂ = M sinh(η) n̂ it is given by

H(p) = exp
(η · σ

2

)

= cosh
(η

2

)

+ σ · n̂ sinh
(η

2

)

=
M + E + σ · p
√

2M(E +M)
, (4.13)

Also useful is the relation H2(p) = σ̃µpµ/M = (E + σ · p)/M .
The sets of four operators defined by definitions

σµ ≡ (1,σ), σ̃µ ≡ (1,−σ), (4.14)

satisfying Tr(σµ σ̃ν) = −2 gµν and Tr(σµ σν) = 2gµ
ν = 2 δµν (the matrices, thus, are not covariant!)

can be used to establish the homeomorphism between L↑+ and SL(2, C). The following relations for
rotations and boosts are useful,

U σµaµ U
−1 = σµΛRaµ, H σµaµH

−1 = σµΛBaµ (4.15)

U σ̃µaµ U
−1

= σ̃µΛRaµ, H σ̃µaµH
−1

= σ̃µΛBaµ. (4.16)

Non-equivalence of M and M

One might wonder if type I and type II representations are not equivalent, i.e. if there does not exist
a unitary matrix S, such that M = SMS−1. In fact, there exists the matrix

ǫ = iσ2, (ǫ∗ = ǫ; ǫ−1 = ǫ† = ǫT = −ǫ), (4.17)

that can be used to relate σ̃µ∗ = ǫ†σµǫ = ǫ−1σµǫ and hence

U∗ = ǫ†Uǫ = ǫ† Ū ǫ, H∗ = ǫ†H̄ǫ = ǫ−1 H̄ǫ. (4.18)

As already discussed for SU(2), the first equation shows that the conjugate representation with spinors
χ∗ transforming according to −σ∗/2 is equivalent with the ordinary two-dimensional representation
(±ǫχ∗ transforms according to σ/2). This is not true for the two-component spinors in SL(2, C) or

L↑+. Eqs 4.18 show that ±ǫξ∗ transforms as a type-II (η) spinor, while ±ǫη∗ transforms as a type-I

spinor. This shows that M∗ ≃M .
Note that M∗ = ǫ†Mǫ has its equivalent for the Lorentz transformations Λ(M) and Λ(M∗).

They are connected via Λ(M∗) = Λ−1(ǫ)Λ(M)Λ(ǫ) within L↑+ because iσ2 = U(πŷ) showing that

ǫ ∈ SL(2, C) and, thus, Λ(ǫ) ∈ L↑+. The Lorentz transformations Λ(M) and Λ(M∗), however, cannot

be connected by a Lorentz transformation belonging to L↑+. One has

Λ(M∗) = I2 Λ(M) I−1
2 , (4.19)
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where

I2 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1





. (4.20)

The matrix I2 does not belong to L↑+, but to L↑−. Thus M∗ and M are not equivalent within SL(2, C).

4.2 Spin 1/2 representations of the Lorentz group

Both representations (0, 1
2 ) and (1

2 , 0) of SL(2, C) are suitable for representing spin 1/2 particles. The
angular momentum operators J i are represented by σi/2, that have the correct commutation relations.
Although these operators cannot be used to label the representations, but rather the operators W i(p)
should be used, we have seen that in the rest frame W i(p)/M → J i, and the angular momentum
in the rest frame is what we are familiar with as the spin of a particle. We also have seen that
the representations (0, 1

2 ) and (1
2 , 0) are inequivalent, i.e. they cannot be connected by a unitary

transformation. Within the Lorentz group, they can be connected, but by a transformation belonging
to the class P ↑−, as we have seen in section 4.1. The representing member of the class P ↑− is the parity
or space inversion operator Is. A parity transformation changes aµ into ãµ, where a = (a0,a) and
ã = (a0,−a). It has the same effect as lowering the indices. This provides the easiest way of seeing
what is happening, e.g. ǫµνρσ will change sign, the aij elements of a tensor will not change sign.
Examples (with between brackets the Euclidean assigments) are

r −→ −r (vector),

t −→ t (scalar),

p −→ −p (vector),

H −→ H (scalar),

J −→ J (axial vector),

λ(p) −→ −λ(p) (pseudoscalar),

K −→ −K (vector).

The behavior is the same for classical quantities, generators, etc. From the definition of the represen-
tations (0, 1

2 ) and (1
2 , 0) (via operators J and K) one sees that under parity

(0,
1

2
) −→ (

1

2
, 0). (4.21)

In nature parity turns (often) out to be a good quantum number for elementary particle states. For the
spin 1/2 representations of the Poincaré group including parity we, therefore, must combine the rep-
resentations, i.e. consider the four component spinor that transforms under a Lorentz transformation
as

u =




ξ
η



 −→



M(Λ) 0

0 M(Λ)








ξ
η



 , (4.22)

where M(Λ) = ǫM∗(Λ)ǫ−1 with ǫ given in Eq. 4.17. For a particle at rest only angular momentum
is important and we can choose ξ(0,m) = η(0,m) = χm, the well-known two-component spinor for a
spin 1/2 particle. Taking M(Λ) = H(p), the boost in Eq. 4.13, we obtain for the two components of
u which we will refer to as chiral right and chiral left components,

u(p,m) =





uR

uL




=





H(p) 0

0 H(p)









χm

χm




, (4.23)
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with

H(p) =
E +M + σ · p
√

2M(E +M)
, (4.24)

H̄(p) =
E +M − σ · p
√

2M(E +M)
= H−1(p). (4.25)

It is straightforward to eliminate χm and obtain the following constraint on the components of u,





0 H2(p)

H−2(p) 0









uR

uL




=





uR

uL




, (4.26)

or explicitly in the socalled Weyl representation





−M E + σ · p

E − σ · p −M









uR

uL




= 0, , (4.27)

which is an explicit realization of the (momentum space) Dirac equation, which in general is a linear
equation in pµ,

(pµγ
µ −M)u(p) ≡ (/p−M)u(p) = 0, (4.28)

where γµ are 4 × 4 matrices called the Dirac matrices1.
As in section 2 we can use Pµ = i∂µ as a representation for the momenta (translation operators)

in function space. This leads to the Dirac equation for ψ(x) = u(p)e−i p·x in coordinate space,

(iγµ∂µ −M)ψ(x) = 0, (4.29)

which is a covariant (linear) first order differential equation. It is of a form that we also played with
in Exercise 2.7. The general requirements for the γ matrices are thus easily obtained. Applying
(iγµ∂µ +M) from the left gives

(
γµγν∂µ∂ν +M2

)
ψ(x) = 0. (4.30)

Since ∂µ∂ν is symmetric, this can be rewritten

(
1

2
{γµ, γν} ∂µ∂ν +M2

)

ψ(x) = 0. (4.31)

To achieve also that the energy-momentum relation p2 = M2 is satisfied for u(p), one must require
that for ψ(x) the Klein-Gordon relation

(
2 +M2

)
ψ(x) = 0 is valid for each component separately).

From this one obtains the Clifford algebra for the Dirac matrices,

{γµ, γν} = 2 gµν , (4.32)

suppressing on the RHS the identity matrix in Dirac space. The explicit realization appearing in
Eq. 4.27 is known as the Weyl representation. We will discuss another explicit realization of this
algebra in the next section.

We first want to investigate if the Dirac equation solves the problem with the negative densities
and negative energies. The first indeed is solved. To see this consider the equation for the hermitean
conjugate spinor ψ† (noting that γ†0 = γ0 and γ†i = −γi),

ψ†
(

−iγ0
←
∂0 +iγi

←
∂i −M

)

= 0. (4.33)

1We define for a four vector a the contraction /a = aµγµ
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Figure 4.1: The Dirac sea of negative energy states and antiparticles.

Multiplying with γ0 on the right and pulling it through one finds a covariant equation

ψ(x)

(

iγµ
←
∂µ +M

)

= 0, (4.34)

for the adjoint spinor ψ ≡ ψ†γ0. From the equations for ψ and ψ one immediately sees that

jµ = ψγµψ (4.35)

is a conserved probability current (exercise!). The density

j0 = ψγ0ψ = ψ†ψ (4.36)

is indeed positive and j0 can serve as a probability density.
The second problem encountered before, the one of the negative energy states, remains. This can

most easily be seen in the particle rest frame, where

γ0p0 ψ = Mψ −→ Eψ = Mγ0ψ. (4.37)

Using the explicit form of γ0 in the Weyl representation (see Eq. 4.27), one sees that there are two
positive and two negative eigenvalues, E = +M (twice) and E = −M (twice),

This problem was solved by Dirac through the introduction of a negative energy sea. Relying on
the Pauli exclusion principle for spin 1/2 particles, Dirac supposed that the negative energy states
were already completely filled and the exclusion principle prevents any more particles to enter the sea
of negative energy states. The Dirac sea forms the vacuum.

From the vacuum a particle can be removed. This hole forms an antiparticle with the same mass,
but with properties such that it can be annihilated by the particle (e.g. opposite charge). We will see
how this is properly implemented (also for bosons!) when quantizing fields.

4.3 General representations of γ matrices and Dirac spinors

The general algebra for the Dirac matrices is

{γµ, γν} = 2 gµν . (4.38)

Two often used explicit representations are the following2: The standard representation:

γ0 = ρ3 ⊗ 1 =




1 0
0 −1



 , γk = iρ2 ⊗ σk =




0 σk

−σk 0



 ; (4.39)

2We use ρi ⊗ σj with both ρ and σ being the standard 2 × 2 Pauli matrices.
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The Weyl (or chiral) representation:

γ0 = ρ1 ⊗ 1 =




0 1
1 0



 , γk = −iρ2 ⊗ σk =




0 −σk

σk 0



 . (4.40)

Different representations can be related to each other by unitary transformations,

γµ −→ SγµS
−1, (4.41)

ψ −→ Sψ. (4.42)

We note that the explicit matrix taking us from the Weyl representation to the standard representation,
(γµ)S.R. = S(γµ)W.R.S

−1, is

S =
1√
2




1 1
1 −1



 . (4.43)

For all representations one has
γ†µ = γ0γµγ0, (4.44)

and an adjoint spinor defined by
ψ = ψ†γ0. (4.45)

Another matrix which is often used is γ5 defined as

γ5 = i γ0γ1γ2γ3 = −i γ0γ1γ2γ3 =
i ǫµνρσ

4!
γµγνγργσ. (4.46)

It satisfies {γ5, γ
µ} = 0 and explicitly one has

(γ5)S.R. = ρ1 ⊗ 1 =




0 1
1 0



 , (γ5)W.R. = ρ3 ⊗ 1 =




1 0
0 −1



 . (4.47)

For instance in the Weyl representation (but valid generally), it is easy to see that

PR/L =
1

2
(1 ± γ5) (4.48)

are projection operators, that project out chiral right/left states, which in the case of the Weyl
representation are just the upper and lower components.

Lorentz invariance

The Lorentz transformations can also be written in terms of Dirac matrices. For example, the rotation
and boost generators in Weyl representation in Eqs 4.9 and 4.10 are

J3 = M12 =
1

2




σ3 0
0 σ3



 =
i

4
[γ1, γ2],

K3 = M30 =
1

2




−iσ3 0

0 iσ3



 = − i

4
[γ3, γ0],

or in general one has the transformation

ψ → Lψ = exp

(

− i

2
ωρσS

ρσ

)

ψ, (4.49)

with −i Sρσ = i
2σ

ρσ = − 1
4 [γρ, γσ]. We note that ψ → Lψ and ψ → ψ L−1, while L−1γµL = Λµ

νγ
ν .

The latter assures Lorentz invariance of the Dirac equation (see Exercise 4.3)
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Parity

There are a number of symmetries in the Dirac equation, e.g. parity. It is easy to convince oneself
that if ψ(x) is a solution of the Dirac equation,

(i/∂ −M)ψ(x) = 0, (4.50)

one can apply space inversion, x = (t,x) → x̃ = (t,−x) and via a few manipulations obtain again the
Dirac equation

(i/∂ −M)ψp(x) = 0, (4.51)

but with ψp(x) ≡ ηp γ0 ψ(x̃) (Exercise 4.6). Note that we have (as expected) explicitly in Weyl
representation in Dirac space

ψ =




ξ
η




P−→ ψp = γ0 ψ =




η
ξ



 . (4.52)

Charge conjugation

The existence of positive and negative energy solutions implies another symmetry in the Dirac equa-
tion. This symmetry does not change the spin 1/2 nature, but it does, for instance, reverse the charge
of the particle. As with parity we look for a transformation, called charge conjugation, that brings
ψ → ψc, which is again a solution of the Dirac equation. Starting with (i/∂ −M)ψ(x) = 0 we note
that by hermitean conjugating and transposing the Dirac equation one obtains

(
iγµT∂µ +M

)
ψ

T
(x) = 0. (4.53)

In any representation a matrix C exist, such that

CγT
µC
−1 = −γµ, (4.54)

e.g.

(C)S.R. = iγ2γ0 = −iρ1 ⊗ σ2 =




0 −iσ2

−iσ2 0



 =




0 −ǫ
−ǫ 0



 , (4.55)

(C)W.R. = iγ2γ0 = −iρ3 ⊗ σ2 =




−iσ2 0

0 iσ2



 =




−ǫ 0
0 ǫ



 . (4.56)

Thus we find back the Dirac equation,

(i/∂ −M)ψc(x) = 0. (4.57)

with the solution
ψc(x) = ηc Cψ

T
(x), (4.58)

where ηc is an arbitrary (unobservable) phase, usually to be taken unity. Some properties of C are
C−1 = C† and CT = −C. One has ψc = −ψTC−1. In S.R. (or W.R.) and all representations
connected via a real (up to an overall phase) matrix S, C is real and one has C−1 = C† = CT = −C
and [C, γ5] = 0. The latter implies that the conjugate of a right-handed spinor, ψ c

R, is a left-handed
spinor. Explicitly, in Weyl representation we find in Dirac space

ψ =




ξ
η




C−→ ψc = C ψ

T
=




−ǫ η∗
ǫ ξ∗



 . (4.59)
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4.4 Plane wave solutions

For a free massive particle, the best representation to describe particles at rest is the standard repre-
sentation, in which γ0 is diagonal (see discussion of negative energy states in section 4.1). The explicit
Dirac equation in the standard representation reads





i ∂
∂t −M iσ · ∇

−iσ · ∇ −i ∂
∂t −M




ψ(x) = 0. (4.60)

Looking for positive energy solutions ∝ exp(−iEt) one finds two solutions, ψ(x) = u±s(p) e−i p·x, with

E = Ep = +
√

p2 +M2, where u satisfies




Ep −M −σ · p

σ · p −(Ep +M)




u(p) = 0, ⇔ (/p−M)u(p) = 0. (4.61)

There are also two negative energy solutions, ψ(x) = v±s(p) ei p·x, where v satisfies




−(Ep +M) σ · p

−σ · p (Ep −M)




v(p) = 0, ⇔ (/p+M) v(p) = 0. (4.62)

Explicit solutions in the standard representation are

u(p, s) =
√

Ep +M





χs

σ·p
Ep+M χs




, v(p, s) =

√

Ep +M





σ·p
Ep+M χ̄s

χ̄s




, (4.63)

where χs are two independent (s = ±) two-component spinors.. Note that the spinors in the negative
energy modes (antiparticles) could be two different spinors. Choosing χ̄ = −ǫχ∗ (the equivalent spin
1/2 conjugate representation), the spinors satisfy C ūT (p, s) = v(p, s) and C v̄T (p, s) = u(p, s). The
solutions are normalized to

ū(p, s)u(p, s′) = 2M δss′ , v̄(p, s)v(p, s′) = −2M δss′ , (4.64)

ū(p, s)v(p, s′) = v̄(p, s)u(p, s′) = 0, (4.65)

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Ep δss′ . (4.66)

An arbitrary spin 1/2 field can be expanded in the independent solutions. After separating positive
and negative energy solutions as done in the case of the scalar field one has

ψ(x) =
∑

s

∫
d3k

(2π)3 2Ek

(
u(k, s) e−i k·x b(k, s) + v(k, s) ei k·x d∗(k, s)

)
. (4.67)

It is straightforward to find projection operators for the positive and negative energy states

P+ =
∑

s

u(p, s)ū(p, s)

2M
=

/p+M

2M
, (4.68)

P− = −
∑

s

v(p, s)v̄(p, s)

2M
=

−/p+M

2M
. (4.69)

In order to project out spin states, the spin polarization vector in the rest frame is the starting
point. In that frame is a spacelike unit vector sµ = (0, ŝ). In an arbitrary frame one has s · p = 0 and
s(p) can e.g. be obtained by a Lorentz transformation. It is easy to check that

Ps =
1 ± γ5/s

2
=

1

2




1 ± σ · ŝ 0

0 1 ∓ σ · ŝ



 (4.70)
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(the last equality in the restframe and in standard representation) projects out spin ±1/2 states (check
this in the restframe for ŝ = ẑ).

Note that for solutions of the massless Dirac equation /pψ = 0. Therefore, γ5/pψ = 0 but also
/pγ5ψ = −γ5/pψ = 0. This means that in the solution space for massless fermions the chirality states,
ψR/L ≡ PR/L ψ are independent solutions. In principle massless fermions can be described by two-
component spinors. The chirality projection operators in Eq. 4.48 replace the spin projection operators
which are not defined (by lack of a rest frame).

Explicit examples of spinors are useful to illustrate spin eigenstates, helicity states, chirality,
etc. For instance with the z-axis as spin quantization axis, one has in standard representation:

u(p,+1/2) =
1√

E +M

8

>

>

>

>

>

>

>

>

>

:

E +M
0
p3

p1 + i p2

9

>

>

>

>

>

>

>

>

>

;

, u(p,−1/2) =
1√

E +M

8

>

>

>

>

>

>

>

>

>

:

0
E +M
p1 − i p2

−p3

9

>

>

>

>

>

>

>

>

>

;

, (4.71)

v(p,+1/2) =
1√

E +M

8

>

>

>

>

>

>

>

>

>

:

p1 − i p2

−p3

0
E +M

9

>

>

>

>

>

>

>

>

>

;

, v(p,−1/2) =
1√

E +M

8

>

>

>

>

>

>

>

>

>

:

−p3

−p1 − i p2

−(E +M)
0

9

>

>

>

>

>

>

>

>

>

;

. (4.72)

Helicity states (p along ẑ) in Standard representation are:

u(p, λ = +1/2) =

8

>

>

>

>

>

>

>

>

>

:

√
E +M

0√
E −M

0

9

>

>

>

>

>

>

>

>

>

;

, u(p, λ = −1/2) =

8

>

>

>

>

>

>

>

>

>

:

0√
E +M

0

−
√
E −M

9

>

>

>

>

>

>

>

>

>

;

, (4.73)

v(p, λ = +1/2) =

8

>

>

>

>

>

>

>

>

>

:

0

−
√
E −M
0√

E +M

9

>

>

>

>

>

>

>

>

>

;

, v(p, λ = −1/2) =

8

>

>

>

>

>

>

>

>

>

:

−
√
E −M
0

−
√
E +M
0

9

>

>

>

>

>

>

>

>

>

;

. (4.74)

By writing the helicity states in Weyl representation it is easy to project out righthanded (up-
per components) and lefthanded (lower components). One finds for the helicity states in Weyl
representation:

u(p, λ = +1/2) =
1√
2

8

>

>

>

>

>

>

>

>

>

:

√
E +M +

√
E −M

0√
E +M −

√
E −M

0

9

>

>

>

>

>

>

>

>

>

;

, u(p, λ = −1/2) =
1√
2

8

>

>

>

>

>

>

>

>

>

:

0√
E +M −

√
E −M

0√
E +M +

√
E −M

9

>

>

>

>

>

>

>

>

>

;

,

v(p, λ = +1/2) =
1√
2

8

>

>

>

>

>

>

>

>

>

:

0√
E +M −

√
E −M

0
−
√
E +M −

√
E −M

9

>

>

>

>

>

>

>

>

>

;

, v(p, λ = −1/2) =
1√
2

8

>

>

>

>

>

>

>

>

>

:

−
√
E +M −

√
E −M

0
+
√
E +M −

√
E −M

0

9

>

>

>

>

>

>

>

>

>

;

.

Also for helicity states C ūT (p, λ) = v(p, λ) and C ūT (p, λ) = u(p, λ). We note that for high energy
the positive helicity (λ = +1/2) is in essence righthanded, while the negative helicity (λ = −1/2)
is in essence lefthanded. The ratio of the components is (directly or inversely) proportional to

√
E +M −

√
E −M√

E +M +
√
E −M

=
2M

(
√
E +M +

√
E −M)2

M≪E
=⇒ M

2E
,

which vanishes in the ultra-relativistic limit E ≫ M or in the massless case.
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4.5 γ gymnastics and applications

An overview of properties can be found in many text books. Some elementary properties are:

Properties of products of γ-matrices:
(1) γµγµ = 4
(2) γµ γν γµ = −2 γν or γµ/aγµ = −2 /a.
(3) γµ γργσ γµ = 4 gρσ or γµ/a/bγµ = 4 a · b.
(4) γµ γνγργσ γµ = −2 γσγργν.
(5) γµ γλγνγργσ γµ = 2

[
γσγλγνγρ + γργνγλγσ

]
.

(6) γ5 = i γ0γ1γ2γ3 = −i ǫµνρσγ
µγνγργσ/4!.

(7) γµγ5 = -γ5γµ = i ǫµνρσγ
νγργσ/3!.

(8) σµν ≡ (i/2)[γµ, γν ]
(9) σµνγ5 = γ5σµν = ǫµνρσγ

ργσ/2.
(10) γµγν = gµν − i σµν

(11) γµγνγρ = Sµνρσγσ + i ǫµνρσγσγ5 with Sµνρσ = (gµνgρσ - gµρgνσ + gµσgνρ).

Properties of traces of γ-matrices
(1) Tr(γµ1 · · · γµn) = 0 if n is odd.
(Use (γ5)

2 = 1 and pull one γ5 through.)
(2) Tr(1) = 4.
(3) Tr(γµγν) = 4 gµν or Tr(/a/b) = 4 a · b.
(4) Tr(γµγνγργσ) = 4Sµνρσ.
(5) Tr(γµ1 · · · γµn) = gµ1µ2Tr(γµ3 · · · γµn) - gµ1µ3Tr(γµ2γµ4 · · · γµn) + · · · .
(6) Tr(γ5) = 0.
(7) Tr(γ5γ

µγν) = 0 or Tr(γ5/a/b) = 0.
(8) Tr(γ5γ

µγνγργσ) = −4i ǫµνρσ.
(9) Tr(γµ1 · · · γµ2n) = Tr(γµ2n · · · γµ1).
(Use matrices C to transpose the matrices in the expression under the trace and use TrAT = TrA.)

In order to show the use of the above relations, we will give one example, namely the calculation
of the quantity

Lµν(k, k′) =
1

2

∑

s,s′

(ū(k, s)γµu(k′, s′))
∗
(ū(k, s)γνu(k′, s′)) , (4.75)

which appears in quantum electrodynamics calculations (see Chapter 10) for the emission of a photon
from an electron changing its momentum from k to k′ (k2 = k′2 = m2). In principle one can take a
representation and just calculate the quantity ū(k, s)γµu(k′, s′), etc. It is, however, more convenient
to use the projection operators introduced earlier. For this we first have to prove (do this) that

(ū(k, s)γµu(k′, s′))
∗

= ū(k′, s′)γµu(k, s), (4.76)

This leads with explicit Dirac indices to

Lµν =
1

2

∑

s,s′

ūi(k
′, s′)(γµ)ijuj(k, s)ūk(k, s)(γν)klul(k

′, s′)

=
1

2

∑

s,s′

ul(k
′, s′)ūi(k

′, s′)(γµ)ijuj(k, s)ūk(k, s)(γν)kl

=
1

2
(/k′ +m)li(γ

µ)ij(/k +m)jk(γν)kl

=
1

2
Tr [(/k′ +m)γµ(/k +m)γν ] .
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The trace is linear and can be split up in parts containing traces with up to four gamma-matrices, of
which only the traces of four and two gamma-matrices are nonzero. They lead to

Lµν =
1

2
Tr [(/k′ +m)γµ(/k +m)γν ]

= 2
[
kµk′ν + kνk′µ − gµν(k · k′ −m2)

]

= 2 kµk′ν + 2 kνk′µ + (k − k′)2 gµν . (4.77)

Exercises

Excercise 4.1

Prove Eq. 4.13,

H(p) = exp
(η · σ

2

)

=
M + E + σ · p
√

2M(E +M)
,

where E = Mγ = M cosh(η) and p = Mβγn̂ = M sinh(η) n̂. Do this e.g. by proving that

H2(p) = exp (η · σ) = (E + σ · p)/M = σ̃µpµ/M.

Exercise 4.2

Show that jµ = ψγµψ is a conserved current if ψ en ψ are solutions of the Dirac equation

Exercise 4.3

Imposing Lorentz invariance on the Dirac equation can be achieved by requiring L−1γµL = Λµ
νγ

ν .
Look at the infinitesimal forms Λµ

ν = gµ
ν + ωµ

ν and L = 1 − (i/2)ωρσS
ρσ to obtain

[γµ, i Sρσ] = gρµγσ − gσµγρ,

−i Sρσ = −1

4
[γρ, γσ] =

i

2
σρσ .

Exercise 4.4

Show that in

P+ ≡
∑

s=±1/2

u(p, s)ū(p, s)

2M
=

/p+M

2M

both sides are projection operators. Show that the equality holds, e.g. by letting them act on the four
basis spinors u(p, s) and v(p, s).

Exercise 4.5

Show starting from the relation {γµ, γν} = 2gµν that

γµ/aγµ = −2 /a,

Tr(/a/b) = 4 a · b,
Tr(γµ1 · · · γµn) = 0 if n is odd.

Excercise 4.6

Apply space-inversion, x → x̃, to the Dirac equation and use this to show that the spinor ψp(x) =
γ0ψ(x̃), where x̃ = (t,−x) is also a solution of the Dirac equation.
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Exercise 4.7

(a) Show that (in standard representation)

ψ(x, t) = N





j0(kr)χm

i k
E+M σ · r̂ j1(kr)χm




e−i Et,

is a stationary solution of the (free) Dirac equation. In this solution the wave number k = |k|
=

√
E2 −M2 and χm a two-component spinor while j0 and j1 are spherical Bessel functions.

Note: use first the appropriate equation (which?) that is obeyed by each individual component
of the Dirac equation to show that the upper two components are allowed solutions.

(b) Next, we want to confine this solution to a spherical cavity with radius R. A condition for
confining the fermion in the cavity is i /nψ = ψ. Show that this condition is sufficient to guarantee
that nµj

µ = 0, i.e. there is no current flowing through the surface of the cavity.

Note: To prove this, you need to determine the corresponding confinement condition for ψ. The
conditions for ψ and ψ imply that nµj

µ = ψ/nψ = 0.
It turns out that there is actually a whole family of conditions that provide confinement, namely
i /nψ = eiαγ5 ψ. We will not pursue this chiral freedom at this point and take α = 0.

(c) Apply the confinement condition to find the value of k for the lowest eigenmode in the spherical
cavity. For such a cavity nµ = (0, r̂). Calculate the value of k for MR = 0, MR = 1.5 and
M → ∞.

(d) Plot for these cases the vector densities ψ†ψ and the scalar densities ψψ as a function of r/R.

Excercise 4.8

A negatively charged pion (π−) decays in a lepton ℓ (ℓ can be an electron or a muon) and a cor-
responding anti-neutrino (ν̄ℓ). The pion has spin 0, the lepton and neutrino have spin 1/2 and are
described by momentum-space spinors. Our starting point is the transition amplitude given by

M = 〈ℓ(kℓ)ν̄ℓ(kν)|Hint|π(p)〉 = GF fπ u(kℓ)/p(1 − γ5) v(kν).

Calculate |M |2, which is the most important factor needed to find the decay width (inverse lifetime).
Note: the outcome shows that the decay into muons is much more likely that the decay into electrons
(mµ = 105.6 MeV, me = 0.511 MeV). Actually if the lepton would be massless, the decay would even
be forbidden. Do you understand why? The calculation of the life-time is completed in chapter 11.



Chapter 5

Vector fields and Maxwell equations

5.1 Fields for spin 1

In section 3.2 we have discussed the vectors ǫλ (with λ = 0 and ±1) as basis states of the spin 1
representation. In the rest frame plane waves of the form ǫλ e

i k·x, thus, can describe spin 1 waves.
The covariant generalization is to describe them with

Vµ(x) = ǫµ(k) e±ik·x. (5.1)

These are solutions of the Klein-Gordon equation with in addition a condition,

(2 +M2)Vµ = 0, with ∂µV
µ = 0 (Lorentz condition). (5.2)

The Lorentz condition implies that kµ ǫµ(k) = 0. In the restframe, where k = k0 = (M,0), there
are then indeed three independent possibilities, namely ǫµ(k0) = (0, ǫλ). The vectorfield is therefore

suited to describe spin 1. In an arbitrary frame ǫ
(λ)
µ (k) with λ = 0,±(1) are obtained by boosting the

restframe vectors. A real vector field Vµ(x) then can be expanded in modes as

Vµ(x) =
∑

λ=0,±

∫
d3k

(2π)3 2E

(

ǫ(λ)
µ (k) e−ik·x c(k, λ) + ǫ(λ)∗

µ (k) eik·x c∗(k, λ)
)

. (5.3)

Since the vectors ǫ
(λ)
µ (k) together with the momentum kµ form a complete set of four-vectors, one has

∑

λ=0,±
ǫ(λ)
µ (k) ǫ(λ)∗

ν (k) = −gµν +
kµkν

M2
. (5.4)

5.2 The electromagnetic field

With the electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ (5.5)

=





0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0





, (5.6)

where Aµ is the four-vector potential
Aµ = (φ,A), (5.7)
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and the (conserved) current jµ = (ρ, j) the Maxwell equations read

∂µF
µν = jν . (5.8)

Furthermore, the antisymmetry of Fµν implies that

∂µF̃
µν = 0 or ∂λFµν + ∂µFνλ + ∂νFλµ = 0, (5.9)

where F̃µν ≡ − 1
2ǫ

µνρσFρσ is the tensor where E → B and B → −E. It states the absence of magnetic
charges and Faraday’s law.

For electrodynamics one has furthermore the freedom of gauge transformations. Under a gauge
transformation

Aµ −→ Aµ + ∂µχ, (5.10)

the electric and magnetic fields are unchanged,

Fµν −→ Fµν + (∂µ∂νχ− ∂ν∂µχ) = Fµν . (5.11)

The equations of motion for the fields Aµ become

2Aµ − ∂µ(∂νA
ν) = jµ. (5.12)

This equation is not affected by a gauge transformation. The gauge freedom can first of all be used
to impose the Lorentz condition for the electromagnetic field,

∂µA
µ = 0, (5.13)

in which case one has
2Aµ = jµ, (5.14)

of which the solutions give the Liénard-Wiechert potentials. The equation in vacuum, 2Aµ = 0, more-
over, shows that the electromagnetic fields correspond to the case of a massless spin 1 field. Although
the Lorenz condition is a constraint, it does not eliminate the freedom of gauge transformations but
they are now restricted to Aµ → Aµ + ∂µχ with 2χ = 0.

The Lorenz condition can actually be incorporated by changing the equations of motion to

2Aµ + (λ− 1)∂µ(∂νA
ν) = jµ. (5.15)

Taking the divergence of this equiation, one finds for a conserved current and λ 6= 0

2∂µA
µ = 0. (5.16)

Hence, if ∂µA
µ = 0 for large times |t|, it will vanish at all times. Note that the incorporation of

the Lorentz condition can also be done for the case of the massive vector field, i.e. if in Eq. 5.15 the
d’Alembertian is replaced by 2 +M2.

As remarked above, for M = 0, there is still a gauge freedom left (Aµ → Aµ + ∂µχ with 2χ = 0).
One possible choice is the gauge

A0 = 0 (5.17)

(radiation, transverse or Coulomb gauge). In that case one also has ∇·A = 0 or ki ǫi(k) = 0. Therefore
if kµ = (|k|, 0, 0, |k|), only two independent vectors remain

ǫ(±) µ(k) = (0,∓1,−i, 0), (5.18)

corresponding to the helicity states λ = ±1 of the massless photon field, in accordance with what we
found in section 3.5.

Note that via parity transformation one obtains another solution, AP
µ (x) = Ãµ(x̃), while the fact

that the Minkowski space is real implies that AC
µ (x) = A∗µ(x) = Aµ(x).
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∆ x
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d

Figure 5.1: The Aharonov-Bohm experiment

5.3 The electromagnetic field and topology∗

The electric and magnetic fields E and B as appearing for instance in the Lorentz force on a moving
charge,

F = eE + ev × B (5.19)

are gauge invariant, while the electromagnetic field Aµ is not. Nevertheless the significance of Aµ

is shown in the Aharonov-Bohm experiment. In this experiment an observable phase difference is
measured for electrons moving through field-free space (E = B = 0 but Aµ 6= 0), illustrated in
fig. 5.1. The phase difference between the electrons travelling two different paths is given by

δ = 2π
a

λ
=
a
−λ
≈ ∆x

L

d
−λ
,

or ∆x = (L−λ/d)δ. This causes an interference pattern as a function of ∆x. In the presence of an
electromagnetic field Aµ an additional phase difference is observed. This occurs in the region outside
the solenoid, where Aµ 6= 0, but where E = B = 0. To be precise,

Inside solenoid: B = B ẑ, A =
Br

2
ϕ̂ =

(

−By
2
,
Bx

2
, 0

)

,

Outside solenoid: B = 0, A =
BR2

2r
ϕ̂ =

(

−BR
2y

2r2
,
BR2x

2r2
, 0

)

,

where r̂ = (cosϕ, sinϕ, 0) and ϕ̂ = (− sinϕ, cosϕ, 0). The explanation of the significance of the vector
potential A for the phase of the electron wave function is found in minimal substitution

ψ ∝ exp

(
i

h̄
p · r

)

−→ exp

(
i

h̄
(p − eA) · r

)

= exp
(

−i e
h̄

A · r
)

exp

(
i

h̄
p · r

)

.

The phase difference between the two paths of the electron then are given by

∆δ = − e

h̄

∫

1

A · dr +
e

h̄

∫

2

A · dr =
e

h̄

∮

A · dr

=
e

h̄

∫

(∇× A) · ds =
e

h̄

∫

B · ds =
e

h̄
Φ, (5.20)

where Φ is the flux through the solenoid. This phase difference is actually observed.
The situation, nevertheless, may look a bit akward. It is however, nothing more than a manisfes-

tation of a nontrivial vacuum (a la the Dirac sea for fermions). The energy density 1
2 (E2 + B2) = 0

(hence a vacuum), but A 6= 0 (hence there is structure in the vacuum).
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class 0       

class 1      

class 2      

Figure 5.2: The topology of the space in the Aharonov-Bohm experiment, illustrating also that the
group structure of the mapping of U(1) into this space is that of the group of integers

Indeed when one considers the A-field in the example of the Aharonov-Bohm effect outside the
solenoid, it can be obtained from the situation A = 0 by a gauge transformation,

A = ∇χ with χ =
BR2

2
ϕ (5.21)

(ϕ being the azimuthal angle). This situation that A can be written as ∇χ is always true when ∇×A

= 0. The observable phase going around in general is

∆δ =
e

h̄

∮

A · dr =
e

h̄

∮

∇χ · dr =
e

h̄
χ|ϕ=2π

ϕ=0 .

The function χ in Eq. 5.21, however, is multivalued as ϕ = 0 and ϕ = 2π are the same point in space.
If this would be be happening in empty space one would be in trouble. By going around an arbitrary
loop a different number of times the electron wave function would acquire different phases or it would
acquire an arbitrary phase in a point by contracting a loop continuously into that point. Therefore
the gauge transformation must be uniquely defined in the space one is working in, implying that it
must be single-valued1.

Now back to the Aharonov-Bohm experiment. The difference here is that we are working in
a space with a ’defect’ (the infinitely long solenoid). In such a space loops with different winding
number (i.e. the number of times they go around the defect) cannot be continuously deformed into
one another. Therefore space outside the solenoid doesn’t care that χ is multi-valued. The Aharonov-
Bohm experiment shows a realization of this possibility.

Another situation in which the topology of space can be used is in the case of superconductors.
Consider a superconductor, forming a simple (connected) space. Below the critical temperature the
magnetic field is squeezed out of the superconducting material, organizing itself in tiny flux tubes
(Abrikosov strings), minimizing the space occupied by B fields. The only way for flux tubes to be
formed and move around without global consequences is when each flux tube contains a flux Φ such
that ∆δ = (e/h̄)Φ = n · 2π, giving no observable phase2.

1The occurrence of nontrivial possibilities, i.e. nonobservable phases ϕ = 2π n, has been employed by Dirac in
constructing magnetic monopoles in electrodynamics

2Actually, the relevant charge turns out to be 2e because the electrons appear in Cooper pairs



Vector fields and Maxwell equations 43

Exercises

Exercise 5.1

Show that Eqs. 5.8 and 5.9 explicitly give the equations

∇ · E = ρ,

∇ × B = j +
∂E

∂t
,

∇ × E +
∂B

∂t
= 0,

∇ · B = 0.



Chapter 6

Classical lagrangian field theory

6.1 Euler-Lagrange equations

In the previous chapter we have seen the equations for scalar fields (Klein-Gordon equation), Dirac
fields (Dirac equation) and massless vector fields (Maxwell equations) and corresponding to these
fields conserved currents describing the probability and probability current. These equations can be
obtained from a lagrangian using the action principle.

As an example, recall classical mechanics with the action

S =

∫ t2

t1

dt L(x, ẋ) (6.1)

and as an example the lagrangian

L(x, ẋ) = K − V =
1

2
mẋ2 − V (x). (6.2)

The principle of minimal action looks for a stationary action under variations in the coordinates and
time, thus

t′ = t+ δτ, (6.3)

x′(t) = x(t) + δx(t), (6.4)

and the total change
x′(t′) = x(t) + ∆x(t), (6.5)

with ∆x(t) = δx(t) + ẋ(t) δτ . The requirement δS = 0 with fixed boundaries x(t1) = x1 and x(t2) =
x2 leads to

δS =

∫ t2

t1

dt

{
∂L

∂x
δx+

∂L

∂ẋ
δẋ

}

+ L δτ

∣
∣
∣
∣

t2

t1

=

∫ t2

t1

dt

{
∂L

∂x
− d

dt

(
∂L

∂ẋ

)}

δx+

(
∂L

∂ẋ
δx+ L δτ

)∣
∣
∣
∣

t2

t1

. (6.6)

The first term leads to the Euler-Lagrange equations,

d

dt

(
∂L

∂ẋ

)

=
∂L

∂x
. (6.7)

The quantity ∂L/∂ẋ plays a special role and is known as the canonical momentum,

p =
∂L

∂ẋ
. (6.8)
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For the lagrangian specified above this leads directly to Newton’s law ṗ = mẍ = −∂V/∂x.
The second term in Eq. 6.6 can be rewritten as

δS = . . .+

(
∂L

∂ẋ
∆x−H δτ

)∣
∣
∣
∣

t2

t1

, (6.9)

which is done because the first term (multiplying ∆x, which in classical mechanics vanishes at the
boundary) does not play a role. The hamiltonian H is defined by

H(p, x) ≡ p ẋ− L . (6.10)

One sees that invariance under time translations requires that H(t1) = H(t2), i.e. H is a conserved
quantity. In general any continuous transformation, ∆x = (dx/dλ)λ=0 δλ and δt = (dt/dλ)λ=0 δλ,
gives rise to a conserved quantity (at least if H is invariant!)

Q = p

(
dx

dλ

)

λ=0

−H

(
dt

dλ

)

λ=0

, (6.11)

of which p and H are the simplest examples related to space and time translations, but which in 3
dimensions includes conserved quantities related to rotations and boosts.

In classical field theory one proceeds in complete analogy but using functions depending on space
and time (classical fields, think for instance of a temperature or density distribution or of an electro-
magnetic field). Consider a lagrangian density L which depends on these functions, their derivatives
and possibly on the position, L (φ(x), ∂µφ(x), x) and an action

S[φ] =

∫ t2

t1

dt L =

∫

dt d3x L (φ(x), ∂µφ(x)) =

∫

R

d4x L (φ(x), ∂µφ(x)). (6.12)

Here R indicates a space-time volume bounded by (R3, t1) and R3, t2), also indicated by ∂R (a
more general volume in four-dimensional space-time with some boundary ∂R can also be considered).
Variations in the action can come from the coordinates or the fields, indicated as

x′µ = xµ + δxµ, (6.13)

φ′(x) = φ(x) + δφ(x) (6.14)

or combined
φ′(x′) = φ(x) + ∆φ(x), (6.15)

with ∆φ(x) = δφ(x) + (∂µφ)δxµ. The resulting variation of the action is

δS =

∫

R

d4x′ L (φ′, ∂µφ
′, x′) −

∫

R

d4x L (φ, ∂µφ, x). (6.16)

The change in variables x→ x′ in the integration volume involves a surface variation of the form
∫

∂R

dσµ L δxµ.

Note for the specific choice of the surface for constant times t1 and t2,
∫

∂R

dσµ . . . =

∫

(R3,t2)

d3x . . .−
∫

(R3,t1)

d3x . . . . (6.17)

Furthermore the variations δφ and δ∂µφ contribute to δS, giving1

δS =

∫

R

d4x

[
δL

δ(∂µφ)
δ(∂µφ) +

δL

δφ
δφ

]

+

∫

∂R

dσµ L δxµ

=

∫

R

d4x

[
δL

δφ
− ∂µ

(
δL

δ(∂µφ)

)]

δφ+

∫

∂R

dσµ

[
δL

δ(∂µφ)
δφ+ L δxµ

]

. (6.18)

1Taking a functional derivative, indicated with δF [φ]/δφ should pose no problems. We will come back to it in a bit
more formal way in section 9.2.
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With for the situation of classical fields all variations of the fields and coordinates at the surface
vanishing, the second term is irrelevant. The integrand of the first term must vanish, leading to the
Euler-Lagrange equations,

∂µ

(
δL

δ(∂µφ)

)

=
δL

δφ
. (6.19)

6.2 Lagrangians for spin 0, 1/2 and 1 fields

By an appropriate choice of lagrangian density the equations of motion discussed in previous chapters
for the scalar field (spin 0), the Dirac field (spin 1/2) and the vector field (spin 1) can be found.

The scalar field

It is straightforward to derive the equations of motion for a real scalar field φ from the lagrangian
densities,

L =
1

2
∂µφ∂

µφ− 1

2
M2 φ2 (6.20)

= −1

2
φ
(
∂µ∂

µ +M2
)
φ, (6.21)

which differ only by surface terms, leading to

(2 +M2)φ(x) = 0. (6.22)

For the complex scalar field one conventionally uses

L = ∂µφ
∗∂µφ−M2 φ∗φ (6.23)

= −φ∗
(
∂µ∂

µ +M2
)
φ, (6.24)

which can be considered as the sum of the lagrangian densities for two real scalar fields φ1 and φ2

with φ = (φ1 + iφ2)/
√

2. One easily obtains

(2 +M2)φ(x) = 0, (6.25)

(2 +M2)φ∗(x) = 0. (6.26)

The Dirac field

The appropriate lagrangian from which to derive the equations of motion is

L =
i

2
ψ
↔
/∂ ψ −M ψψ =

i

2
ψ
→
/∂ ψ − i

2
ψ
←
/∂ ψ −M ψψ (6.27)

= ψ (i/∂ −M)ψ, (6.28)

where the second line is not symmetric but in the action only differs from the symmetric version by
a surface term (partial integration). Using the variations in ψ (in the symmetric form),

δL

δ(∂µψ)
= − i

2
γµψ

δL

δψ
=

i

2

→
/∂ ψ −M ψ,

one obtains immediately
(

i
→
/∂ −M

)

ψ = 0, (6.29)
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and similarly from the variation with respect to ψ

ψ

(

i
←
/∂ +M

)

= 0. (6.30)

It is often useful to link to the two-component spinors ξ and η which we started with in chapter 4, or
equivalently separate the field into right- and lefthanded ones. In that case one finds trivially

L =
1

2
ψR i

↔
/∂ ψR +

1

2
ψL i

↔
/∂ ψL −M (ψR ψL + ψL ψR), (6.31)

showing e.g. that the lagrangian separates into two independent parts for M = 0.

The mass term in the Dirac lagrangian 6.31 rewritten in terms of ξ and η is

LM (Dirac) = −M
“

ξ†η + η†ξ
”

. (6.32)

There exists a different possibility to write down a mass term with only one kind of fields, namely2

LM (Majorana) = +
1

2

“

M η†ǫη∗ −M∗ ηT ǫη
”

. (6.33)

Since the kinetic term in L separates naturally in ξ and η, it is possible to introduce ’real’ spinors
or Majorana spinors that satisfies Υc = Υ. The spinor to be used satisfies

Υc = Υ and ΥL = ψL =

8

>

>

:

0
η

9

>

>

;

⇒ Υ ≡
8

>

>

:

−ǫ η∗
η

9

>

>

;

, (6.34)

for which η0 = ǫ η∗0 . We note that

ψc
L ≡ (ψL)c = C ψL

T
=

8

>

>

:

−ǫ η∗
0

9

>

>

;

= ΥR. (6.35)

Rewriting the Majorana mass term in Eq. 6.33 in terms of ψL and ψc
L one finds

L =
1

2
ψL i

↔

/∂ ψL − 1

2

`

M ψc
L ψL +M∗ ψL ψ

c
L

´

. (6.36)

Note actually that using for Majorana spinors the relations Υc
R = ΥL and Υc

L = ΥR, the Majorana
lagrangian is actually almost of the same form as the Dirac mass term,

L =
1

4
Υ i

↔

/∂ Υ − 1

2

`

M ΥRΥL +M∗ ΥLΥR

´

. (6.37)

Note the factor 1/2 as compared to the Dirac lagrangian, which comes because we in essence use
’real’ spinors. The Majorana case is actually more general, since a lagrangian with both Dirac and
Majorana mass terms can be rewritten as the sum of two Majorana lagrangians after redefining
the fields (See e.g. Peshkin and Schroeder).

Vector field

From the lagrangian density

L = −1

4
FµνF

µν +
1

2
M2 VµV

µ − λ

2
(∂µV

µ)
2

(6.38)

=
1

2
V µ
[
(∂2 +M2)gµν − (1 − λ)∂µ∂ν

]
V ν , (6.39)

2This term is written down with η being an anticommuting Grassmann number for which

αβ = −βα,
(αβ)∗ = β∗α∗ = −α∗β∗,

and thus (β∗α)∗ = α∗β = −βα∗. The reasons for Grassmann variables will become clear in the next chapter.
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where Fµν = ∂µVν − ∂νVµ, one immediately obtains

δL

δ(∂µVν)
= −∂µV ν + ∂νV µ − λ gµν (∂ρV

ρ) = −Fµν − λ gµν (∂ρV
ρ)

leading to the equations of motion

∂µF
µν +M2 V ν + λ∂ν(∂ · V ) =

(
2 +M2

)
V ν − (1 − λ)∂ν(∂ · V ) = 0, (6.40)

implying
∂µF

µν +M2 V ν = 0 and ∂µV
µ = 0. (6.41)

6.3 Symmetries and conserved (Noether) currents

Next, we consider the second term in Eq. 6.18. In particular when the lagrangian is invariant under
symmetries, one can consider the variations at the initial or final surface. These do not affect the
dynamics and will give rise to conserved currents. Returning to δS the surface term is rewritten to

δS =

∫

R

d4x . . .+

∫

∂R

dσµ

{
δL

δ(∂µφ)
∆φ−

[
δL

δ(∂µφ)
∂νφ− L gµν

]

δxν

}

≡
∫

R

d4x . . .+

∫

∂R

dσµ

{
δL

δ(∂µφ)
∆φ− Θµν(x)δxν

}

, (6.42)

where

Θµν =
δL

δ(∂µφ)
∂νφ− L gµν . (6.43)

The variation δS thus can be expressed as

δS = F (σ1) − F (σ2) =

∫

∂R

dσµ Jµ(x) =

∫

R

d4x ∂µJ
µ(x), (6.44)

with

Jµ(x) = − δL

δ(∂µφ)
∆φ+ Θµν(x)δxν .

For continuous transformations, ∆Φ = (dφ/dλ)λ=0 δλ and δxµ = (dxµ/dλ)λ=0 δλ, we get

Jµ(x) = − δL

δ(∂µφ)

(
dφ

dλ

)

λ=0

+ Θµν(x)

(
dxν

dλ

)

λ=0

. (6.45)

Thus considering ∂R = σ2 - σ1 with σ = (R3, t), the presence of a symmetry that leaves the lagrangian
invariant, requires the presence of a conserved quantity, Q(t1) = Q(t2), which is the space-integral
over the zero-component of a conserved current, ∂µJ

µ(x) = 0,

Q =

∫

d3x J0(x, t), (6.46)

For quantum fields (φ operator!) things become more subtle as it it is not possible to specify
for instance φ and φ̇ on the surface σ1. In this case, discussed in the next chapter, these conserved
quantities become operators, which in a consistent picture precisely generate the symmetries.

As an example for the classical field, consider U(1) transformations of the Dirac field proportional
to the charge e,

ψ(x) → ei eΛψ(x) or ∆ψ(x) = i eΛψ(x). (6.47)
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From the lagrangian for the Dirac field, we obtain (since δxµ = 0), omitting the parameter Λ

jµ = − δL

δ(∂µψ
i
)
· (−i e ψi

) − δL

δ(∂µψi)
· (i e ψi)

= e ψγµψ. (6.48)

For the complex scalar field the U(1) transformations leave the lagrangian invariant and lead to the
conserved current (see Exercise 6.3)

jµ = i e φ∗
↔
∂µ φ. (6.49)

These currents are conserved as discussed already in chapter 2. The integral over the zero-component,
Q =

∫
d3x j0(x, t) is the conserved charge (Q̇ = 0). In the next section we will see the quantity show

up as the charge operator.

6.4 Space-time symmetries

One kind of symmetries that leave the lagrangian invariant are the Poincaré transformations, including
the space-time translations and the Lorentz transformations.

Translations

Under translations (generated by Pµ
op) we have

δxµ = ǫµ, (6.50)

∆φ(x) = 0, (6.51)

δφ(x) = −(∂µφ)δxµ = −ǫµ∂µφ(x). (6.52)

The behavior of the field under translations (δφ) is governed by the translational behavior of the
argument in such a way that ∆φ = 0. From Noether’s theorem one sees that the current Θµνǫν
is conserved. Therefore there are four conserved currents Θµν (ν labeling the currents!) and four
conserved quantities

P ν =

∫

dσµ Θµν =

∫

d3xΘ0ν . (6.53)

These are the energy and momentum. For quantized fields this will become the expressions of the
hamiltonian and the momentum operators in terms of the fields, e.g. H =

∫
d3xΘ00(x).

Lorentz transformations

In this case the transformation of the coordinates and fields are written as

δxµ = ωµνxν , (ωµνantisymmetric) (6.54)

∆φi(x) =
1

2
ωρσ(−i Sρσ)i

jφ
j(x). (6.55)

Note that the coordinate transformations can be written in a form similar to that for the fields,

δxµ =
1

2
ωρσ(aρσ)µ

νx
ν (6.56)

with
(aρσ)µ

ν = gρµgσ
ν − gσµgρ

ν . (6.57)

For the fields the behavior under Lorentz transformations has been the subject of previous chapters.
Summarizing,
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• Scalar field φ: −i Sρσ = 0.

• Dirac field ψ: −i Sρσ = −(1/4)[γρ, γσ]
This result for the Dirac field has been discussed in chapter 3 (see also Exercise 4.3).

• Vector field Aµ: −i Sρσ = aρσ.

The current deduced from Noether’s theorem is

Jµ = − δL

δ(∂µφi)
∆φi + Θµνδxν

=
1

2
ωρσ

{

− δL

δ(∂µφi)
(−i Sρσ)i

jφ
j + Θµρxσ − Θµσxρ

}

(6.58)

=
1

2
ωρσ {Hµρσ + Θµρxσ − Θµσxρ} (6.59)

=
1

2
ωρσM

µρσ. (6.60)

Therefore there are six conserved currentsMµρσ labeled by ρ and σ (antisymmetric) and corresponding
to it there exist conserved quantities

Mρσ =

∫

d3x M0ρσ. (6.61)

A final note concernes the symmetry properties of Θµν . In general this tensor is not symmetric. In
some applications (specifically coupling to gravity) it is advantageous to have an equivalent current
that is symmetric. Defining

Tµν = Θµν − ∂ρG
ρµν , (6.62)

with Gρµν = (Hρµν + Hµνρ + Hνµρ)/2, where Hρµν is the quantity appearing in Mρµν , one has a
tensor that satisfies (exercise 6.6)

Tµν = T νµ, (6.63)

∂µT
µν = ∂µΘµν , (6.64)

Mµρσ = Tµρxσ − Tµσxρ. (6.65)

6.5 (Abelian) gauge theories

In section 6.3 we have seen global transformations or gauge transformations of the first kind, e.g.

φ(x) → ei eΛφ(x), (6.66)

in which the U(1) transformation involves an angle eΛ, independent of x. Gauge transformations of
the second kind or local gauge transformations are transformations of the type

φ(x) → ei eΛ(x)φ(x), (6.67)

i.e. the angle of the transformation depends on the space-time point x. The lagrangians which we
have considered sofar are invariant under global gauge transformations and corresponding to this there
exist a conserved Noether current. Any lagrangian containing derivatives, however, is not invariant
under local gauge transformations,

φ(x) → ei eΛ(x)φ(x), (6.68)

φ∗(x) → e−i eΛ(x)φ∗(x), (6.69)

∂µφ(x) → ei eΛ(x)∂µφ(x) + i e ∂µΛ(x) ei eΛ(x)φ(x), (6.70)
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where the last term spoils gauge invariance.
A solution is the one known as minimal substitution in which the derivative ∂µ is replaced by a

covariant derivative Dµ which satisfies

Dµφ(x) → ei eΛ(x)Dµφ(x). (6.71)

For this purpose it is necessary to introduce a vector field Aµ,

Dµφ(x) ≡ (∂µ + i eAµ(x))φ(x), (6.72)

The required transformation for Dµ then demands

Dµφ(x) = (∂µ + i eAµ(x))φ(x)

→ ei eΛ∂µφ+ i e (∂µΛ) ei eΛφ+ i eA′µ e
i eΛφ

= ei eΛ
(
∂µ + i e(A′µ + ∂µΛ)

)
φ

≡ ei eΛ (∂µ + i eAµ)φ. (6.73)

Thus the covariant derivative has the correct transformation behavior provided

Aµ → Aµ − ∂µΛ, (6.74)

the behavior which we have encountered before as a gauge freedom for massless vector fields with
the (free) lagrangian density L = −(1/4)FµνF

µν . Replacing derivatives by covariant derivatives and
adding the (free) part for the massless vector fields to the original lagrangian therefore produces a
gauge invariant lagrangian,

L (φ, ∂µφ) =⇒ L (φ,Dµφ) − 1

4
FµνF

µν . (6.75)

The field φ is used here in a general sense standing for any possible field. As an example consider the
Dirac lagrangian,

L =
i

2

(
ψγµ∂µψ − (∂µψ)γµψ

)
−M ψψ.

Minimal substitution ∂µψ → (∂µ + i eAµ)ψ leads to the gauge invariant lagrangian

L =
i

2
ψ
↔
/∂ ψ −M ψψ − e ψγµψAµ − 1

4
FµνF

µν . (6.76)

We note first of all that the coupling of the Dirac field (electron) to the vector field (photon) can be
written in the familiar interaction form

Lint = −e ψγµψAµ = −e jµAµ, (6.77)

involving the interaction of the charge (ρ = j0) and three-current density (j) with the electric potential
(φ = A0) and the vector potential (A), −e jµAµ = −e ρφ + e j · A. The equation of motion for the
fermion follow from

δL

δ(∂µψ)
= − i

2
γµψ,

δL

δψ
=

i

2
/∂ψ −M ψ − e/Aψ

giving the Dirac equation in an electromagnetic field,

(i/D −M)ψ = (i/∂ − e/A−M)ψ = 0. (6.78)
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For the photon the equations of motion follow from

δL

δ(∂µAν)
= −Fµν ,

δL

δAν
= −eψγνψ,

giving the Maxwell equation coupling to the electromagnetic current,

∂µF
µν = jν , (6.79)

where jµ = e ψγµψ.

Exercises

Exercise 6.1

(a) Show that the Klein-Gordon equation for the real scalar field can be derived from the lagrangian
density

L =
1

2
∂µφ∂

µφ− 1

2
M2 φ2.

(b) Show that the Klein-Gordon equation for the complex scalar field (considering φ and φ∗ as
independent fields can be derived from the lagrangian density

L = ∂µφ
∗∂µφ−M2 φ∗φ.

Exercise 6.2

(a) Show that the homogeneous Maxwell equations can be derived from the lagrangian density

L = −1

4
FµνF

µν .

(b) What is the form of the interaction term involving a current jµ and the field Aµ that will give
the inhomogeneous Maxwell equations, ∂µF

µν = jν .

(c) Show that the interaction term is invariant under gauge transformations only if the current jµ is
conserved, i.e. ∂µj

µ = 0 (Note that the addition of a total derivative to the lagrangian density
does not modify the equations of motion).

Exercise 6.3

Show that the current jµ = i φ∗
↔
∂µ φ for a complex scalar field is connected to a U(1) transformation

on the fields, φ → eiΛ φ.

Exercise 6.4

Given the Dirac equation for a (negatively charged) spin-1/2 particle in an external electromagnetic

field, [iγµ(∂µ − i eAµ)−M ]ψ = 0, give the equation which is satisfied by ψc = Cψ
T
, and deduce what

is the charge of the antiparticle as compared to a particle.
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Exercise 6.5

Show that the Dirac equation for an electron with charge −e in an external electromagnetic field Aµ

= (A0,A) (see also exercise 6.4) for a stationary solution in the non-relativistic (|Enr| ≪ M) and
weak-field (|A0| ≪ M) limits yields in the standard representation for the ’upper (two) components’
ψu,

(
1

2M
(−i∇ + eA)2 +

e

2M
σ · B − eA0

)

ψu(r, t) = Enrψu(r, t),

with Enr ≡ E −M ≪M . This relation is known as the Pauli equation.

Comment: this relation is known as the Pauli equation. It shows that for a spin 1/2 particle the
g-factor in the coupling of spin to a magnetic field takes the value gs = 2,

Hint ≡ −gs µe · B = −gs
Qe

2me
s · B.

Exercise 6.6 (optional)

Prove the properties of the tensor T µν in section 6.4.
Hints: it may be useful to realize that Gµρσ is antisymmetric in first two indices; use ∂µT

µν = 0 and
∂µM

µρσ = 0, in order to show that Θρσ −Θσρ = ∂µH
µρσ; finally note that it is sufficient to show the

last equation for
∫
dσµM

µρσ.



Chapter 7

Quantization of fields

7.1 Canonical quantization

We will first recall the example of classical mechanics for one coordinate q(t), starting from the
lagrangian L(q, q̇) also considered in the previous chapter,

L(q, q̇) =
1

2
mq̇2 − V (q). (7.1)

The Hamiltonian (also corresponding to a conserved quantity because of time translation invariance)
is given by

H(p, q) = p q̇ − L(q, q̇(q, p)) =
p2

2m
+ V (q), (7.2)

where the (canonical) momentum p = ∂L/∂q̇, in our example p = mq̇. Further, there are conserved
quantities Q (Eq. 6.11) found through Noether’s theorem. Actually the conserved quantities satisfy
a similar algebra as the Lie algebras for continuous symmetries that they are obtained from. The
bilinear product for the conserved quantities, however, is the Poisson bracket

[A,B]P =
dA

dq

dB

dp
− dB

dq

dA

dp
. (7.3)

For variations δO(p, q) ≈ (dO/dλ)λ=0 δλ under symmetry transformations one has

dO

dλ
= [O,Q]P.

Examples are
dO

dt
= [O,H ]P and

dO

dq
= [O, p]P.

The basic Poisson bracket is actually the one between q and its canonical momentum p, namely
[q, p]P = 1. Quantization of the theory is achieved by imposing canonical commutation relations
between q and p,

[q, p] = i, (7.4)

with a possible realization as operators in the Hilbert space of (coordinate space) wave functions
through qopψ(q) = qψ(q) and popψ(q) = −idψ/dq. This is nothing else as representing the classical
Poisson algebra as operators in the Hilbert space.

An immediate generalization for fields can be obtained by considering them as coordinates, labeled
by the position,

qx(t) =
1

∆3x

∫

∆3x

d3x φ(x, t), (7.5)

54
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etc. The lagrangian is given by

L =

∫

d3x L (φ(x), ∂µφ(x)) =

∫

d3x L (φ, φ̇,∇φ)

=
∑

x
∆3xL x (qx, q̇x, qx+∆x) , (7.6)

In order to construct the hamiltonian it is necessary to find the canonical momenta,

px(t) =
∂L

∂q̇x
= ∆3x

∂Lx

∂q̇x
= ∆3xΠx(t), (7.7)

where Πx(t) is obtained from the continuous field Π(x) ≡ δL /δ(∂0φ). The hamiltonian then is

H =
∑

x
pxq̇x − L =

∑

x
∆3x [Πxq̇x − L x] (7.8)

=
∑

x

∆3xHx (7.9)

where

H (x) =
δL

δφ̇(x)
φ̇(x) − L (x) = Θ00(x). (7.10)

Note that this indeed corresponds to the zero-zero component (Θ00) of the conserved energy-momentum
stress tensor Θµν , discussed in the section 6.2.

As an example, for the scalar field theory, we have

L (x) =
1

2
∂µφ∂

µφ− 1

2
M2 φ2

=
1

2
(∂0φ)2 − 1

2
(∇φ)2 − 1

2
M2 φ2 (7.11)

Π(x) =
δL

δ∂0φ)
= ∂0φ, (7.12)

H (x) = Θ00(x) =
1

2
(∂0φ)2 +

1

2
(∇φ)2 +

1

2
M2 φ2. (7.13)

For the quantization procedure we can formulate a number of basic axioms of quantum field theory.
Sometimes it is useful to keep in mind that, formally, the fields φ(x) can be considered as regular
operators in the Hilbert space after smearing with a test function f ,

Φ(f) =

∫

d4x φ(x) f(x). (7.14)

In fact, the discretization procedure above is an explicit example, albeit with ’sharp’ functions.
The essential conditions to consistently quantize a theory then are the following.

• Canonical commutation relations
The quantization of the theory is achieved by imposing the canonical quantization condition
[qx(t), py(t)] = i δxy or for the fields φ(x) and Π(x) the socalled equal time commutation
relations

[φ(x, t),Π(y, t)] = i δ3(x − y), (7.15)

with furthermore the relations [φ(x, t), φ(y, t)] = [Π(x, t),Π(y, t)] = 0.

• Poincaré invariance
The full variation of the fields, ∆φ, for symmetry transformations. This implies specific trans-
formation properties in the Hilbert space for the quantum fields φ,

U †(Λ, a)φi(x)U(Λ, a) = Ri
j(Λ
−1)φj(Λ−1x− a), (7.16)
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or if

U(Λ, a) = 1 + iǫµP
µ − i

2
ωµνM

µν ,

Ri
j(Λ
−1) = 1 − i

2
ωµν(Sµν)i

j ,

one has

[φi(x), Pµ] = i∂µφ
i(x), (7.17)

[φi(x),Mµν ] = i(xµ∂ν − xν∂µ)φi(x) + (Sµν)i
jφ

j(x), (7.18)

with Sµν given in 6.4. This must be valid for the – now operators – generators Pµ and Mµν

that in the previous chapter have been found in terms of the fields through Noether’s theorem.

• Causality
Operators Φ(f) and Φ(g) for which the test functions are space-like separated can be mea-
sured simultaneously (macroscopic causality). The measurements cannot influence each other
or [Φ(f),Φ(g)] = 0. Microscopic causality implies local commutativity,

[φ(x), φ(y)] = 0 if (x− y)2 < 0. (7.19)

7.2 Creation and annihilation operators

Before discussing (real and complex) scalar fields and Dirac fields we recall the analogy with the well-
known harmonic oscillator as an example of quantization using creation and annihilation operators,
sometimes referred to as second quantization. In simplified form the hamiltonian is given by

H =
1

2
P 2 +

1

2
ω2Q2, (7.20)

where the coordinate Q and the momentum P satisfy the canonical commutation relations

[Q,P ] = i, [Q,Q] = [P, P ] = 0 (7.21)

Writing Q and P in terms of creation (a†) and annihilation (a) operators,

Q =
1√
2ω

(a+ a†) and P = −i
√
ω

2
(a− a†) (7.22)

it is straightforward to check that the commutation relations between Q and P are equivalent with
the commutation relations

[a, a†] = 1, [a, a] = [a†, a†] = 0. (7.23)

The hamiltonian in this case can be expressed in the number operator N = a†a,

H = ω

{(√
ω

2
Q− i

P√
2ω

)(√
ω

2
Q+ i

P√
2ω

)

− i

2
[Q,P ]

}

= ω

{

a†a+
1

2

}

= ω

{

N +
1

2

}

. (7.24)

It is straightforward to find the commutation relations between N and a and a†,

[N, a†] = a†, and [N, a] = −a. (7.25)
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Defining states |n〉 as eigenstates of N with eigenvalue n, N |n〉 = n|n〉 one finds

N a†|n〉 = (n+ 1) a†|n〉,
N a|n〉 = (n− 1) a|n〉

i.e. a† and a act as raising and lowering operators. From the normalizations one obtains a†|n〉 =√
n+ 1 |n + 1〉 and a|n〉 =

√
n |n − 1〉, and we see that a state |0〉 must exist for which N |0〉 = a|0〉

= 0. In this way one has found for the harmonic oscillator the spectrum of eigenstates |n〉 (with n a
non-negative integer) with En = (n+ 1/2)ω.

7.3 The real scalar field

We have expanded the (classical) field in plane wave solutions, which we have split into positive and
negative energy pieces with (complex) coefficients a(k) and a∗(k) multiplying them. The quantization
of the field is achieved by quantizing the coefficients in the Fourier expansion, e.g. the real scalar field
φ(x) becomes

φ(x) =

∫
d3k

(2π)3 2Ek

[
a(k) e−i k·x + a†(k) ei k·x] , (7.26)

where the Fourier coefficients a(k) and a†(k) are now operators. Note that we will often write a(k)

or a†(k), but one needs to realize that in that case k0 = Ek =
√

k2 +M2. The canonical momentum
becomes

Π(x) = φ̇(x) =
−i
2

∫
d3k

(2π)3
[
a(k) e−i k·x − a†(k) ei k·x] . (7.27)

It is easy to check that these equations can be inverted (see Exercise 2.4 for the classical field)

a(k) =

∫

d3x ei k·x i
↔
∂0 φ(x), (7.28)

a†(k′) =

∫

d3x φ(x) i
↔
∂0 e

−i k′·x (7.29)

It is straightforward to prove that the equal time commutation relations between φ(x) and Π(x′) are
equivalent with ’harmonic oscillator - like’ commutation relations between a(k) and a†(k′), i.e.

[φ(x),Π(x′)]x0=x′0 = i δ3(x − x′) and

[φ(x), φ(x′)]x0=x′0 = [Π(x),Π(x′)]x0=x′0 = 0, (7.30)

is equivalent with

[a(k), a†(k′)] = (2π)3 2Ek δ
3(k − k′) and

[a(k), a(k′)] = [a†(k), a†(k′)] = 0. (7.31)

The hamiltonian can be rewritten in terms of a number operator N(k) = N(k) = a†(k)a(k), which
represents the ’number of particles’ with momentum k.

H =

∫

d3x

[
1

2
(∂0φ)2 +

1

2
(∇φ)2 +

1

2
M2 φ2

]

=

∫
d3k

(2π)3 2Ek

Ek

2

(
a†(k)a(k) + a(k)a†(k)

)
(7.32)

=

∫
d3k

(2π)3 2Ek
Ek N(k) + Evac, (7.33)
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where the necessity to commute a(k)a†(k) (as in the case of the quantum mechanics case) leads to a
zero-point energy, in field theory also referred to as vacuum energy

Evac =
1

2
V

∫
d3k

(2π)3
Ek, (7.34)

where V = (2π)3 δ3(0) is the space-volume. This term will be adressed below. For the momentum
operator one has

P i =

∫

d3x Θ0i(x) =
1

2

∫

d3x ∂{0φ∂i}φ =

∫
d3k

(2π)3 2Ek
kiN(k), (7.35)

where the vacuum contribution disappears because of rotational symmetry. Just as in the case of the
harmonic oscillator it is essential (axiom) that there exists a ground state |0〉 that is annihilated by
a(k), a(k)|0〉 = 0. The rest of the states are then obtained from the groundstate via the creation

operator, defining particle states |k〉 = |k〉 (with positive energy, k0 = Ek =
√

k2 +M2),

|k〉 = a†(k)|0〉, (7.36)

and multiparticle states

|(k1)
n1 (k2)

n2 . . .〉 =
(a†(k1))

n1

√
n1!

(a†(k2))
n2

√
n2!

. . . |0〉, (7.37)

normalized as
〈k|k′〉 = (2π)3 2Ek δ

3(k − k′), (7.38)

and satisfying the completeness condition

1 =

∫
d4k

(2π)4
2π δ(k2 −M2) θ(k0) |k〉〈k| =

∫
d3k

(2π)3 2Ek
|k〉〈k|. (7.39)

The problem with the vacuum or zero-point energy, which now contains an infinite number of oscilla-
tors, is solved by subtracting it as an (infinite) constant, which amounts to redefining H as

H =

∫

d3x : H (x) :=

∫
d3k

(2π)3 2Ek
Ek N(k). (7.40)

This procedure is known as normal ordering, i.e. writing all annihilation operators to the right of the
creation operators, assuring that the vacuum (by definition) has eigenvalue 0!.

For the purpose of normal ordering it is convenient to decompose the field in positive and negative
frequency parts,

φ(x) = φ+(x) + φ−(x), (7.41)

φ+(x) =

∫
d3k

(2π)3 2Ek
a(k) e−i k·x, (7.42)

φ−(x) =

∫
d3k

(2π)3 2Ek
a†(k) ei k·x. (7.43)

The normal ordered product can be expressed as

: φ(x)φ(y) := φ+(x)φ+(y) + φ−(x)φ+(y) + φ−(y)φ+(x) + φ−(x)φ−(y). (7.44)

The 1-particle wave function e−ip·x is obtained via

〈0|φ(x)|p〉 = 〈0|φ+(x)|p〉 =

∫
d3k

(2π)3 2Ek
〈0|a(k)a†(p)|0〉 e−i k·x = e−i p·x (7.45)

〈p|φ(x)|0〉 = 〈p|φ−(x)|0〉 = ei p·x. (7.46)
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In order to ensure the consistency of the theory it is necessary to check that the operators P ν and
Mµν obtained from the conserved currents Θρσ and Mµρσ are indeed the generators of the Poincaré
group, i.e. that they satisfy the required commutation relations in Eqs (7.17) and (7.18).

The last item to be checked for the scalar field are the causality condition. In order to calculate
[φ(x), φ(y)] consider

[φ+(x), φ−(y)] ≡ i∆+(x− y), (7.47)

=

∫
d3k

(2π)3 2Ek

∫
d3k′

(2π)3 2E′k
e−i k·x+i k′·y [a(k), a†(k′)]

=

∫
d3k

(2π)3 2Ek
e−i k·(x−y), (7.48)

[φ−(x), φ+(y)] ≡ i∆−(x− y), (7.49)

= −
∫

d3k

(2π)3 2Ek
ei k·(x−y) = −i∆+(y − x), (7.50)

or as integrals over d4k,

i∆+(x) =

∫
d4k

(2π)4
θ(k0) 2π δ(k2 −M2) e−i k·x, (7.51)

i∆−(x) = −
∫

d4k

(2π)4
θ(k0) 2π δ(k2 −M2) ei k·x (7.52)

= −
∫

d4k

(2π)4
θ(−k0) 2π δ(k2 −M2) e−i k·x = −i∆+(−x)

The result for the invariant commutator function is

[φ(x), φ(y)] = i∆(x− y) = i (∆+(x− y) + ∆−(x− y)) , (7.53)

which has the properties

(i) i∆(x) = i∆+(x) + i∆−(x) can be expressed as

i∆(x) =

∫
d4k

(2π)4
ǫ(k0) 2π δ(k2 −M2) e−i k·x, (7.54)

where ǫ(k0) = θ(k0) − θ(−k0).

(ii) ∆(x) is a solution of the homogeneous Klein-Gordon equation.

(iii) ∆(0,x) = 0 and hence ∆(x) = 0 for x2 < 0.

(iv) The equal time commutation relations follow from

∂

∂t
∆(x)

∣
∣
∣
∣
t=0

= −δ3(x). (7.55)

(v) For M = 0,

∆(x) = − ǫ(x
0)

2π
δ(x2). (7.56)



Quantization of fields 60

7.4 The complex scalar field

In spite of the similarity with the case of the real field, we will consider it as a repetition of the
quantization procedure, extending it with the charge operator and the introduction of particle and
antiparticle operators. The field satisfies the Klein-Gordon equation and the density current (U(1)
transformations) and the energy-momentum tensor are

jµ = i φ∗
↔
∂µ φ, (7.57)

Θµν = ∂{µφ
∗∂ν}φ− L gµν . (7.58)

The quantized fields are written as

φ(x) =

∫
d3k

(2π)3 2Ek

[
a(k) e−i k·x + b†(k) ei k·x] , (7.59)

φ†(x) =

∫
d3k

(2π)3 2Ek

[
b(k) e−i k·x + a†(k) ei k·x] , (7.60)

and satisfy the equal time commutation relation (only nonzero ones)

[φ(x), ∂0φ
†(y)]x0=y0 = i δ3(x − y), (7.61)

which is equivalent to the relations (only nonzero ones)

[a(k), a†(k′)] = [b(k), b†(k′)] = (2π)3 2Ek δ
3(k − k′). (7.62)

The hamiltonian is as before given by the normal ordered expression

H =

∫

d3x : Θ00(x) :

=

∫
d3k

(2π)3 2Ek
Ek :

[
a†(k)a(k) + b(k)b†(k)

]
:

=

∫
d3k

(2π)3 2Ek
Ek

[
a†(k)a(k) + b†(k)b(k)

]
, (7.63)

i.e. particles (created by a†) and antiparticles (created by b†) with the same momentum contribute
equally to the energy. Also the charge operator requires normal ordering (in order to give the vacuum
eigenvalue zero),

Q = i

∫

d3x :
[
φ† ∂0φ− ∂0φ

† φ(x)
]

:

=

∫
d3k

(2π)3 2Ek
:
[
a†(k)a(k) − b(k)b†(k)

]
:

=

∫
d3k

(2π)3 2Ek

[
a†(k)a(k) − b†(k)b(k)

]
. (7.64)

The commutator of φ and φ† is as for the real field given by

[φ(x), φ†(y)] = i∆(x− y). (7.65)

7.5 The Dirac field

From the lagrangian density

L =
i

2
ψγµ

↔
∂µ ψ −M ψψ, (7.66)
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the conserved density and energy-momentum currents are easily obtained,

jµ = ψγµψ, (7.67)

Θµν =
i

2
ψγµ

↔
∂ν ψ −

(
i

2
ψ
↔
/∂ ψ −M ψψ

)

gµν . (7.68)

The canonical momentum and the hamiltonian are given by

Π(x) =
δL

δψ̇(x)
= i ψ†(x), (7.69)

H (x) = Θ00(x) = − i

2
ψγi

↔
∂i ψ +M ψψ

= iψγ0∂0ψ = iψ†∂0ψ, (7.70)

where the last line is obtained by using the Dirac equation.
The quantized fields are written

ψ(x) =
∑

s

∫
d3k

(2π)3 2Ek

[
b(k, s)u(k, s)e−i k·x + d†(k, s)v(k, s)ei k·x] , (7.71)

ψ(x) =
∑

s

∫
d3k

(2π)3 2Ek

[
b†(k, s)ū(k, s)ei k·x + d(k, s)v̄(k, s)e−i k·x] . (7.72)

In terms of the operators for the b and d quanta the hamiltonian and charge operators are (omitting
mostly the spin summation in the rest of this section)

H =

∫

d3x : ψ†(x) i∂0ψ(x) : (7.73)

=

∫
d3k

(2π)3 2Ek
Ek :

[
b†(k)b(k) − d(k)d†(k)

]
: (7.74)

Q =

∫

d3x : ψ† ψ : (7.75)

=

∫
d3k

(2π)3 2Ek
:
[
b†(k)b(k) + d(k)d†(k)

]
: , (7.76)

which seems to cause problems as the antiparticles (d-quanta) contribute negatively to the energy and
the charges of particles (b-quanta) and antiparticles (d-quanta) are the same.

The solution is the introduction of anticommutation relations,

{b(k, s), b†(k′, s′)} = {d(k, s), d†(k′, s′)} = (2π)3 2Ek δ
3(k − k′) δss′ . (7.77)

Note that achieving normal ordering, i.e. interchanging creation and annihilation operators, then
leads to additional minus signs and

H =

∫
d3k

(2π)3 2Ek
Ek

[
b†(k)b(k) + d†(k)d(k)

]
(7.78)

Q =

∫
d3k

(2π)3 2Ek

[
b†(k)b(k) − d†(k)d(k)

]
. (7.79)

Also for the field and the canonical conjugate momentum anticommutation relations are considered,

{ψi(x), ψ
†
j (y)}x0=y0 =

∫
d3k

(2π)3 2Ek

[
∑

s

ui(k, s)u
†
j(k, s) e

−i k·(x−y)

+ vi(k, s)v
†
j (k, s) e

i k·(x−y)
]

x0=y0
.
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Using the positive and negative energy projection operators discussed in section 4, one has

{ψi(x), ψ
†
j (y)}x0=y0 =

∫
d3k

(2π)3 2Ek

[

(/k +M)il(γ0)lj e
−i k·(x−y)

+ (/k −M)il(γ0)lj e
i k·(x−y)

]

x0=y0

=

∫
d3k

(2π)3 2Ek
2Ek (γ0γ0)ij e

ik·(x−y)

= δ3(x − y) δij . (7.80)

For the scalar combination {ψi(x), ψj(y)} at arbitrary times one has

{ψi(x), ψj(y)} =

∫
d3k

(2π)3 2Ek

[

(/k +M)ij e
−i k·(x−y) + (/k −M)ij e

i k·(x−y)
]

= (i/∂x +M)ij

∫
d3k

(2π)3 2Ek

[

e−i k·(x−y) + −ei k·(x−y)
]

= (i/∂x +M)ij i∆(x− y), (7.81)

where i∆ = i∆+ + i∆− is the same invariant commutator function as encountered before. When
we would have started with commutation relations for the field ψ and the canonical momentum, we
would have obtained

[ψi(x), ψj(y)] = (i/∂x +M)ij i∆
1(x− y), (7.82)

where i∆1 = i∆+−i∆−, which however has wrong causality properties! Therefore the relation between
spin and statistics is required to get micro-causality (which is also known as the spin statistics theorem).

7.6 The electromagnetic field

From the lagrangian density

L = −1

4
FµνF

µν , (7.83)

the canonical momenta are

Π0 =
δL

δȦ0

= 0, (7.84)

Πi =
δL

δȦi

= F i0 = Ei, (7.85)

which reflects the gauge freedom, but has the problem of being noncovariant, as the vanishing of Π0

induces a constraint. It is possible to continue in a covariant way with the lagrangian

L = −1

4
FµνF

µν − λ

2
(∂µA

µ)2,

This gives the equations of motion discussed before, it implies the Lorentz constraint and leads to the
canonical momenta

Π0 = −λ(∂ρA
ρ), (7.86)

Πi = Ei. (7.87)

If one wants to impose canonical commutation relations ∂µA
µ = 0 cannot hold as an operator identity,

but we must restrict ourselves to the weaker condition

〈B|∂µA
µ|A〉 = 0, (7.88)
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for physical states |A〉 and |B〉.
The quantized field is expanded as

Aµ(x) =

∫
d3k

(2π)3 2Ek

3∑

λ=0

ǫ(λ)
µ (k)

[
c(k, λ)e−i k·x + c†(k, λ)ei k·x] , (7.89)

with four independent vectors ǫ
(λ)
µ , containing a time-like photon, a longitudinal photon and two

transverse photons. The canonical equal time commutation relations are

[Aµ(x),Πν (y)]x0=y0 = i gµν δ
3(x − y), (7.90)

where Πν = F ν0−λ gν0 (∂ρA
ρ) and we have furthermore [Aµ(x), Aν(y)] = [Πµ(x),Πν(y)] = 0. In fact

the commutation relations imply

[Ȧµ(x), Aν (y)]x0=y0 = i gµν δ
3(x − y), (7.91)

and are equivalent with

[c(k, λ), c†(k′, λ′)] = −gλλ′

2Ek (2π)3 δ3(k − k′). (7.92)

Note that for the transverse states there are no problems with the normalization and the statistics
of the states as −gij = δij for i, j = 1, 2. The hamiltonian in terms of the creation and annihilation
operators is (after normal ordering) given by

H =

∫
d3k

(2π)3 2Ek
Ek

[
3∑

λ=1

c†(k, λ)c(k, λ) − c†(k, 0)c(k, 0)

]

, (7.93)

which does exhibit problems with the time-like photon. These problems are solved by the Lorentz
constraint between physical states given above, for which it is sufficient that ∂µA

µ
+|A〉 = 0, where Aµ

+

is the part of the vector field containing the annihilation operators. It gives

3∑

λ=0

kµǫ(λ)
µ (k)c(k, λ)|A〉 = 0. (7.94)

Choosing kµ = (|k3|, 0, 0, k3) this reads
(

|k3|c(0)(k) − k3c(3)(k)
)

|A〉 = 0 (7.95)
(

c(0)(k) ∓ c(3)(k)
)

|A〉 = 0,

i.e. one time-like photon by itself is not allowed! This solves the problems with the normalization and
the negative energies.

Exercises

Exercise 7.1 (optional)

If you haven’t seen Poisson brackets in classical mechanics you should

(a) Proof that Poisson brackets (Eq. 7.3) satisfy the conditions of a Lie algebra.

(b) Proof for a quantity O(p, q) that dO/dλ = [O,Q]P, where Q is the conserved quantity in Eq. 6.11.

(c) Calculate the Poisson brackets for the coordinates x and the standard conserved quantities p

and ℓ, i.e. what are [ri, pj ]P, [ℓi, rj ]P, and [ℓi, pj ]P.

(d) Use Poisson brackets to calculate q̇ and ṗ, which reproduce the Hamilton equations.
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Exercise 7.2

Prove that the equal time commutation relations between φ(x) and Π(x′) are equivalent with the
commutation relations between a(k) and a†(k′)

Exercise 7.3

(a) Show that
e−i aµPµ φ(x) ei aµPµ = φ(x− a)

requires [φ(x), Pµ] = i∂µφ(x).

(b) Check the above commutation relation [φ(x), Pµ] for the (real) scalar field using the expressions
for the fields and momentum operator in terms of creation and annihilation operators. Is the
subtraction of ’zero point’ contributions essential in this check?

Exercise 7.4 (Green’s functions)

(a) Show that

∆hom(x) =
1

(2π)4

∫

d4k e−ik·x δ(k2 −M2)f(k)

is a solution of the homogeneous Klein-Gordon equation, (2+M2)∆hom(x) = 0. It is invariant,
∆hom(Λx) = ∆hom(x) if f is an invariant function, f(Λk) = f(k) for Lorentz transformations Λ.

(b) Show that

∆inhom(x) =
1

(2π)4

∫

d4k e−ikx 1

k2 −M2

is a solution of the inhomogeneous Klein-Gordon equation, (2 +M2)∆inhom(x) = −δ4(x).

(c) What are the poles in the integral under (b) in the (complex) k0 plane?

(d) Depending on the paths in the k0 plane going from k0 = −∞ to k0 = +∞ one can distinguish
four different Green’s functions (solutions to the above inhomogeneous Klein-Gordon equation):

k0

-E

E

∆
∆
∆
∆A

C

R
(causal)           

(advanced)     

(retarded)   

Show that by appropriate shifts of the poles into the complex plane, we can write for ∆R an
integral where the k0 integration remains along the real axis,

∆R =
1

(2π)4

∫

d4k e−ikx 1

k2 −M2 + iǫk0

(with the implicit prescription to take ǫ→ 0 after integration). Give also the expression for ∆C .

(e) Show that ∆R(x) = 0 if x0 < 0. (Similarly one can show that for the advanced Green’s function
∆A(x) = 0 if x0 > 0).
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(f) By performing the k0 integration over a closed path C going around the poles show that

∆(x) = − 1

(2π)4

∫

C

d4k e−ikx 1

k2 −M2

are homogeneous solutions for the contours:

k0

∆ +

∆ _

-E

E

∆

One way of showing this is to write these contours as integrals of the form under (a). In that
case one actually needs discontinuous functions f(k) such as the step function, f(k) ∝ θ(k0), or
ǫ(k0) = θ(k0) − θ(−k0).

(g) Show that the homogeneous solution ∆ in (f) satisfies ∆(0,x) = 0 and argue that one can use
Lorentz invariance to show that ∆(x) = 0 for x2 < 0.

(h) Show that the causal Green’s function

∆C(x) = θ(x0)∆+(x) − θ(−x0)∆−(x).

(i) (Optional) Give similar expressions for the other Green’s functions under (d) in terms of the
homogeneous solutions under (f).



Chapter 8

Discrete symmetries

In this chapter we discuss the discrete symmetries, parity (P), time reversal (T) and charge conjugation
(C). The consequences of P, T and C for classical quantities is shown in the table 1.

8.1 Parity

The parity operator transforms

xµ = (t, r) −→ x̃µ ≡ xµ = (t,−r). (8.1)

We will consider the transformation properties for a fermion field ψ(x), writing

ψ(x) −→ Popψ(x)P−1
op = ηPAψ(x̃) ≡ ψp(x), (8.2)

where ηP is the intrinsic parity of the field and A is a 4 × 4 matrix acting in the spinor space. Both
ψp and ψ satisfy the Dirac equation. We can determine A, starting with the Dirac equation for ψ(x),

(iγµ∂µ −M)ψ(x) = 0.

Table 8.1: The behavior of classical quantities under P, T, and C

quantity P T C
t t -t t
r -r r r

xµ x̃µ ≡ xµ −x̃µ xµ

E E E E
p -p -p p

pµ p̃µ p̃µ pµ

L L -L L

s s -s s

λ = s · p̂ −λ λ λ

66
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After parity transforming x to x̃ the Dirac equation becomes after some manipulations

(

iγµ∂̃µ −M
)

ψ(x̃) = 0,

(iγ̃µ∂µ −M)ψ(x̃) = 0,
(
iγµ†∂µ −M

)
ψ(x̃) = 0,

(iγµ∂µ −M) γ0 ψ(x̃) = 0. (8.3)

Therefore γ0ψ(x̃) is again a solution of the Dirac equation and we have

ψp(x) = γ0 ψ(x̃). (8.4)

It is straightforward to apply this to the explicit field operator ψ(x) using

γ0 u(k,m) = u(k̃,m), (8.5)

γ0 v(k,m) = −v(k̃,m), (8.6)

(check this for the standard representation; if helicity λ is used instead of the z-component of the spin
m, the above operation reverses the sign of λ). The result is

ψp(x) = Pop ψ(x) P−1
op = ηPγ0ψ(x̃) (8.7)

=
∑

λ

∫
d3k

(2π)3 2Ek
ηP

[
b(k, λ)γ0u(k, λ) e

−ik·x̃ + d†(k, λ)γ0v(k, λ) e
ik·x̃]

=
∑

λ

∫
d3k

(2π)3 2Ek
ηP

[

b(k, λ)u(k̃,−λ) e−ik̃·x − d†(k, λ)v(k̃,−λ) eik̃·x
]

=
∑

λ

∫
d3k̃

(2π)3 2Ek̃

ηP

[

b(k, λ)u(k̃,−λ) e−ik̃·x − d†(k, λ)v(k̃,−λ) eik̃·x
]

=
∑

λ

∫
d3k

(2π)3 2Ek
ηP

[

b(k̃,−λ)u(k, λ) e−ik·x − d†(k̃,−λ)v(k, λ) eik·x
]

. (8.8)

From this one sees immediately that

Pop b(k, λ) P
−1
op = ηP b(k̃,−λ), (8.9)

Pop d(k, λ) P
−1
op = −η∗P d(k̃,−λ), (8.10)

i.e. choosing ηP is real (ηP = ±1) particle and antiparticle have opposite parity.
In the same way as the Fermion field, one can also consider the scalar field and vector fields. For

the scalar field we have seen

φ(x) −→ Pop φ(x) P−1
op = ηP φ(x̃), (8.11)

and for the vector field
Aµ(x) −→ Pop A

µ(x) P−1
op = −Aµ(x̃). (8.12)

The latter behavior of the vector field will be discussed further below.

8.2 Charge conjugation

We have already seen the particle-antiparticle symmetry with under what we will call charge conju-
gation the behavior

ψ(x) −→ ψc(x) = ηC C ψ
T
(x), (8.13)



Discrete symmetries 68

the latter being also a solution of the Dirac equation. The action on the spinors (using C = iγ2γ0 =
−iρ1σ2 in standard representation) gives

C ūT (k,m) = v(k,m), (8.14)

C v̄T (k,m) = u(k,m), (8.15)

(where one must be aware of the choice of spinors made in the expansion, as discussed in section 4).
The same relations hold for helicity states. Therefore

ψc(x) = Cop ψ(x) C−1
op = ηCCψ̄

T (x) (8.16)

=
∑

λ

∫
d3k

(2π)3 2Ek
ηC

[
d(k, λ)Cv̄T (k, λ) e−ik·x + b†(k, λ)CūT (k, λ) eik·x]

=
∑

λ

∫
d3k

(2π)3 2Ek
ηC

[
d(k, λ)u(k, λ) e−ik·x + b†(k, λ)v(k, λ) eik·x] . (8.17)

This shows that

Cop b(k, λ) C
−1
op = ηC d(k, λ), (8.18)

Cop d(k, λ) C
−1
op = η∗C b(k, λ). (8.19)

8.3 Time reversal

The time reversal operator transforms

xµ = (t, r) −→ −x̃µ ≡ −xµ = (−t, r). (8.20)

We will again consider the transformation properties for a fermion field ψ(x), writing

ψ(x) −→ Topψ(x)T−1
op = ηTAψ(−x̃) ≡ ψt(−x̃), (8.21)

where A is a 4 × 4 matrix acting in the spinor space. As time reversal will transform ’bra’ into ’ket’,
Top|φ〉 = 〈φt| = (|φt〉)∗, it is antilinear1. Norm conservation requires Top to be anti-unitary2. For a
quantized field one has

Topfk(x)bkT
−1
op = f∗k (x)TopbkT

−1
op ,

i.e. to find ψt(−x̃) that is a solution of the Dirac equation, we start with the complex conjugated
Dirac equation for ψ,

((iγµ)∗∂µ −M)ψ(x) = 0.

The (time-reversed) Dirac equation becomes,

(

−(iγµ)∗∂̃µ −M
)

ψ(−x̃) = 0,

(iγ̃µ∗∂µ −M)ψ(−x̃) = 0,
(
iγµT∂µ −M

)
ψ(−x̃) = 0,

(
−iC−1γµC∂µ −M

)
ψ(−x̃) = 0.

(
i(γ5C)−1γµγ5C∂µ −M

)
ψ(−x̃) = 0.

(iγµ∂µ −M) γ5Cψ(−x̃) = 0. (8.22)

1A is antilinear if A(λ|φ〉 + µ|ψ〉) = λ∗A|φ〉 + µ∗A|ψ〉.
2An antilinear operator is anti-unitary if A† = A−1. One has 〈Aφ|Aψ〉 = 〈φ|ψ〉∗ = 〈Aψ|Aφ〉∗ = 〈ψ|A†Aφ〉 = 〈ψ|φ〉.
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Table 8.2: The transformation properties of physical states for particles (a) and antiparticles (ā).

state P T C
|a; p, λ〉 |a;−p,−λ〉 〈a;−p, λ| |ā; p, λ〉
|ā; p, λ〉 |ā;−p,−λ〉 〈ā;−p, λ| |a; p, λ〉

Therefore γ5Cψ(−x̃) is again a solution of the (ordinary) Dirac equation and we can choose (phase is
convention)

ψt(x) = i γ5C ψ(−x̃). (8.23)

In the standard representation iγ5C = σ2 and it is straightforward to apply this to the explicit field
operator ψ(x) using

i γ5C u(k, λ) = u∗(k̃, λ), (8.24)

i γ5C v(k, λ) = v∗(k̃, λ), (8.25)

(check this for the standard representation). The result is

ψt(x) = Top ψ(x) T−1
op = i ηTγ5Cψ(−x̃) (8.26)

=
∑

λ

∫
d3k

(2π)3 2Ek
ηT

[
b(k, λ)iγ5Cu(k, λ) e

ik·x̃ + d†(k, λ)iγ5Cv(k, λ) e
−ik·x̃]

=
∑

λ

∫
d3k

(2π)3 2Ek
ηT

[

b(k, λ)u∗(k̃, λ) eik̃·x + d†(k, λ)v∗(k̃, λ) e−ik̃·x
]

=
∑

λ

∫
d3k̃

(2π)3 2Ek
ηT

[

b(k, λ)u∗(k̃, λ) eik̃·x + d†(k, λ)v∗(k̃, λ) e−ik̃·x
]

=
∑

λ

∫
d3k

(2π)3 2Ek
ηT

[

b(k̃, λ)u∗(k, λ) eik·x + d†(k̃, λ)v∗(k, λ) e−ik·x
]

(8.27)

From this one obtains

Top b(k, λ) T
−1
op = ηT b(k̃, λ), (8.28)

Top d(k, λ) T
−1
op = η∗T d(k̃, λ). (8.29)

In table 2 the behavior of particle states under the various transformations has been summarized.
Note that applying an anti-unitary transformation such as Top one must take for the matrix element

the complex conjugate. Therefore one has 〈A|k〉 = 〈A|b†(k)|0〉 = 〈A|T †T b†(k)T †T |0〉∗ = 〈At|b†(k̃)|0〉∗
= 〈0|b(k̃)|At〉 = 〈k̃|At〉.

8.4 Bi-linear combinations

In quantities such as currents and lagrangians often bilinear combinations of spinor fields are encoun-
tered. Since there are 16 independent 4 × 4 matrices, there are 16 independent of these bilinear
combinations. They are the following

S(x) = ψ̄(x)ψ(x) (scalar) (8.30)

V µ(x) = ψ̄(x)γµψ(x) (vector) (8.31)

T µν(x) = ψ̄(x)σµνψ(x) (tensor) (8.32)

Aµ(x) = ψ̄(x)γ5γ
µψ(x) (axial vector) (8.33)

P (x) = iψ̄(x)γ5ψ(x) (pseudoscalar) (8.34)
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Table 8.3: The behavior of the independent bilinear combinations of fermi fields under P, C, and T

P C T Θ = PCT
S(x) S(x̃) S(x) S(−x̃) S(−x)
V µ(x) Vµ(x̃) −V µ(x) Vµ(−x̃) −V µ(−x)
T µν(x) Tµν(x̃) −T µν(x) −Tµν(−x̃) T µν(−x)
Aµ(x) −Aµ(x̃) Aµ(x) Aµ(−x̃) −Aµ(−x)
P (x) −P (x̃) P (x) −P (−x̃) P (−x)

The matrix σµν ≡ (i/2)[γµ, γν ]. The 16 combinations of Dirac matrices appearing above are linearly
independent. Applying the results from the previous sections it is straightforward to determine the
behavior of the combinations under P, C, and T, as well as under the combined operation Θ = PCT
(see Table 3). As the coupling of the photon field to fermions is given by an interaction term in the
lagrangian of the form : ψ̄(x)γµψ(x) : Aµ(x) and behaves as a scalar one sees immediately that the
photon field Aµ(x) behaves in the same way as the vector combination ψ̄(x)γµψ(x). Note that the
lagrangian density L (x) → L (−x) under Θ.

8.5 Form factors

Currents play an important role in field theory. In many applications the expectation values of currents
are needed, e.g. for the vector current V µ(x),

〈p′, s′|V µ(x)|p, s〉. (8.35)

The x-dependence can be accounted for straightforwardly using translation invariance, V µ(x) =
ei Pop·xV µ(0)e−i Pop·x. This implies

〈p′|V µ(x)|p〉 = e−i (p−p′)·x〈p′|V µ(0)|p〉. (8.36)

As an example consider the vector current for a point fermion,

V µ(x) =: ψ̄(x)γµψ(x) :, (8.37)

of which the expectation value between momentum eigenstates can be simply found,

〈p′|V µ(0)|p〉 = ū(p′)γµu(p). (8.38)

In general the expectation value between momentum states can be more complicated,

〈p′|V µ(x)|p〉 = ū(p′)Γµ(p′, p)u(p) e−i (p−p′)·x, (8.39)

where Γµ(p′, p) can be built from any combination of Dirac matrices (1, γµ, σµν , γ5γ
µ or γ5), momenta

(pµ or p′µ) or constant tensors (ǫµνρσ or gµν). For instance for nucleons one has

Γµ(p′, p) = γµ F1(q
2) +

iσµνq
ν

2M
F2(q

2), (8.40)

where the coefficients are functions of invariants constructed out of the momenta, in this case only
q2 = (p′ − p)2, called form factors. There are several other terms that also have the correct tensorial
behavior such as

qµ F3(q
2),

(pµ + p′µ)

2M
F..(q

2),
γ5σ

µνqν
2M

F..(q
2), (8.41)
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but that are eliminated because of relations between Dirac matrices, e.g. γ5σµν = (1/2)ǫµνρσγ
ργσ, or

relations that follow from the equations of motion, e.g. the Gordon decomposition

ū(p′)γµu(p) =
1

2M
ū(p′) [(p′ + p)µ + iσµνqν ]u(p), (8.42)

where q = p′ − p, or relations based on hermiticity of the operator or P , C and T invariance.

• Hermiticity

〈p′|V µ(0)|p〉 = ū(p′)Γµ(p′, p)u(p)

= 〈p′|V µ†(0)|p〉 = 〈p|V µ(0)|p′〉∗

= (ū(p)Γµ(p, p′)u(p′))
∗

=
(
u†(p)γ0Γ

µ(p, p′)u(p′)
)†

= u†(p′)Γµ†(p, p′)γ0u(p).

Therefore hermiticity implies for the structure of Γµ(p′, p) that

γ0Γ
µ†(p, p′)γ0 = Γµ(p′, p). (8.43)

• Parity

〈p′|V µ(x)|p〉 = ei q·x ū(p′)Γµ(p′, p)u(p)

= 〈p′|P †opPopV
µ(x)P †opPop|p〉

= 〈p̃′|Vµ(x̃)|p̃〉 = ei q̃·x̃ ū(p̃′)Γµ(p̃′, p̃)u(p̃)

= ei q·x ū(p′)γ0Γµ(p̃′, p̃)γ0u(p).

Therefore parity invariance implies for the structure of Γµ(p′, p) that

Γµ(p′, p) = γ0Γµ(p̃′, p̃)γ0, (8.44)

• Time reversal

〈p′|V µ(x)|p〉 = ei q·x ū(p′)Γµ(p′, p)u(p)

= 〈p′|T †opTopV
µ(x)T †opTop|p〉∗

= 〈p̃′|Vµ(−x̃)|p̃〉∗ = ei q̃·x̃ [ū(p̃′)]∗Γ∗µ(p̃′, p̃)u∗(p̃)

= ei q·x ū(p′) (iγ5C)Γ∗µ(p̃′, p̃)(iγ5C)u(p).

Therefore time reversal invariance implies for the structure of Γµ(p′, p) that

Γµ(p′, p) = (i γ5C)Γ∗µ(p̃′, p̃)(i γ5C). (8.45)

Exercises

Exercise 8.1

The matrix element of the electromagnetic current between nucleon states is written as

< p′|Jµ(x)|p >= e−i(p−p′)·x ū(p′)Γµu(p)

Here

Γµ = γµF1(q
2) +

iσµνq
ν

2M
F2(q

2)

= γµH1(q
2) − pµ + pµ′

2M
H2(q

2)
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(a) Use the Dirac equation to prove the Gordon-decomposition

ū(p′)γµu(p) =
1

2M
ū(p′)[(p′ + p)µ + iσµν(p′ − p)ν ]u(p)

(b) Give the relation between Hi en Fi.

(c) Show that hermiticity of the current requires that F1 en F2 are real.

Exercise 8.2

(a) Calculate the current matrix element (using the explicit fermion spinors) in the Breit-frame in
which q = (0, 0, 0, |q|), p = (E, 0, 0,−|q|/2), p′ = (E, 0, 0, |q|/2) with E2 = M2 + |q|2/4 and
express them in terms of the Sachs form factors depending on Q2 = −q2,

GE = F1 −
Q2

4M2
F2,

GM = F1 + F2.

(b) Show that in the interaction with the electromagnetic field,

L int = ejµA
µ

the charge is given by eGE(0) and the magnetic moment by eGM (0)/2M .

Exercise 8.3

(a) Show that because of parity conservation no term of the form

γ5σµνq
ν

2M
F3(q

2)

can appear in the current matrix element.

(b) Show that such a term is also not allowed by time-reversal symmetry.

(c) Show that if a term of this form would exist, it would correspond to an electric dipole moment
d = −e F3(0)/2M (Interaction term d σ · E).



Chapter 9

Path integrals and quantum
mechanics

9.1 Time evolution as path integral

The time evolution from t0 → t of a quantum mechanical system is generated by the Hamiltonian,

U(t, t0) = e−i(t−t0)H (9.1)

or

i
∂

∂t
U(t, t0) = H U(t, t0) (9.2)

Two situations can be distinguished:

(i) Schrödinger picture, in which the operators are time-independent, AS(t) = AS and the states
are time dependent, |ψS(t)〉 = U(t, t0)|ψS(t0)〉,

i
∂

∂t
|ψS〉 = H |ψS〉, (9.3)

i
∂

∂t
AS ≡ 0. (9.4)

(ii) Heisenberg picture, in which the states are time-independent, |ψH(t)〉 = |ψH〉, and the operators
are time-dependent, AH(t) = U−1(t, t0)AH(t0)U(t, t0),

i
∂

∂t
|ψH〉 ≡ 0, (9.5)

i
∂

∂t
AH = [AH , H ]. (9.6)

Of these the Heisenberg picture is most appropriate for quantum field theory since the field operators
do depend on the position and one would like to have position and time on the same footing.

Consider the two (time-independent) Heisenberg states:

|q, t〉 QH(t)|q, t〉 ≡ q|q, t〉,
|q′, t′〉 QH(t′)|q′, t′〉 ≡ q′|q′, t′〉,

(9.7)

73
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and Schrödinger states

|q〉 QS |q〉 ≡ q|q〉,
|q′〉 QS |q′〉 ≡ q′|q′〉.

(9.8)

Choose t as the starting point with |q〉 = |q, t〉 and QH(t) = QS and study the evolution of the system
by calculating the quantum mechanical overlap amplitude

〈q′, t′|q, t〉 = 〈q′|e−i H(t′−t)|q〉. (9.9)

Dividing the interval from t ≡ t0 to t′ ≡ tn into n pieces of length ∆τ and using completeness (at
each time ti) one writes

〈q′, t′|q, t〉 = 〈q′|e−i n H∆τ |q〉 = 〈q′|
(
e−i H∆τ

)n |q〉

=

∫

dq1

∫

. . .

∫

dqn−1 〈q′|e−i H∆τ |qn−1〉 〈qn−1| . . . |q1〉 〈q1|e−i H∆τ |q〉. (9.10)

The purpose of this is to calculate the evolution for an infinitesimal time interval. The hamiltonian
is an operator H = H(P,Q) expressed in terms of the operators P and Q. These can be written in
coordinate or momentum representation as

Q =

∫

dq |q〉 q 〈q| (9.11)

P =

∫

dq |q〉
(

−i ∂
∂q

)

〈q| =

∫
dp

2π
|p〉 p 〈p|, (9.12)

where the transformation between coordinate and momentum space involves

〈q|p〉 = ei p.q. (9.13)

At least for a simple hamiltonian such as consisting of a kinetic energy term and a local potential,
H(P,Q) = K(P ) + V (Q) = (P 2/2M) + V (Q) one can split e−i H∆τ ≈ e−i K∆τ e−i V ∆τ , with the
correction1 being of order (∆τ)2. Then

〈qj+1, tj+1|qj , tj〉 ≈ 〈qj+1|e−i K∆τ e−i V ∆τ |qj〉

=

∫
dpj

2π
〈qj+1|pj〉 〈pj |e−i K∆τ e−i V ∆τ |qj〉. (9.15)

By letting the kinetic and potential parts act to left and right respectively one can express the
expectation values in terms of integrals containing H(pj , qj), which is a hamiltonian function in which
the operators are replaced by real-numbered variables. Combining the two terms gives

〈qj+1, tj+1|qj , tj〉 =

∫
dpj

2π
ei pj(qj+1−qj) e−i H(pj ,qj)∆τ

=

∫
dpj

2π
ei pj(qj+1−qj)−i ∆τH(pj ,qj)

=

∫
dpj

2π
exp (i∆τ [pj q̇j −H(pj, qj)]) , (9.16)

1For this, use the Campbell-Baker-Hausdorff formula,

eA eB = eC with C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[[A,B], B] + . . . (9.14)
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or for the full interval

〈q′, t′|q, t〉 =

∫
∏

τ

dq(τ) dp(τ)

2π
exp



i

t′∑

t

∆τ [pq̇ −H(p, q)]





=

∫

DqD
p

2π
exp

(

i

∫ t′

t

dτ [pq̇ −H(p, q)]

)

, (9.17)

where Dq and Dp indicate functional integrals. The importance of this expression is that it expresses
a quantum mechanical amplitude as a path integral with in the integrand a classical hamiltonian
function.

Before proceeding we also give the straightforward extension to more than one degree of freedom,

〈q′1, . . . , q′N , t′|q1, . . . , qN , t〉 (9.18)

=

∫
(

N∏

n=1

Dqn D
pn

2π

)

exp

(

i

∫ t′

t

dτ

[
∑

n

pnq̇n −H(p1, q1, . . . , pN , qN )

])

.

9.2 Functional integrals

In this section I want to give a fairly heuristic discussion of functional integrals. What one is after is
the meaning of ∫

Dα F [α], (9.19)

where F [α] is a functional that represents a mapping from a function space F of (real) functions α
(R → R) into the real numbers R, i.e. F [α] ∈ R. Examples are

F1[α] = α ≡
∫

dx α(x),

F2[α] = α2 ≡
∫

dx α2(x),

F3[α, β] = αK β ≡
∫

dx dy α(x)K(x, y)β(y),

F4[α] = exp

(

−1

2
α2

)

≡ exp

(

−1

2

∫

dx α2(x)

)

,

F5[α, α
∗] = exp (−α∗K α) ≡ exp

(

−
∫

dx dy α∗(x)K(x, y)α(y)

)

.

The kernels K(x, y) in the above examples can be (hermitean) operators acting on the functions,
including differential operators, etc.

Two working approaches for functional integration are the following:

(i) the heuristic division of the space on which α acts into cells, i.e. α(x) → αx and F [α] = F (αx)
changes into a multivariable function, while

∫

Dα F [α] =

∫
(
∏

x

dαx

N

)

F (αx) (9.20)

becomes a multidimensional integral.
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(ii) Write α in terms of a sum of orthonormal basis functions, α(x) =
∑

n αn fn and K(x, y) =
∑

m,n fm(x)Kmn f
∗
n(y) and consider F [α] = F (αn) as a multivariable function, with

∫

Dα F [α] =

∫
(
∏

n

dαn

N

)

F (αn) (9.21)

again a multidimensional integral. In both cases N is an appropriately choosen normalization
constant in such a way that the integral is finite. Note that procedure (i) is an example of the
more general procedure under (ii).

Consider the gaussian functional as an example. Using method 1 one writes

∫

Dα exp

(

−1

2
α2

)

=

∫
(
∏

x

dαx

N

)

exp

(

−1

2

∑

x

∆xα2
x

)

=
∏

x

∫
dαx

N
exp

(

−1

2
∆xα2

x

)

=
∏

x

(

1

N

√

2π

∆x

)

≡ 1. (9.22)

The last equality is obtained by defining the right measure (normalization N) in the integration.
Physical answers will usually come out as the ratio of two functional integrals and are thus independent
of the chosen measure. Using the second method and expanding in a basis set of functions one obtains
for the (real) gaussian functional

∫

Dα exp

(

−1

2
α2

)

=

∫
(
∏

n

dαn

N

)

exp

(

−1

2

∑

m,n

αmαn

∫

dx fm(x)fn(x)

)

=
∏

n

∫
dαn

N
exp

(

−1

2
α2

n

)

=
∏

n

(√
2π

N

)

≡ 1. (9.23)

Having defined the Gaussian integral, the following integrals can be derived for a real symmetric or
complex hermitean kernel K,

∫

Dα exp

(

−1

2
αK α

)

=
1√

detK
(α real-valued) (9.24)

∫

DαDα∗ exp (−α∗K α) =
1

detK
(α complex-valued) (9.25)

(see Exercises). A useful property of functional integration is the translation invariance,

∫

Dα F [α] =

∫

Dα F [α+ β]. (9.26)

As an important application of translation invariance we mention the identities

∫

Dα exp

(

−1

2
α2 − ωα

)

= exp

(
1

2
ω2

)

, (9.27)

∫

DαDα∗ exp (−α∗α− α∗ω − ω∗α) = exp (ω∗ω) , (9.28)
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Functional differentiation is defined as
[

δ

δα(x)
, α(y)

]

= δ(x− y), (9.29)

or in discretized form

δ

δα(x)
−→ 1

∆x

∂

∂αx
with

[
∂

∂αx
, αy

]

= δxy, (9.30)

δ

δα(x)
−→

∑

n

f∗n(x)
∂

∂αn
with

[
∂

∂αm
, αn

]

= δmn. (9.31)

Note that δ(x− y) =
∑

n fn(x) f∗n(y). Examples of functional differentiation are

δ

δα(x)
α =

δ

δα(x)

∫

dy α(y) =

∫

dy δ(x− y) = 1, (9.32)

δ

δα(x)
αKβ =

∫

dy K(x, y)β(y) (9.33)

δ

δα(x)
exp

(

−1

2
α2

)

= −α(x) exp

(

−1

2
α2

)

, (9.34)

δ

δα(x)
exp (−αβ) = −β(x) exp (−αβ) . (9.35)

For applications to fermion fields, we need to consider Grassmann-valued functions involving an-
ticommuting Grassmann variables, i.e. θη = −ηθ, θ2 = 0. In principle the definitions of functionals is
the same, e.g. the Gaussian-type functionals,

F [θ, θ∗] = exp (−θ∗ θ) ≡ exp

(

−
∫

dx θ∗(x) θ(x)

)

,

F [θ, θ∗] = exp (−θ∗K θ) ≡ exp

(

−
∫

dx dy θ∗(x)K(x, y) θ(y)

)

.

Integration for Grassmann variables is defined as
∫

dθ 1 = 0 and

∫

dθ θ = 1. (9.36)

This gives for the Gaussian functional integral after expanding θ(x) =
∑

n θnfn(x) where the coeffi-
cients θn are Grassmann variables the result

∫

Dθ∗Dθ exp (−θ∗ θ) =

∫
(
∏

n

dθ∗n dθn

)

exp

(

−
∑

n

θ∗n θn

)

=
∏

n

∫

dθ∗n dθn exp (−θ∗n θn)

=
∏

n

∫

dθ∗n dθn (1 − θ∗n θn) = 1. (9.37)

We note that from the first to the second line one needs to realize that a pair of different Grassmann
variables behaves as ordinary complex variables. In the expansion of the exponential (from second to
third line), however, products of the same pair appear, which vanish. It is now easy to check that

∫

Dθ∗Dθ exp (−θ∗K θ) = detK. (9.38)
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Functional differentiation of Grassmann-valued functions is given by
{

δ

δθ(x)
, θ(y)

}

= δ(x− y), (9.39)

leading for two Grassmann variables θ̄ and η to e.g.

δ

δη(x)
e−θ∗η = θ∗(x) = θ∗(x) e−θ∗η, (9.40)

δ

δη∗(x)
e−η∗θ = −θ(x) = −θ(x) e−η∗θ. (9.41)

The translation invariance property and the ’Fourier transform’ identity of Gaussian integrals, remains
in essence the same, e.g.

∫

Dθ∗Dθ exp (−θ∗θ − θ∗η − η∗θ) = exp (η∗η) . (9.42)

9.3 Time ordered products of operators and path integrals

As an example of working with functional integrals consider the expression for K(q′, t′; q, t) for a
lagrangian L(q, q̇) = 1

2 q̇
2 − V (q) and the corresponding hamiltonian H(p, q) = 1

2p
2 + V (q). The

expression

〈q′, t′|q, t〉 =

∫

DqD
p

2π
exp

(

i

∫ t′

t

dτ

[

pq̇ − 1

2
p2 − V (q)

])

, (9.43)

can be rewritten after rewriting the integrand as − 1
2 (p − q̇)2 + 1

2 q̇
2 − V (q) = − 1

2 (p − q̇)2 + L(q, q̇).
The result is

〈q′, t′|q, t〉 =

∫

Dq exp

(

i

∫ t′

t

dτ L(q, q̇)

)

, (9.44)

which was considered the starting point for path integral quantization by Feynman.

Note, however, that not always the Dp integration can be removed that easily. A counter example
is the lagrangian L(q, q̇) = 1

2
q̇2 f(q) for which H(p, q) = p2/[2f(q)]. As discussed for instance in

Ryder the Dp integration can still be removed but one ends up with an effective lagrangian in the
path integral

〈q′, t′|q, t〉 =

Z

Dq exp

 

i

Z t′

t

dτ Leff(q, q̇)

!

, (9.45)

which is of the form Leff (q, q̇) = L(q, q̇) − i
2
δ(0) ln f(q).

Making use of path integrals it is straightforward to calculate the expectation value 〈q′, t′|Q(s)|q, t〉
of an operator Q(s) if t ≤ s ≤ t′. By sandwiching the time s in one of the infinitesimal intervals,
tj ≤ s ≤ tj+1, we have

〈q′, t′|Q(s)|q, t〉 =

∫
∏

i

dqi 〈q′, t′|qn, tn〉 . . .

×〈qj+1, tj+1|Q(s)|qj , tj〉 . . . 〈q1, t1|q, t〉. (9.46)

Using Q(s)|qj , tj〉 = q(s)|qj , tj〉, one gets

〈q′, t′|Q(s)|q, t〉 =

∫

DqD
p

2π
q(s) exp

(

i

∫ t′

t

dτ [pq̇ −H(p, q)]

)

(9.47)

=

∫

Dq q(s) exp

(

i

∫ t′

t

dτ L(q, q̇)

)

. (9.48)
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Defining the time ordered product of operators

T Q(t1) . . .Q(tn) ≡ Q(ti1) . . . Q(tin
), (9.49)

where ti1 ≥ · · · ≥ tin
is a permutation of {t1, . . . , tn}, one has

〈q′, t′|T Q(t1) . . . Q(tn)|q, t〉

=

∫

Dq q(ti1) . . . q(tin
) exp

(

i

∫ t′

t

dτ L(q, q̇)

)

. (9.50)

Thus not only the quantum mechanical overlap of states can be calculated via a classical path integral,
but also expectation of operators, at least if they appear time-ordered.

9.4 An application: time-dependent perturbation theory

From quantum mechanics one should be familiar with the procedure of time-dependent perturbation
theory, the lowest order leading to Fermi’s golden rule. One works in the socalled interaction picture,
in which a separation is made of the hamiltonian H = H0 +HI . The fast time evolution is described
in H0 while HI is considered as a perturbation. The interaction picture is defined as

UI(t
′, t) ≡ e−i H0(t′−t), (9.51)

ψI(t) ≡ ei H0tψS(t) = ei H0t e−i HtψS(0) = e−iHI tψS(0), (9.52)

AI(t) ≡ ei H0tAS(t)e−i H0t = ei H0tASe
−i H0t, (9.53)

i.e. if HI = 0 it is the Heisenberg picture and the evolution 〈q′, t′|q, t〉 is described through the
operators by H0. The evolution of the (interaction) states is described only by HI ,

i
∂

∂t
ψI = HI(t)ψI(t), (9.54)

i
∂

∂t
AI = [AI , H0], (9.55)

and

ψI(t
′) = U(t′, t)ψI(t), (9.56)

i
∂

∂t
U(t′, t) = HI U(t′, t) (9.57)

with U(t, t) = 1 or

U(t′, t) = 1 − i

∫ t′

t

dτ HI(τ)U(τ, t), (9.58)

which can be solved by iteration, i.e. writing

U(t′, t) =

∞∑

n=0

U (n)(t′, t), (9.59)

one has

U (0)(t′, t) = 1

U (1)(t′, t) = 1 − i

∫ t′

t

dτ HI(τ)U
(0)(τ, t) − U (0)(t′, t)

= (−i)
∫ t′

t

dτ HI(τ)
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U (2)(t′, t) = 1 − i

∫ t′

t

dτ HI(τ)
[

U (0)(τ, t) + U (1)(τ, t)
]

−
[

U (0)(t′, t) + U (1)(t′, t)
]

= (−i)
∫ t′

t

dτ HI(τ)U
(1)(τ, t)

...

U (n)(t′, t) = (−i)
∫ t′

t

dτ HI(τ)U
(n−1)(τ, t)

= (−i)n

∫ t′

t

dτ1

∫ τ1

t

dτ2 . . .

∫ τn−1

t

dτn HI(τ1) . . . HI(τn)

=
(−i)n

n!

∫ t′

t

dτ1

∫ t′

t

dτ2 . . .

∫ t′

t

dτn T HI(τ1) . . . HI(τn). (9.60)

The last equality is illustrated for the second term U (2) in the following. The integration

Z t′

t

dτ1

Z τ1

t

dτ2 HI(τ1)HI(τ2)

can also be performed by first integrating over τ2 but changing the integration limits (check!).
Thus we can write the integration as the sum of the two expressions (multiplying with 1/2),

=
1

2

Z t′

t

dτ1

Z τ1

t

dτ2 HI(τ1)HI(τ2)

+
1

2

Z t′

t

dτ2

Z t′

τ2

dτ1 HI(τ1)HI(τ2),

Now the integration can be extended by adding theta functions,

=
1

2

Z t′

t

dτ1

Z t′

t

dτ2 HI(τ1)HI(τ2)θ(τ1 − τ2)

+
1

2

Z t′

t

dτ2

Z t′

t

dτ1 HI(τ1)HI(τ2)θ(τ1 − τ2),

which can be rewritten (by interchanging in the second term the names of the integration variables)

=
1

2

Z t′

t

dτ1

Z t′

t

dτ2 [HI(τ1)HI(τ2)θ(τ1 − τ2) +HI(τ2)HI(τ1)θ(τ2 − τ1)] ,

the desired result.

The time evolution operator, therefore, can be written as

U(t′, t) =
∞∑

n=0

(−i)n

n!

∫ t′

t

dτ1

∫ t′

t

dτ2 . . .

∫ t′

t

dτn T HI(τ1) . . . HI(τn)

≡ T exp

(

−i
∫ t′

t

dτ HI(τ)

)

. (9.61)
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experiment

L + J q

detectorsource

T t t’ T’

LL

Figure 9.1: Physical picture of vacuum to vacuum amplitude in presence of a source term

This is not a surprising result. We can again rewrite the time-ordered products as functional integrals
as derived in the previous section,

〈q′, t′|q, t〉V = 〈q′, t′|T exp

(

−i
∫ t′

t

dτ HI(Q(τ))

)

|q, t〉V =0

=

∫

DqD
p

2π
exp

(

−i
∫ t′

t

dτ HI(q)

)

exp

(

i

∫ t′

t

dτ [pq̇ −H0(p, q)]

)

=

∫

DqD
p

2π
exp

(

i

∫ t′

t

dτ [pq̇ −H(p, q)]

)

. (9.62)

The combination of exponentials in the last step is allowed because we are simply dealing with classical
quantities (not operators!).

9.5 The generating functional for time ordered products

By introducing a source-term, L(q, q̇) → L(q, q̇) + J(t) · q, it is possible to switch on an interaction,
physically pictured as, say, the creation of an electron (think of a radio-tube, making the electron) and
the absorption of an electron (think of a detector). Before and after these processes there is only the
vacuum or ground-state |0〉. Consider, furthermore, a set |n〉 of physical eigenstates. The Heisenberg
state |q, t〉 is related to the Schrödinger state |q〉 by |q, t〉 = ei Ht|q〉, i.e. for the physical states

〈q, t|n〉 = 〈q|n〉 e−iEnt (9.63)

with 〈q|n〉 the time-independent wave function, for example

〈x|n〉 = φn(x) = ei knx for plane waves,

〈x|n〉 = e−ω2 x2/2 for g.s. harmonic oscillator.

Considering the source to be present between times t and t′, which in turn are embedded between an
early time T and a future time T ′, i.e. T < t < t′ < T ′, one has

〈q′, t′|q, t〉J =

∫

Dq exp

(

i

∫ t′

t

dτ [L(q, q̇) + J(τ)q]

)

, (9.64)

〈Q′, T ′|Q, T 〉J =

∫

dq′ dq〈Q′, T ′|q′, t′〉 〈q′, t′|q, t〉J 〈q, t|Q, T 〉, (9.65)

with
〈q, t|Q, T 〉 =

∑

n

〈q, t|n〉 〈n|Q, T 〉 =
∑

n

φn(q, t)φ∗n(Q) e+i EnT . (9.66)
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t

T t t’ T’

Figure 9.2: Analytic continuation of boundaries T and T ′

We can project out the groundstate by an analytic continuation in the time, T → i∞ and T ′ → −i∞,
in which case eiEnT → e−En·∞ and the term eiE0T is dominant, thus

lim
T→i∞

〈q, t|Q, T 〉
eiE0T φ∗0(Q)

= φ0(q, t).

We define the generating functional Z[J ] as

Z[J ] = lim
T ′ → −i∞
T → i∞

〈Q′, T ′|Q, T 〉J
e−i E0(T ′−T )φ0(Q′)φ∗0(Q)

(9.67)

=

∫

dq′ dq φ∗0(q
′, t′)〈q′, t′|q, t〉J φ0(q, t) (9.68)

= 〈0out|0in〉J . (9.69)

The factor that has been divided out in the first line of this equation is a numerical factor depending
on the boundaries of the space-time volume (T and T ′). The generating functional precisely represents
the vacuum to vacuum amplitude from initial (’in’) to final(’out’) situation in the presence of a source.
The importance of Z[J ] is that the time ordered product of operators can be obtained from it. Since
we have (neglecting multiplicative factors),

Z[J ] = lim
T ′ → −i∞
T → i∞

∫

Dq exp

(

i

∫ T ′

T

dτ

[

L

(

q,
dq

dτ

)

+ J(τ)q(τ)

])

, (9.70)

one immediately finds

δnZ[J ]

δJ(t1) . . . δJ(tn)

∣
∣
∣
∣
J=0

= (i)n 〈0|T Q(t1) . . . Q(tn)|0〉, (9.71)

hence the name generating functional.

9.6 Euclidean formulation

The above expression (Eq. 9.70) for the generating functional is in fact ill-defined. Better is the use
of imaginary time t = −it̃, such that

t→ i∞ ↔ t̃→ −∞,

t′ → −i∞ ↔ t̃′ → ∞.
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In terms of the imaginary time we can write the Euclidean generating functional,

ZE [J ] =

∫

Dq exp

(∫ ∞

−∞
dτ̃

[

L

(

q, i
dq

dτ̃

)

+ J(τ̃ )q(τ̃ )

])

(9.72)

=

∫

Dq exp

(

−
∫ ∞

−∞
dτ̃

[

LE

(

q,
dq

dτ̃

)

− J(τ̃ )q(τ̃ )

])

, (9.73)

where

LE

(

q,
dq

dt̃

)

≡ −L
(

q, i
dq

dt̃

)

, (9.74)

e.g. when

L

(

q,
dq

dt

)

=
1

2

(
dq

dt

)2

− V (q) (9.75)

= −1

2

(
dq

dt̃

)2

− V (q),

LE

(

q,
dq

dt̃

)

=
1

2

(
dq

dt̃

)2

+ V (q), (9.76)

which is a positive definite quantity, ensuring convergence for the functional integral ZE [J ]. As
discussed in the previous section the interesting quantities are obtained from functional differentiation
with respect to the sources. The differentiations in Z[J ] and ZE[J ] are related,

1

Z[J ]

δnZ[J ]

δJ(t1) . . . δJ(tn)

∣
∣
∣
∣
J=0

= (i)n 1

ZE [J ]

δnZE [J ]

δJ(t̃1) . . . δJ(t̃n)

∣
∣
∣
∣ J = 0
t̃ = it

, (9.77)

where the expressions have been divided by Z[J ] and ZE [J ] in order to get rid of dependence on
multiplicative factors.

Exercises

Exercise 9.1

Convince yourself by choosing an appropriate (orthonormal) set of functions that

∫

Dα exp

(

−1

2
αK α

)

=
1√

detK
,

for real-valued functions, ∫

DαDα∗ exp (−α∗K α) =
1

detK
.

for complex-valued functions and
∫

Dθ∗Dθ exp (−θ∗K θ) = detK.

for Grassmann valued functions. In all of these cases the determinant of the (hermitean) operator
K is defined as detK ≡ ∏

pKp, where Kp are the eigenvalues of the matrix Kmn in K(x, y) =
∑

m,n fm(x)Kmn f
∗
n(y).

Exercise 9.2

Check the examples of functional derivation for real-, complex- and Grassmann-valued functions.
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Exercise 9.3

Prove the following relations

∫

Dα exp

(

−1

2
αK α− αω

)

=
1√

detK
exp

(
1

2
ωK−1 ω

)

, (9.78)

∫

Dα∗Dα exp (−α∗K α− α∗ω − ω∗α) =
1

detK
exp

(
ω∗K−1 ω

)
, (9.79)

∫

Dθ∗Dθ exp (−θ∗K θ − θ∗η − η∗θ) = detK exp
(
η∗K−1 η

)
, (9.80)

where
∫
dy K(x, y)K−1(y, z) = δ(x − z).



Chapter 10

Feynman diagrams for scattering
amplitudes

10.1 Generating functionals for free scalar fields

The generating functional for quantum fields is a generalization of the results in the previous section
to a system with more degrees of freedom, i.e. φ(x, t) is considered as a set of quantum operators
φx(t) in the Heisenberg picture and

〈φ′;x′, t′|φ;x, t〉 =

∫

DφDΠ exp

(

i

∫ t′

t

dτ d3x
[

Π(x)φ̇(x) − H (φ,Π)
]
)

=

∫

Dφ exp

(

i

∫ σ′

σ

d4x L (x)

)

(10.1)

and

Z[J ] = lim
T → i∞
T ′ → −i∞

∫

Dφ exp

(

i

∫ T ′

T

d4x [L (φ, ∂µφ) + Jφ]

)

(10.2)

=

∫

Dφ exp

(

−
∫ ∞

−∞
d4xE [LE(φ, ∂µφ) − Jφ]

)

(10.3)

The Euclidean formulation is as before, implying at the level of four vectors in coordinate and mo-
mentum space (when k · x ≡ kE · xE) for instance

x4 = i x0 = i t k4 = −i k0

x · x = (x0)2 −∑3
i=1(x

i)2 = −∑4
µ=1(x

µ)2 k · k = (k0)2 −∑3
i=1(k

i)2 = −∑4
µ=1(k

µ)2

d4xE = i d4x d4kE = −i d4k

L = 1
2 ∂µφ∂

µφ− 1
2 M

2 φ2 LE = 1
2 (∂µ

Eφ)2 + 1
2 M

2 φ2

Furthermore we find the n-point Green functions

〈0|T φ(x1) . . . φ(xn)|0〉 = (−i)n δnZ[J ]

δJ(x1) . . . δJ(xn)

∣
∣
∣
∣
J=0

≡ G(n)(x1, . . . , xn), (10.4)

85
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for which we introduce the picture

G(n)(x1, . . . , xn) =

x1

x

x

2

n 

.

These Green functions appear in the expansion

Z[J ] =
∑

n

in

n!

∫

d4x1 . . . d
4xn G(n)(x1, . . . , xn)J(x1) . . . J(xn). (10.5)

Z0[J ] for the free scalar field

For the (free) scalar field lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
M2 φ2, (10.6)

the generating functional is (using
←
∂µ = −

→
∂µ) given by

Z0[J ] =

∫

Dφ exp




−i

∫

d4x






1

2
φ (∂µ∂

µ +M2)
︸ ︷︷ ︸

K

φ− Jφ









 (10.7)

where Kxy = (∂µ∂
µ +M2) δ4(x− y). As discussed in the previous section (exercise 9.3) one finds

Z0[J ] = exp

(

−1

2
i

∫

d4xd4y J(x)∆F (x− y)J(y)

)

≡ exp (iW0[J ]) , (10.8)

where we made the choice Z0[0] = 1 and
(
∂µ∂

µ +M2
)
∆F (x− y) = −δ4(x− y), (10.9)

i.e. ∆F (the socalled Feynman propagator) is the Green’s function of the Klein-Gordon equation.
Furthermore, with Z0[0] = 1, one immediately sees that

i∆F (x1 − x2) =
(−i)2
Z0[0]

δ2Z0[J ]

δJ(x1) δJ(x2)

∣
∣
∣
∣
J=0

= G
(2)
0 (x1 − x2) ≡ x1

x2 (10.10)

In order to determine ∆F , consider the general solution of
(
∂µ∂

µ +M2
)
∆(x) = −δ4(x),

which can be written as

∆(x) =

∫
d4k

(2π)4
e−i k·x ∆̃(k) (10.11)

with (k2 −M2)∆̃(k) = 1 or

∆̃(k) =
1

k2 −M2
=

1

(k0)2 − k2 −M2
=

1

(k0)2 − E2
. (10.12)

Depending on the path choosen in the complex k0 plane (see exercise 7.4) one distinguishes
the retarded Green’s function

∆R(x) =

∫
d4k

(2π)4
e−i k·x

(k0 + iǫ)2 − E2
, (10.13)
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satisfying ∆R(x, t) = 0 for t < 0,
the advanced Green’s function

∆A(x) =

∫
d4k

(2π)4
e−i k·x

(k0 − iǫ)2 − E2
, (10.14)

satisfying ∆A(x, t) = 0 for t > 0,
the causal Green’s function

∆C(x) =

∫
d4k

(2π)4
e−i k·x

(k0)2 − E2 + iǫ
=

∫
d4k

(2π)4
e−i k·x

k2 −M2 + iǫ
, (10.15)

and finally the Green’s function

∆(x) = PV

∫
d4k

(2π)4
e−i k·x

k2 −M2
. (10.16)

They are solutions of the inhomogeneous equation. The solution of the homogeneous equation
(
∂µ∂

µ +M2
)
∆(x) = 0 can also be written as an integral in k-space,

∆(x) = −
∫

C

d4k

(2π)4
e−i k·x

k2 −M2
, (10.17)

where C is a closed contour in the complex k0-plane. The contours for

i∆(x) = [φ(x), φ(0)] = i∆+(x) + i∆−(x)

i∆+(x) = [φ+(x), φ−(0)] =

∫
d3k

(2π)3 2E
e−i k·x

i∆−(x) = [φ−(x), φ+(0)] =

∫
d3k

(2π)3 2E
e−i k·x

are also shown in exercise (7.4). It is straightforward (closing contours in the appropriate half of the
complex plane) to prove for instance that

i∆C(x) = θ(x0) i∆+(x) − θ(−x0) i∆−(x). (10.18)

Thus we see various solutions. In order to see which is the appropriate Green’s function to be
used in the generating functional Z0[J ] we will take two routes. The first possibility is to consider the
well-defined Euclidean formulation, the second is to explicitly consider 〈0|T φ(x1)φ(x2)|0〉.

• Firstly, in the (well-defined) Euclidean formulation starting with LE = 1
2 (∂µ

Eφ)2 + 1
2 M

2 φ2 -
Jφ with the equation of motion

(
(∂µ

E)2 −M2
)
φ(x) = −J(x), the generating functional can be

written

Z0[J ] =

∫

Dφ exp

(∫

d4xE

[
1

2
φ
(
∂µ

E∂
µ
E −M2

)
φ+ Jφ

])

(10.19)

= exp

(

−1

2

∫

d4xE d
4yE J(x) (−i∆F (x − y))J(y)

)

, (10.20)

where
(
(∂µ

E)2 −M2
)
(i∆F (x− y)) = −δ4(x− y) (10.21)

or (see fig. 10.1 for countours)

∆F (x) = −i
∫ k0

E=∞

k0
E=−∞

d4kE

(2π)4
e−i kE ·xE

k2
E +M2

(10.22)

=

∫ k0=i∞

k0=−i∞

d4k

(2π)4
e−i k·x

k2 −M2
, (10.23)

where the latter contour can be deformed to the contour for ∆C , i.e. ∆F = ∆C .
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Figure 10.1: Contour in the k0 plane for the Feynman propagator in Euclidean and Minkowski space

• As the second possibility, we use the fact that i∆F (x− y) = G(2)(x− y) = 〈0|T φ(x)φ(y)|0〉 to
calculate ∆F via the time-ordered product. We find (see also section 7.3)

i∆F (x− y)

= 〈0|T φ(x)φ(y)|0〉
= θ(x0 − y0)〈0|φ(x)φ(y)|0〉 + θ(y0 − x0)〈0|φ(y)φ(x)|0〉
= θ(x0 − y0)〈0|φ+(x)φ−(y)|0〉 + θ(y0 − x0)〈0|φ+(y)φ−(x)|0〉
= θ(x0 − y0)〈0|[φ+(x), φ−(y)]|0〉 − θ(y0 − x0)〈0|[φ−(x), φ+(y)]|0〉
= θ(x0 − y0) i∆+(x− y) − θ(y0 − x0) i∆−(x− y)

= i∆C(x− y), (10.24)

the same result as above.

Knowing the explicit form of Z0[J ] it is straightforward to calculate the 4-points Green’s function.

It should be clear that G
(4)
0 can be expressed in terms of G

(2)
0 = i∆F , because this is the only quantity

entering Z0[J ]. Neglecting multiplicative factors or equivalently assuming that Z0[0] = 1, we have

G
(4)
0 (x1, x2, x3, x4) = 〈0|T φ(x1)φ(x2)φ(x3)φ(x4)|0〉

= (−i)4 δ4

δJ(x1) . . . δJ(x4)
exp

(

−1

2
i

∫

J ∆F J

)∣
∣
∣
∣
J=0

= − [∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4) + ∆F (x1 − x4)∆F (x2 − x3)] ,

(10.25)

or diagrammatically

x1

x2

x3

x4

= + +
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10.2 Generating functionals for interacting scalar fields

When interactions are present, i.e. L (φ) = L0(φ)+ LI(φ), the generating functional can be written,

Z[J ] =

∫

Dφ exp

(

i

∫

d4x [L0(φ) + LI(φ) + Jφ]

)

(10.26)

= exp

(

i

∫

d4zLI

(
1

i

δ

δJ(z)

))

∫

Dφ exp

(

i

∫

d4x [L0(φ) + Jφ]

)

(10.27)

= exp

(

i

∫

d4zLI

(
1

i

δ

δJ(z)

))

exp

(

−1

2
i

∫

d4xd4y J(x)∆F (x− y)J(y)

)

(10.28)

= exp

(
1

2

∫

d4xd4y
δ

δφ(x)
i∆F (x− y)

δ

δφ(y)

)

exp

(

i

∫

d4z [LI(φ) + J(z)φ(z)]

)∣
∣
∣
∣
φ=0

. (10.29)

This expression will be the one from which Feynman rules will be derived, with propagators (i∆F )
being connected to vertices (iLI) according to the above expression for the functional Z[J ].

Consider as an example the interaction

LI(φ) = − g

4!
φ4

in the scalar field theory discussed sofar. To zeroth order in the coupling one has

Z(g0)[J ] = Z0[J ] = exp

(

−1

2
i

∫

J ∆F J

)

, (10.30)

and in zeroth order

G(0,g0) = G
(0)
0 = 1, (10.31)

G(2,g0)(x1, x2) = G
(2)
0 (x1, x2) = i∆F (x1 − x2) = x x21 (10.32)

G(4,g0)(x1, x2, x3, x4) = G
(4)
0 (x1, x2, x3, x4) = + + (10.33)

To first order in g one has

Z(g1)[J ] = i

∫

d4zLI

(
1

i

δ

δJ(z)

)

exp

(

−1

2
i

∫

J ∆F J

)

= −i g
4!

∫

d4z

{

−3 ∆2
F (0) + 6i∆F (0)

[∫

d4x∆F (z − x)J(x)

]2

+

[∫

d4x∆F (z − x)J(x)

]4
}

exp

(

−1

2
i

∫

J ∆F J

)

. (10.34)

Introducing a vertex point to which four propagators are connected.

z
≡ −i g

∫

d4z (10.35)
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one has

Z(g1)[J ] =

(

1

8
− 1

4 J J
+

1

24

J

J

J

J

)

Z0[J ], (10.36)

from which one obtains

G(0,g1) =
1

8 z , (10.37)

G(2,g1)(x1, x2) =
1

8
z

x x21
+

1

2 zx x21
, (10.38)

The result for the 4-points Green’s function is left as an exercise.

Connected Green’s functions

We have now seen the Green’s functions as the quantities appearing in the expansion of the generating
functional Z[J ],

Z[J ] =
∑

n

in

n!

∫

d4x1 . . . d
4xn G(n)(x1, . . . , xn)J(x1) . . . J(xn). (10.39)

We have calculated the function up to first order in the coupling constant for φ4-theroy. In the free
case we have seen that the exponent of Z[J ] contained all essential information. Diagrammatically
this exponent only contained the two-point function, which also was the only Green’s function for
which the diagram was connected, i.e. did not contain parts that could be written as products of
simpler Green’s functions. This remains also true for the interacting case. To see this write

Z[J ] = exp (iW [J ]) or iW [J ] = lnZ[J ], (10.40)

with (by definition) the expansion

W [J ] =
∑

n

in−1

n!

∫

d4x1 . . . d
4xn G(n)

c (x1, . . . , xn)J(x1) . . . J(xn) (10.41)

in terms of socalled connected Green’s functions,

G(n)
c (x1, . . . , xn) = (−i)n−1 δnW [J ]

δJ(x1) . . . δJ(xn)

∣
∣
∣
∣
J=0

, (10.42)

which are denoted

G(n)
c (x1, . . . , xn) =

x1

x

x

2

n 

Specific examples are

G(0)
c = (vacuum bubble)

G(1)
c (x1) = (tadpole)

G(2)
c (x1, x2) = (connected propagator)
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To see that Z[J ] = exp(iW [J ]) contains all non-connected diagrams can be performed inductively,
but is easily illustrated by writing down the first few terms. If

iW [J ] = + i

∫

d4x1

{ }

+
i2

2!

∫

d4x1 d
4x2

{ }

,

then

exp(iW [J ]) = 1 + iW [J ] +
(iW [J ])2

2!
+

(iW [J ])3

3!
+ . . .

= 1

+ + i

∫

d4x1

{ }

+
i2

2!

∫

d4x1 d
4x2

{ }

+
1

2!
+ i

∫

d4x1













+
i2

2!

∫

d4x1 d
4x2







+







+
1

3!
+ i

∫

d4x1







1
2!







+
i2

2!

∫

d4x1 d
4x2







1
2!

+







+ . . .

Notes:
(i) In G(n) the connected Green functions G

(n)
c appear with particular combinatorial factors (accounted

for in the definition of Feynman rules to be discussed later).
(ii) Note that Z[0] = exp(iW [0]) appears as a multiplicative factor, in the expansion of which all
vacuum blobs are contained,

Z[0] = 1 + +
1

2!
+ . . . .

These can be divided out. In the expansion of Z[J ]/Z[0] one (by definition) has the socalled source

connected Green’s functions G
(n)
sc .

(iii) G
(1)
sc = G

(1)
c .

(iv) If
δZ[J ]

δJ(x)

∣
∣
∣
∣
J=0

= i 〈0|φ(x)|0〉 = 0,
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i.e. the vacuum expectation value of the field φ(x) is zero, implying the absence of tadpoles, then

G
(n)
sc = G

(n)
c for n ≤ 3.

For the free scalar theory, considered explicitly, we have

W0[J ] = −1

2

∫

d4xd4y J(x)∆F (x− y)J(y), (10.43)

implying as expected as the only nonzero connected Green’s function

G(2)
c (x1 − x2) = (−i) δ2W [J ]

δJ(x1) δJ(x2)

∣
∣
∣
∣
J=0

= G
(2)
0 (x1 − x2) = i∆F (x1 − x2). (10.44)

For the interacting theory, one finds for the connected 4-point Green’s function at order g,

G(4,g1)
c (x1, x2, x3, x4) =

z

x

x

x

x

3

42

1

(10.45)

as the only surviving diagram (see exercises).

10.3 Interactions and the S-matrix

The S-matrix

The S-matrix transforms initial state free particle states (in-states) |α; in〉 = |p1, . . . pn; in〉 into final
state particle states (out-states) |β; out〉 = |p′1, . . . p′m; out〉 (suppressing except momenta all other
quantum numbers),

Sβα ≡ 〈β; out|α; in〉 ⇔ 〈β; in|S = 〈β; out|
⇔ |α; in〉 = S|α; out〉. (10.46)

The properties of the S-matrix are
(1) The vacuum is invariant or |S00| = 1.
Proof: 〈0; in|S = 〈0; out| = eiϕ0〈0; in| (choose ϕ0 = 0).
(2) The one-particle state is invariant (conservation of energy and momentum; translation invariance),
〈p; in|S|p′; in〉 = 〈p; out|p′; in〉 = 〈p; in|p′; in〉 = 〈p; out|p′; out〉 = 〈p|p′〉.
(3) S is unitary (it conserves the scalar product from initial to final state).
Proof: 〈α; in|S = 〈α; out| and S†|α; in〉 = |α; out〉,
thus 〈β; in|SS†|α; in〉 = 〈β; out|α; out〉 = δαβ ↔ SS† = 1.

Next, this will be translated to the action on fields. Also for free field (Heisenberg) operators a
distinction is made between φin and φout. In line with the consideration of the generating functional
representing the vacuum to vacuum amplitude we consider fields φin, φout and the interpolating field
φ(x),

t = −∞ t = +∞
φin(x) φ(x) φout(x)

where φin and φout transform under the Poincaré group as scalar fields and satisfy the homogeneous
Klein-Gordon equation with the physical mass M , e.g.

(
∂µ∂

µ +M2
)
φin(x) = 0, (10.47)
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while φ satisfies the inhomogeneous Klein-Gordon equation with the bare mass M0 (this is the mass
appearing in the lagrangian L0),

(
∂µ∂

µ +M2
0

)
φ(x) = J(x). (10.48)

The fact that φin and φout satisfy the homogeneous Klein-Gordon equation with the physical mass
M implies that they create particles and antiparticles as discussed, e.g.

φin(x) =

∫
d3k

(2π)3 2E

[
a(k) fk(x) + a†(k) f∗k (x)

]
. (10.49)

The field φ can be expressed in φin/out using retarded or advanced Green’s functions,

(
∂µ∂

µ +M2
)
φ(x) = J(x) + (M2 −M2

0 )φ(x) = J̃(x) (10.50)

φ(x) =
√
Zφin(x) −

∫

d4y∆R(x − y) J̃(y)

=
√
Zφin(x) −

∫

d4y d4z∆R(x− y)K(y, z)φ(z) (10.51)

φ(x) =
√
Zφout(x) −

∫

d4y d4z∆A(x− y)K(y, z)φ(z), (10.52)

where Z is a constant, which in a later stage (renormalization) will become more important.
Although the above, as it stands, implies the strong (operator) convergence φ(x) →

√
Zφin(x), this

can actually not be used as it would imply [φ(x), φ(y)] = Z [φin(x), φin(y)] = iZ∆(x− y), a causality
condition that can be proven to imply the absence of interactions. The convergence therefore must
be weakened to

〈α|φf (t)β〉 t→−∞−→
√
Z〈α|φf

in(t)β〉 (10.53)

for normalizable states |α〉 and |β〉 and φf (t) ≡
∫
d3(x) f∗(x) i

↔
∂ 0 φ(x) with f a normalizable solution

of the Klein-Gordon equation (wave packet). Considering plane waves one sees from

〈0|φ(x)|p〉 = lim
t→∞

√
Z 〈0|φout(x)|p〉 =

√
Z e−i p·x

= lim
t→−∞

√
Z 〈0|φin(x)|p〉 =

√
Z e−i p·x

that identical normalization of (single-particle) plane waves in initial and final state implies the same
wave function normalization Z for in and out fields.

The relation between S-matrix and in- and out-fields is: φin(x) = S φout(x)S
−1.

Proof:

〈β; out|φout =

{
〈β; in|φinS
〈β; in|Sφout

}

→ φin S = S φout(x).

Finally we check that as expected S does not spoil Poincaré invariance, i.e. S is invariant under
Poincaré transformations: U(Λ, a)SU−1(Λ, a) = S.
Proof: φin(Λx+ a) = Uφin(x)U−1 = USφout(x)S

−1U−1 = US U−1U φout(x)U
−1U S−1U−1

= USU−1 φout(Λx+ a)US−1U−1 ⇔ USU−1 = S.

The relation between S and Z[J ]

To establish this relation, the source term Jφ in the lagrangian density is treated in the interaction
picture. The time evolution operator (see Eq. 9.62) is then

UT ′

T [J ] = T exp

(

i

∫ T ′

T

d4xJ(x)φ(x)

)

, (10.54)
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and satisfies the property
δUT ′

T [J ]

δJ(x)
= i UT ′

t [J ]φ(x)U t
T [J ], (10.55)

or for U [J ] ≡ U∞−∞[J ]

δU [J ]

δJ(x)
= i U∞t [J ]φ(x)U t

−∞[J ] (10.56)

t→∞−→ i φ(x)U [J ] → i
√
Z φout(x)U [J ]

t→−∞−→ i U [J ]φ(x) → i
√
Z U [J ]φin(x).

Since δU [J ]/δJ(x) satisfies the same equations as φ(x) and we know the limits, we can, just as we did
for φ(x), express it in terms of advanced and retarded Green’s functions,

δU [J ]

δJ(x)
= i

√
Z U [J ]φin(x) −

∫

d4y d4z∆R(x − y)K(y, z)
δU [J ]

δJ(z)

= i
√
Z φout(x)U [J ] −

∫

d4y d4z∆A(x− y)K(y, z)
δU [J ]

δJ(z)
.

Taking the difference between the two expressions

√
Z (φout(x)U [J ] − U [J ]φin(x))

= i

∫

d4y d4z (∆R(x− y) − ∆A(x− y))K(y, z)
δU [J ]

δJ(z)
, (10.57)

or

[φin(x), S U [J ]] =
i√
Z

∫

d4y d4z∆(x − y)K(y, z)
δ

δJ(z)
S U [J ]. (10.58)

In order to find a solution to this equation note that, with the use of the Baker-Campbell-Hausdorff
formula e−B Ae+B = A+ [A,B] (for the case that [A,B] is a c-number), one has

[A, eB ] = [A,B]eB, (10.59)

[A, eB eC ] = [A,B + C]eB eC , (10.60)

provided [A,B] and [A,C] are c-numbers. Thus applied to the field φ(x) = φ+(x) + φ−(x),

[

φ(x), e
R

d4x φ−(x) f(x) e
R

d4y φ+(y) f(y)
]

=

∫

d4y [φ(x), φ(y)] f(y) e
R

d4z φ−(z) f(z) e
R

d4z φ+(z) f(z),

i.e.
[

φ(x), : e
R

d4z φ(z) f(z) :
]

= i

∫

d4y∆(x − y) f(y) : e
R

d4z φ(z) f(z) :, (10.61)

where the normal ordered expression : e
R

φ f : is used, which is equal to the expression e
R

φ−f e
R

φ+f

in which the creation operators are placed left of annihilation operators. Thus

S U [J ] =: exp

(
1√
Z

∫

d4xd4y φin(x)K(x, y)
δ

δJ(y)

)

: F [J ], (10.62)

where F [J ] is some (arbitrary) functional. Noting that 〈0| : eA : |0〉 = 1 it follows that

F [J ] = 〈0|S U [J ]|0〉 = 〈0|U [J ]|0〉 = 〈0out|0in〉 ∝ Z[J ], (10.63)
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while for J = 0 one has U [0] = 1, i.e.

S =: exp

(
1√
Z

∫

d4xd4y φin(x)K(x, y)
δ

δJ(y)

)

:
Z[J ]

Z[0]

∣
∣
∣
∣
J=0

. (10.64)

Therefore, an S-matrix element between momentum eigenstates in initial and final states is found by
considering those source-connected Green’s functions (action of δ/δJ on Z[J ]/Z[0]) where the external
sources J(xi) are replaced by the particle wave functions (which are the result of acting with φin(xi)
on momentum eigenstates). Note that the Green’s function connecting the external point xi with the
bubble is annihilated by K(x, y).

Usually we are interested in the part of the S-matrix describing the scattering,

Sfi = δfi − i (2π)4 δ4(Pi − Pf )Mfi, (10.65)

which is obtained considering only connected diagrams.
Explicitly, using that

φin(x) =

∫
d3k

(2π)3 2E

[
a(k) fk(x) + a†(k) f∗k (x)

]
.

we get the Lehman-Symanzik-Zimmerman (LSZ) reduction formula,

〈p′, . . . |S|p, . . .〉 = . . . δ . . .+

(
1√
Z

)n ∫

d4x′ . . . d4x . . . f∗p′(x′) . . .
−→
iKx′ . . .

×G(n)
c (x′, . . . , x, . . .)

←−
iKx . . . fp(x) . . . , (10.66)

where G
(n)
c is the connected Green’s function, iKx′ = (2x′ +M2) precisely annihilating an external

propagator i∆F in the Green’s function.
Next we introduce the Fourier transform (after extracting a momentum conserving delta function

coming from translation invariance, see exercise 10.2),

(2π)4 δ4(p1 + . . .+ pn)G(n)(p1, . . . , pn) =

∫ n∏

i=1

d4xi e
i pi·xi G(n)(x1, . . . , xn), (10.67)

and the (amputated) Green’s functions

Γ(n)(p1, . . . , pn) =





n∏

j=1

−i
∆(pj)



G(n)(p1, . . . , pn), (10.68)

where ∆(p) is the Fourier transform of the (full) propagator ∆F (x). It is straightforward to check
that the S-matrix element now precisely is given by the amputated Green’s function multiplied with
the momentum space wave functions of the particles in initial and final state (by which we refer to
the quantities multiplying the plane wave e±i p·x in the field expansion, i.e. 1 for scalar case, u(p),

v(p), ū(p) and v̄(p) for fermions and ǫ
(λ)
µ (p) for vector fields).

10.4 Feynman rules

The real scalar field

The procedure to obtain the matrix element is commonly summarized by a set of rules known as
Feynman rules. They start with the propagator (i∆F (k)) in momentum space, which is determined
by the inverse of the operator found in the quadratic term in the lagrangian i.e.

k =
i

k2 −M2 + iǫ
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(in fact the inverse of the operator found in the quadratic term is for real scalar fields also multiplied
by a factor 2, which cancels the factor 1/2 in the quadratic piece; the factor 2 corresponds to the
two-points Green’s function having two identical ends).
For the interaction terms in the lagrangian, to be precise iLI vertices in momentum space are intro-
duced,

= −i g

(multiplied with 4! corresponding to the allowed number of permutations of identical particles). At
these vertices each line can be assigned a momentum, but overall momentum conservation at a vertex
is understood.

Corresponding to external particles wave functions are introduced

k
1

k
1

In order to calculate the connected amplitude −iMfi appearing in the S-matrix element these
ingredients are combined using Eqs 10.66 and 10.27, which is summarized in the following rules:
(Rule 1) Start with external legs (incoming particles/outgoing particles) and draw all possible topo-
logically different connected diagrams, for example up to order g2 the scattering of two neutral spin
0 particles (real scalar field) is described by

+ + +

(Rule 2) The contribution of each diagram is obtained by multiplying the contributions from propaga-
tors, vertices and external particle wave functions in that diagram. Note that in calculating amputated
Green’s functions external lines are neglected, or calculating full Green’s functions external lines are
treated as propagators.
(Rule 3) Carry out the integration over all internal momenta (keeping track of momentum conserva-
tion at all vertices!)
(Rule 4) Add a symmetry factor 1/S corresponding to permutation of internal lines and vertices
(keeping external lines fixed). If problems arise go back to the defining expression for the generating
function in 10.27.

For the symmetry factor consider the examples (given in G. ’t Hooft and M. Veltman, Diagrammar)
in the case of the interaction terms

LI(φ) = − f

3!
φ3 − g

4!
φ4. (10.69)

The vertices are:

= −i f = −i g

Consider first the lowest order self-energy diagram,
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Draw two points corresponding to the two vertices and draw in each of these points the lines coming
out of the vertices:

Now count in how many ways the lines can be connected with the same topological result. External
line 1 can be attached in six, after that line 2 in three ways. Then there are two ways to connect
the remaining lines such that the desired diagram results. Divide by the permutational factors of the
vertices, which have been included in the definition of vertices (here 3! for each vertex). Finally divide
by the number of permutation of the points that have identical vertices (here 2!). The total result is

1

S
=

6 × 3 × 2

3! 3! 2!
=

1

2
.

As a second example consider the diagram

21

There are three vertices,

After connecting line 1 (6 ways) and line 2 (4 ways) we have

1 2

leaving 6 × 3 × 2 ways to connect the rest as to get the desired topology. Dividing by vertex factors
and permutations of identical vertices, the result is

1

S
=

6 × 4 × 6 × 3 × 2

3! 3! 4! 2!
=

1

2
.

Complex scalar fields

The case of complex scalar fields can be considered as two independent fields, or equivalently as
independent fields φ and φ∗. The generating functional in the interacting case can be written as

Z[J, J∗]

=

∫

DφDφ∗ exp

(

i

∫

d4x
[
φ∗
(
−∂µ∂

µ −M2
)
φ+ LI(φ) + J∗φ+ Jφ∗

]
)

= exp

(

i

∫

d4zLI

(
1

i

δ

δJ(z)
,
1

i

δ

δJ∗(z)

))

exp

(

−
∫

d4xd4y J∗(x) i∆F (x− y)J(y)

)

. (10.70)

In Feynman diagrams the propagator is still given by i∆F (k), but it connects a source with its complex
conjugate and therefore is oriented, denoted

k =
i

k2 −M2 + iǫ

Note that in this case the propagator does not have identical ends, i.e. there is no combinatorial factor
like in the scalar case.
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Dirac fields

For fermions the generating functional is given by

Z[η, η] =

∫

DψDψ exp

(

i

∫

d4x
[
ψ (i/∂ −M)ψ + LI(ψ) + ηψ + ψη

]
)

= exp

(

i

∫

d4zLI

(
1

i

δ

δη(z)
,−1

i

δ

δη(z)

))

exp

(

−
∫

d4xd4y η(x) iSF (x− y) η(y)

)

, (10.71)

where iSF is the Feynman propagator for fermions, which is the solution of (i/∂ −M)SF (x) = −δ4(x)
(i.e. minus the inverse of the operator appearing in the quadratic piece) and is given by

iSF (x− y) = 〈0|T ψ(x)ψ(y)|0〉 =

= (i/∂x +M) i∆F (x− y) (10.72)

=

∫
d4p

(2π)4
e−i p·x /p+M

p2 −M2 + iǫ
, (10.73)

and the (oriented) propagator in Feynman diagrams involving fermions is

pi j =

(
i

/p−M + iǫ

)

ji

=
i(/p+M)ji

p2 −M2 + iǫ

The time ordered functions are obtained by functional derivatives from Z(η, η), but the anticommu-
tating properties of Grassmann variables imply some additional minus sign in Feynman diagrams,
namely
(Rule 5) Feynman diagrams which only differ by exchanging identical fermions in initial or final
state have a relative minus sign, e.g. in e−e− → e−e− scattering (Møller scattering) the lowest order
contribution is

-

(see next section for e-e-γ vertex).
(Rule 6) Each closed fermion loop gets a sign −1.
The latter rule is illustrated in the example of an interaction term LI = : gψ(x)ψ(x)φ(x) : in an
interacting theory with fermionic and scalar fields. The two-points Green’s function 〈0|T φ(x)φ(y)|0〉
contains a fermionic loop contribution,

= +  ....

which arises from the quadratic term in exp
(
i
∫
d4zLI

)
,

−g
2

2

∫

dz dz′
δ2

δη(z) δη(z)

δ2

δη(z′) δη(z′)

and the quadratic term in Z0[η, η],

−1

2

∫

dx dy dx′ dy′ η(x)S(x − y)η(y) η(x′)S(x′ − y′)η(y′).
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The result is
∝ g2 S(z − z′)S(z′ − z) = −g2 iS(z − z′) iS(z′ − z),

which contains an extra minus sign as compared to a bosonic loop.
The wave functions for fermions are given by

p
i ui(p) incoming fermion

p
i ūi(p) outgoing fermion

p
i v̄i(p) incoming antifermion

p
i vi(p) outgoing antifermion

In writing down the expressions for Feynman diagrams one has to be aware that the wave functions
and the propagators have more than one component. It is necessary to start at the end of a fermion
line (with the above arrow convention an outgoing fermion wave function ū or an incoming antifermion
wave function v̄) and keep on following that line, writing down the propagators till the beginning of the
line (incoming fermion u or outgoing antifermion v) has been reached. As an example some scattering
processes in quantum electrodynamics will be discussed in the next section after the introduction of
the Feynman rules for vector fields.

Vector fields and Quantum Electrodynamics

As the most important example of vector fields consider the lagrangian density for quantum electro-
dynamics (QED),

L = −1

4
FµνF

µν − λ

2
(∂ ·A)2 + ψ(i/∂ −M)ψ − e ψγµψAµ. (10.74)

In addition to the fermion propagator and fermion wave functions discussed in the previous section
we have the photon propagator1

µ ν
k

= −i
[

gµν

k2 + iǫ
−
(

1 − 1

λ

)
kµkν

(k2 + iǫ)2

]

,

where the kµkν terms in the case where the photon couples to a conserved current (such as ψγµψ)
will not contribute. Particular choices of λ are λ = 1 (Feynman propagator or Feynman gauge) and
λ = ∞ (Landau gauge). The wave functions are given by

k
µ ǫµ(k) incoming photon

k
µ ǫ∗µ(k) outgoing photon

The vertex for the coupling of photon to the electron is given by

µ

i j

= −i e(γµ)ji.

1For a massive vector boson inversion of the quadratic term including the Lorentz constraint ∝ λ
2
(∂µAµ)2 leads to

the propagator

iDµν(k) = i

"

−gµν

k2 −M2 + iǫ
+

„

1 − 1

λ

«

kµkν

(k2 −M2 + iǫ)(k2 − 1
λ
M2 + iǫ)

#

.
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10.5 Some examples

eµ scattering

The first example is the electromagnetic scattering of an electron and a muon. To lowest order (∝ α =
e2/4π) only one diagram contributes. The diagram and momenta and the commonly used invariants
(Mandelstam variables) for a 2 → 2 scattering process are

k k’

p’p

1 3

2 4

s = (k + p)2 = m2 +M2 + 2 k · p
= (k′ + p′)2 = m2 +M2 + 2 k′ · p′

t = (k − k′)2 = q2 = 2m2 − 2 k · k′

= (p− p′)2 = 2M2 − 2 p · p′

u = (k − p′)2 = m2 +M2 − 2 k · p′

= (k′ − p)2 = m2 +M2 − 2 k′ · p

s + t+ u =
∑

m2
i = 2m2 + 2M2

The scattering amplitude is given by

−iM = ū(k′, s3)(−ie)γµu(k, s1)
−igµν

q2
ū(p′, s4)(−ie)γνu(p, s2), (10.75)

Note that the qµqν term in the photon propagator are irrelevant because the photon couples to a
conserved current. If we are interested in the scattering process of an unpolarized initial state and we
are not interested in the spins in the final state we need |M |2 summed over spins in the final state
(
∑

s3,s4
) and averaged over spins in the initial state (1/2× 1/2×

∑

s1,s2
) which can be written as (see

also chapter 4)

|M |2 =
1

4

∑

s1,s2,s3,s4

|ū(k′, s3)γµu(k, s1)
e2

q2
ū(p′, s4)γµu(p, s2)|2

=
e4

q4
L(m)

µν Lµν (M), (10.76)

[using that (ū(k′)γµu(k))
∗ = ū(k)γµu(k

′)], where

L(m)
µν =

1

2

∑

s,s′

ū(k′, s′)γµu(k, s)ū(k, s)γνu(k
′, s′)

=
1

2
Tr [(/k′ +m)γµ(/k +m)γν ]

= 2
[
kµk

′
ν + kνk

′
µ − gµν(k · k′ −m2)

]

= 2 kµk
′
ν + 2 kνk

′
µ + q2 gµν (10.77)

Combining L
(m)
µν and Lµν (M) one obtains

L(m)
µν Lµν (M) = 2

[
s2 + u2 + 4t(M2 +m2) − 2(M2 +m2)2

]
(10.78)

and ∣
∣
∣
∣

M

4π

∣
∣
∣
∣

2

=
2α2

t2
[
s2 + u2 + 4t(M2 +m2) − 2(M2 +m2)2

]
. (10.79)
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e−e+ → µ−µ+ scattering

The second example is the annihilation of an electron pair and creation of a muon pair. To lowest
order (∝ α = e2/4π) only one diagram contributes. The diagram, the masses, momenta and invariants
are

k

k’

p

p’

s = (k + k′)2 = (p+ p′)2

t = (k − p)2 = (k′ − p′)2

u = (k − p′)2 = (k′ − p)2

The scattering amplitude squared (spins summed and averaged) is given by

|M |2 =
1

4

∑

s1,s2,s3,s4

|ū(p, s3)γµv(p′, s4)
e2

s
v̄(k′, s2)γµu(k, s1)|2

=
e4

s2

(

1

2

∑

s1,s2

v̄(k′, s2)γµu(k, s1) ū(k, s1)γνv(k
′, s2)

)

×
(

1

2

∑

s3,s4

ū(p, s3)γ
µv(p′, s4) v̄(p

′, s4)γ
νu(p, s3)

)

=
e4

s2

(
1

2
Tr(/k −m)γµ(/k′ +m)γν

)(
1

2
Tr(/p+M)γµ(/p′ −M)γν

)

= 4
e4

s2

(

kµk
′
ν + kνk

′
µ − 1

2
gµνs

)(

pµp′ν + pνp′µ − 1

2
gµνs

)

and ∣
∣
∣
∣

M

4π

∣
∣
∣
∣

2

=
2α2

s2
[
t2 + u2 + 4s(M2 +m2) − 2(M2 +m2)2

]
. (10.80)

Note the similarity in the amplitudes for eµ scattering and e−e+ → µ−µ+. Basically the same
diagram is calculated and the result is the same after the interchange of s ↔ t. This is known as
crossing symmetry. Similarly, for instance Møller scattering (e−e− → e−e−) and Bhabha scattering
(e−e+ → e−e+) are related using crossing symmetry.

Exercises

Exercise 10.1

(a) Give in diagrammatic notation the full Green functions G(4)(x1, . . . x4) for the interacting case
in φ4-theory to first order in the coupling constant g as obtained from the full expression for
Z[J ] in section 10.2.

(b) Use the definition of the source-connected Green function G
(4)
sc and show that indeed source-

connected diagrams survive.

(c) Do the same for the connected Green function G
(4)
c .
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Exercise 10.2

(a) Show that the translation properties of the fields and the vacuum imply

G(n)(x1 + a, . . . , xn + a) = G(n)(x1, . . . , xn).

(b) Show (by using x1 as shift-varible) that this implies that

∫ n∏

i=1

d4xi e
i pi·xi G(n)(x1, . . . , xn) ∝ (2π)4 δ4(p1 + . . .+ pn),

hence we can write

∫ n∏

i=1

d4xi e
i pi·xi G(n)(x1, . . . , xn) ≡ (2π)4 δ4(p1 + . . .+ pn)G(n)(p1, . . . , pn),

which means overall momentum conservation in Green functions in momentum space.

Exercise 10.3

Show that the combinatorial factors found using the rules given in section 10.3 reproduce for the
diagrams

precisely the combinatorial factors that appear in Eqs 10.37 and 10.38.

Exercise 10.4

(a) Write down the Feynman diagrams contributing to electron-electron scattering, e(p1) + e(p2)
→ e(p′1) + e(p′2) in lowest order in α. It is of the form −iM = A1 −A2.

(b) Calculate the quadratic pieces and interference terms,

|M |2 = T11 + T22 − T12 − T21,

in the amplitude (Tij = A∗iAj). Express the contributions in invariants s, t and u. Show that
the amplitude is symmetric under the interchange of t↔ u.



Chapter 11

Scattering theory

11.1 kinematics in scattering processes

Phase space

The 1-particle state is denoted |p〉. It is determined by the energy-momentum four vector p = (E,p)
which satisfies p2 = E2−p2 =m2. A physical state has positive energy. The phase space is determined
by the weight factors assigned to each state in the summation or integration over states, i.e. the 1-
particle phase space is

∫
d3p

(2π)3 2E
=

∫
d4p

(2π)4
θ(p0) (2π)δ(p2 −m2), (11.1)

(proven in Chapter 2). This is generalized to the multi-particle phase space

dR(p1, . . . , pn) =

n∏

i=1

d3pi

(2π)3 2Ei
, (11.2)

and the reduced phase space element by

dR(s, p1, . . . , pn) = (2π)4 δ4(P −
∑

i

pi) dR(p1, . . . , pn), (11.3)

which is useful because the total 4-momentum of the final state usually is fixed by overall momentum
conservation. Here s is the invariant mass of the n-particle system, s = (p1 + . . . + pn)2. It is a
useful quantity, for instance for determining the threshold energy for the production of a final state
1 + 2 + . . .+ n. In the CM frame the threshold value for s obviously is

sthreshold =

(
n∑

i=1

mi

)2

. (11.4)

For two particle states |pa, pb〉 we start with the four vectors pa = (Ea,pa) and pb = (Eb,pb)
satisfying p2

a = m2
a and p2

b = m2
b , and the total momentum four-vector P = pa +pb. For two particles,

the quantity
s = P 2 = (pa + pb)

2, (11.5)

is referred to as the invariant mass squared. Its square root,
√
s is for obvious reasons known as the

center of mass (CM) energy.
To be specific let us consider two frequently used frames. The first is the CM system. In that case

pa = (Ecm
a , q), (11.6)

pb = (Ecm
b ,−q). (11.7)
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It is straightforward to prove that the unknowns in the particular system can be expressed in the
invariants (ma, mb and s). Prove that

|q| =

√

(s−m2
a −m2

b)
2 − 4m2

am
2
b

4s
=

√

λ(s,m2
a,m

2
b)

4s
, (11.8)

Ecm
a =

s+m2
a −m2

b

2
√
s

, (11.9)

Ecm
b =

s−m2
a +m2

b

2
√
s

. (11.10)

The function λ(s,m2
a,m

2
b) is a function symmetric in its three arguments, which in the specific case

also can be expressed as λ(s,m2
a,m

2
b) = 4(pa · pb)

2 − 4p2
a p

2
b .

The second frame considered explicitly is the socalled target rest frame in which one of the particles
(called the target) is at rest. In that case

pa = (Etrf
a ,ptrf

a ), (11.11)

pb = (mb,0), (11.12)

Also in this case one can express the energy and momentum in the invariants. Prove that

Etrf
a =

s−m2
a −m2

b

2mb
, (11.13)

|ptrf
a | =

√

λ(s,m2
a,m

2
b)

2mb
. (11.14)

One can, for instance, use the first relation and the abovementioned threshold value for s to calculate
the threshold for a specific n-particle final state in the target rest frame,

Etrf
a (threshold) =

1

2mb

(

(
∑

i

mi)
2 −m2

a −m2
b

)

. (11.15)

Explicit calculation of the reduced two-body phase space element gives

dR(s, p1, p2) =
1

(2π)2
d3p1

2E1

d3p2

2E2
δ4(P − p1 − p2)

CM
=

1

(2π)2
d3q

4E1E2
δ(
√
s− E1 − E2)

=
1

(2π)2
dΩ(q̂)

q2 d|q|
4E1E2

δ(
√
s− E1 − E2)

which using |q| d|q| = (E1E2/(E1 + E2)) d(E1 + E2) gives

dR(s, p1, p2) =
|q|

(2π)2
dΩ(q̂)

d(E1 + E2)

4(E1 + E2)
δ(
√
s− E1 − E2)

=
|q|

4π
√
s

dΩ(q̂)

4π
=

√
λ12

8π s

dΩ(q̂)

4π
, (11.16)

where λ12 denotes λ(s,m2
1,m

2
2).
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Kinematics of 2 → 2 scattering processes

The simplest scattering process is 2 particles in and 2 particles out. Examples appear in

π− + p → π− + p (11.17)

→ π0 + n (11.18)

→ π+ + π− + n (11.19)

→ . . . . (11.20)

The various possibilities are referred to as different reaction channels, where the first is referred to
as elastic channel and the set of all other channels as the inelastic channels. Of course there are not
only 2-particle channels. The initial state, however, usually is a 2-particle state, while the final state
often arises from a series of 2-particle processes combined with the decay of an intermediate particle
(resonance).

Consider the process a+ b→ c+ d. An often used set of invariants are the Mandelstam variables,

s = (pa + pb)
2 = (pc + pd)

2 (11.21)

t = (pa − pc)
2 = (pb − pd)

2 (11.22)

u = (pa − pd)
2 = (pb − pc)

2 (11.23)

which are not independent as s+ t+ u = m2
a +m2

b +m2
c +m2

d. The variable s is always larger than
the minimal value (ma +mb)

2. A specific reaction channel starts contributing at the threshold value
(Eq. 11.4). Instead of the scattering angle, which for the above 2 → 2 process in the case of azimuthal
symmetry is defined as p̂a · p̂c = cos θ one can use in the CM the invariant

t ≡ (pa − pc)
2 CM

= m2
a +m2

c − 2EaEc + 2 qq′ cos θcm,

with q =
√

λab/4s and q′ =
√

λcd/4s. The minimum and maximum values for t correspond to θcm
being 0 or 180 degrees,

tmax
min = m2

a +m2
c − 2EaEc ± 2 qq′

= m2
a +m2

c −
(s+m2

a −m2
b)(s+m2

c −m2
d)

2 s
±

√
λabλcd

2 s
. (11.24)

Using the relation between t and cos θcm it is straightforward to express dΩcm in dt, dt = 2 qq′ d cos θcm
and obtain for the two-body phase space element

dR(s, pc, pd) =
q′

4π
√
s

dΩcm

4π
=

√
λcd

8π s

dΩcm

4π
(11.25)

=
dt

8π
√
λab

=
dt

16π q
√
s
. (11.26)

Kinematics of inclusive hard scattering processes

In high energy (hard) scattering processes, usually many particles are produced. In inclusive measure-
ments no particles are detected in the final state, in exclusive measurements all particles are detected.
Consider the 1-particle inclusive case, in which one particle is detected, H1 + H2 → h + X . At
high energies, there is usually a preferred direction, for instance the momenta of incoming (colliding)
hadrons and it is useful to use for the produced particle rapidity as a variable. Writing

E = mT cosh y, pz = mT sinh y, pT = (px, py), (11.27)

with m2
T

= m2 − p2
T

= m2 + p2
x + p2

y, the rapidity y is defined

y =
1

2
ln

(
E + pz

E − pz

)

= ln

(
E + pz

mT

)

= tanh−1
(pz

E

)

.
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It is convenient because under a boost (along z) with velocity β it changes as y → y− tanh−1 β, which
means that rapidity distributions dN/dy maintain their shape. For large energies and not too small
scattering angles (θ ≫ 1/γ) y is approximately equal to the pseudo-rapidity η,

η = − ln(tan(θ/2)) = tanh−1(cos θ), (11.28)

which (only involving angles) is easier to determine. The one-particle phase space in terms of these
variables becomes

d3p

(2π)3 2E
=
dy d2pT

2 (2π)3
=
dy d|pT |2

16π2

dφ

2π
=

|p|
E

dη d|pT |2
16π2

dφ

2π
, (11.29)

with at high energies the factor |p|/E ≃ 1.

11.2 Crossing symmetry

In the previous chapter, we have seen that the amplitudes for the processes e−µ− → e−µ− and the
process e−e+ → µ+µ− are simply related by an interchange of the variables s and t. This is known
as crossing symmetry.

Given a two-to-two scattering process ab→ cd one can relate the processes

p
1

p
2

p
3

p
4

a

b

c

d

ab cd 
b
_

c
_

p
1

−p
3

−p
2

p
4

a

d

ac bd 
_ _

b
_

d
_

p
1 p

3

−p
2

−p
4

a c
cb ad 
__

They are referred to as s-channel, t-channel and u-channel processes respectively. With the momenta
defined as in the figures above one has for all these processes the same amplitude M (s, t, u) with

s = (p1 + p2)
2 = (p3 + p4)

2,

t = (p1 − p3)
2 = (p2 − p4)

2,

u = (p1 − p4)
2 = (p2 − p3)

2.

These variables are precisely the Mandelstam variables for the s-channel process (ab → cd). For the
t-channel process (ac̄ → b̄d) one has

st = (pa + pc̄)
2 = t,

tt = (pa − pb̄)
2 = s,

ut = (pa − pd)
2 = u,

while for the u-channel process (ad̄→ cb̄) one has

su = (pa + pd̄)
2 = u,

tu = (pa − pc)
2 = t,

uu = (pa − pb̄)
2 = s.

Analiticity of the field theoretically calculated result implies

Mac̄→b̄d(st = t, tt = s, ut = u) = Mab→cd(s, t, u), (11.30)

Mad̄→cb̄(su = u, tu = s, uu = s) = Mab→cd(s, t, u). (11.31)
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One can also phrase it in the following way: one has a single analytic function Mab→cd(s, t, u) that
represents physical amplitudes in the physical regions for three scattering processes. To see this one
can make a two-dimensional plot for the variables s, t and u. This is a consequence of the constraint
s+ t+ u = M2

a +M2
b +M2

c +M2
d . To find the physical regions one looks for the boundaries of

cos θs =
1

√
λs

abλ
s
cd

[
s(t− u) + (M2

a −M2
b )(M2

c −M2
d )
]
,

cos θt =
1

√

λt
acλ

t
bd

[
t(s− u) + (M2

a −M2
c )(M2

b −M2
d )
]
,

cos θu =
1

√
λu

adλ
u
cb

[
u(t− s) + (M2

a −M2
d )(M2

c −M2
b )
]
.

This defines the boundaries of the physical regions, shown below for the case of equal masses.

ac bd 
_ _

cb ad 
__

ab cd 

cos θu= 1 cos θs = 1
t = 0

co
s θ

u
= 

−1 cos θ
s = −1

cos θ
t = −1 co

s θ
t

= 
1

s

t

u

s =
 0

u = 0

11.3 Cross sections and lifetimes

Scattering process

For a scattering process a+ b → c+ . . . (consider for convenience the rest frame for the target, say b)
the cross section σ(a+ b→ c+ . . .) is defined as the proportionality factor in

Nc

T
= σ(a+ b→ c+ . . .) ·Nb · flux(a),

where V and T indicate the volume and the time in which the experiment is performed, Nc/T indicates
the number of particles c detected in the scattering process, Nb indicates the number of (target)
particles b, which for a density ρb is given by Nb = ρb · V , while the flux of the beam particles a is
flux(a) = ρa ·vtrf

a . The proportionality factor has the dimension of area and is called the cross section,
i.e.

σ =
N

T · V
1

ρaρb vtrf
a

. (11.32)
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Although this at first sight does not look covariant, it is. N and T · V are covariant. Using ρtrf
a =

ρ
(0)
a · γa = ρ

(0)
a ·Elab

a /ma (where ρ
(0)
a is the rest frame density) and vlab

a = plab
a /Elab

a we have

ρaρb v
trf
a =

ρ
(0)
a ρ

(0)
b

4mamb
2
√

λab

or with ρ
(0)
a = 2ma,

σ =
1

2
√
λab

N

T · V . (11.33)

Decay of particles

For the decay of particle a one has macroscopically

dN

dt
= −ΓN, (11.34)

i.e. the amount of decaying particles is proportional to the number of particles with proportionality
factor the em decay width Γ. From the solution

N(t) = N(0) e−Γ t (11.35)

one knows that the decay time τ = 1/Γ. Microscopically one has

Ndecay

T
= Na · Γ

or

Γ =
N

T · V
1

ρa
. (11.36)

This quantity is not covariant, as expected. The decay time for moving particles τ is related to the
decay time in the rest frame of that particle (the proper decay time τ0) by τ = γ τ0. For the (proper)
decay width one thus has

Γ0 =
1

2ma

N

T · V . (11.37)

Fermi’s Golden Rule

In both the scattering cross section and the decay constant the quantity N/TV appears. For this we
employ in essence Fermi’s Golden rule stating that when the S-matrix element is written as

Sfi = δfi − (2π)4 δ4(Pi − Pf ) iMfi (11.38)

(in which we can calculate −iMfi using Feynman diagrams), the number of scattered or decayed
particles is given by

N =
∣
∣(2π)4 δ4(Pi − Pf ) iMfi

∣
∣
2
dR(p1, . . . , pn). (11.39)

One of the δ functions can be rewritten as T · V (remember the normalization of plane waves),

∣
∣(2π)4 δ4(Pi − Pf )

∣
∣
2

= (2π)4 δ4(Pi − Pf )

∫

V,T

d4x ei(Pi−Pf )·x

= (2π)4 δ4(Pi − Pf )

∫

V,T

d4x = V · T (2π)4 δ4(Pi − Pf ).
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(Using normalized wave packets these somewhat ill-defined manipulations can be made more rigorous).
The result is

N

T · V = |Mfi|2 dR(s, p1, . . . , pn). (11.40)

Combining this with the expressions for the width or the cross section one obtains for the decay width

Γ =
1

2m

∫

dR(m2, p1, . . . , pn) |M |2 (11.41)

2−body decay
=

q

32π2m2

∫

dΩ |M |2. (11.42)

The differential cross section (final state not integrated over) is given by

dσ =
1

2
√
λab

|Mfi|2 dR(s, p1, . . . , pn), (11.43)

and for instance for two particles

dσ =
q′

q

∣
∣
∣
∣

M (s, θcm)

8π
√
s

∣
∣
∣
∣

2

dΩcm =
π

λab

∣
∣
∣
∣

M (s, t)

4π

∣
∣
∣
∣

2

dt. (11.44)

This can be used to get the full expression for dσ/dt for eµ and e+e− scattering, for which the
amplitudes squared have been calculated in the previous chapter. The amplitude −M /8π

√
s is the

one to be compared with the quantum mechanical scattering amplitude f(E, θ), for which one has
dσ/dΩ = |f(E, θ)|2. The sign difference comes from the (conventional) sign in relation between S and
quantummechanical and relativistic scattering amplitude, respectively.

11.4 Unitarity condition

The unitarity of the S-matrix, i.e.
(S†)fn Sni = δfi

implies for the scattering matrix M ,
[
δfn + i(2π)4 δ4(Pf − Pn) (M †)fn

] [
δni − i(2π)4 δ4(Pi − Pn)Mni

]
= δfi,

or
−i
[
Mfi − (M †)fi

]
= −

∑

n

(M †)fn (2π)4 δ4(Pi − Pn)Mni. (11.45)

Since the amplitudes also depend on all momenta the full result for two-particle intermediate states
is (in CM, see 11.25)

−i
[
Mfi − (M †)fi

]
= −

∑

n

∫

dΩ(q̂n)M ∗
nf (qf , qn)

qn
16π2

√
s
Mni(qi, qn). (11.46)

Partial wave expansion

Often it is useful to make a partial wave expansion for the amplitude M (s, θ) or M (qi, qf ),

M (s, θ) = −8π
√
s
∑

ℓ

(2ℓ+ 1)Mℓ(s)Pℓ(cos θ), (11.47)

(in analogy with the expansion for f(E, θ) in quantum mechanics; note the sign and cos θ = q̂i · q̂f ).
Inserted in the unitarity condition for M ,

i

[
M

8π
√
s
− M †

8π
√
s

]

fi

=
∑

n

∫

dΩn

M ∗
nf

8π
√
s

qn
2π

Mni

8π
√
s
,
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we obtain
LHS = −i

∑

ℓ

(2ℓ+ 1)Pℓ(q̂i · q̂f )
(

(Mℓ)fi − (M †ℓ )fi

)

,

while for the RHS use is made of

Pℓ(q̂ · q̂′) =
∑

m

4π

2ℓ+ 1
Y (ℓ)

m (q̂)Y (ℓ)∗
m (q̂′)

and the orthogonality of the Y
(ℓ)
m functions to prove that

RHS = 2
∑

n

∑

ℓ

(2ℓ+ 1)Pℓ(q̂i · q̂f ) (M †ℓ )fn qn (Mℓ)ni,

i.e.
−i
(

(Mℓ)fi − (M †ℓ )fi

)

= 2
∑

n

(M †ℓ )fn qn (Mℓ)ni. (11.48)

If only one channel is present this simplifies to

−i (Mℓ −M∗ℓ ) = 2 qM∗ℓ Mℓ, (11.49)

or ImMℓ = q |Mℓ|2, which allows writing

Mℓ(s) =
Sℓ(s) − 1

2i q
=
e2i δℓ(s) − 1

2i q
, (11.50)

where Sℓ(s) satisfies |Sℓ(s)| = 1 and δℓ(s) is the phase shift.
In general a given channel has |Sℓ(s)| ≤ 1, parametrized as Sℓ(s) = ηℓ(s) exp(2i δℓ(s)). Using

σ =

∫

dΩ
q′

q

∣
∣
∣
∣

M (s, θcm)

8π
√
s

∣
∣
∣
∣

2

,

in combination with the partial wave expansion for the amplitudes M and the orthogonality of the
Legendre polynomials immediately gives for the elastic channel,

σel = 4π
∑

ℓ

(2ℓ+ 1)|Mℓ(s)|2

=
4π

q2

∑

ℓ

(2ℓ+ 1)

∣
∣
∣
∣

ηℓ e
2i δℓ − 1

2i

∣
∣
∣
∣

2

, (11.51)

and for the case that this is the only channel (purely elastic scattering, η = 1) the result

σel =
4π

q2

∑

ℓ

(2ℓ+ 1) sin2 δℓ. (11.52)

From the imaginary part of M (s, 0), the total cross section can be determined. Show that

σT =
4π

q

∑

ℓ

(2ℓ+ 1) ImMℓ(s)

=
2π

q2

∑

ℓ

(2ℓ+ 1) (1 − ηℓ cos 2δℓ). (11.53)

The difference is the inelastic cross section,

σinel =
π

q2

∑

ℓ

(2ℓ+ 1) (1 − η2
ℓ ). (11.54)
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Note that the total cross section is maximal in the case of full absorption, η = 0, in which case,
however, σel = σinel.

We note that unitarity is generally broken in a finite order calculation. For instance the tree-level
calculation of Feynman diagrams at order e2 was real. The product of amplitudes is of order e4, but
still real. To check unitarity we need the amplitude at order e4. We can also invert the situation and
use unitarity to find the imaginary part of an amplitude at some order from a lower order calculation.
This is what we will do to discuss decay widths.

11.5 Unstable particles

For a stable particle the propagator is

i∆(k) =
i

k2 −M2 + iǫ
(11.55)

(note that we have disregarded spin). The prescription for the pole structure, i.e. one has poles at k0

= ±(Ek − iǫ) where Ek = +
√

k2 +M2 guarantees the correct behavior, specifically one has for t > 0
that the Fourier transform is

∫

dk0 e−ik0t ∆(k) ∝
∫

dk0 e−ik0t

(k0 − Ek + iǫ)(k0 + Ek − iǫ)

(t>0)∝ e−iEkt,

i.e. ∝ U(t, 0), the time-evolution operator. For an unstable particle one expects that

U(t, 0) ∝ e−i(E−iΓ/2)t,

such that |U(t, 0)|2 = e−Γt. This is achieved with a propagator

i∆R(k) =
i

k2 −M2 + iMΓ
(11.56)

(again disregarding spin). The quantity Γ is precisely the width for unstable particles. This is
(somewhat sloppy!) seen by considering the (amputated) 1PI two-point vertex

Γ(2) =
−i
∆

as the amplitude −iM for scattering a particle into itself (forward!) through the decay channels as
intermediate states. The unitarity condition then states

2 Im∆−1
R (k) =

∑

n

∫

dR(p1, . . . , pn)M †
Rn (2π)4 δ4(k − Pn)MnR

= 2M
∑

n

Γn = 2M Γ. (11.57)

This shows that Γ is the width of the resonance, which is given by a sum of the partial widths into
the different channels. It is important to note that the physical width of a particle is the imaginary
part of the two-point vertex at s = M2.

For the amplitude in a scattering process going through a resonance, it is straightforward to write
down the partial wave amplitude,

(qMℓ)ij(s) =
−M

√
ΓiΓj

s−M2 + iMΓ
. (11.58)
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(Prove this using the unitarity condition for partial waves). From this one sees that a resonance has
the same shape in all channels but different strength. Limiting ourselves to a resonance in one channel,
it is furthermore easy to prove that the cross section is given by

σel =
4π

q2
(2ℓ+ 1)

M2Γ2

(s−M2)2 +M2Γ2
, (11.59)

reaching the unitarity limit for s = M2, where furthermore σinel = 0. This characteristic shape of a
resonance is called the Breit-Wigner shape. The half-width of the resonance is MΓ. The phase shift
in the resonating channel near the resonance is given by

tan δℓ(s) =
MΓ

M2 − s
, (11.60)

showing that the phase shift at resonance rises through δ = π/2 with a ’velocity’ ∂δ/∂s = 1/MΓ,
i.e. a fast change in the phase shift for a narrow resonance. Note that because of the presence of a
background the phase shift at resonance may actually be shifted.
Three famous resonances are:

• The ∆-resonance seen in pion-nucleon scattering. Its mass is M = 1232 MeV, its width Γ =
120 MeV. At resonance the cross section σT (π+p) is about 210 mb. The cross section σT (π−p)
also shows a resonance with the same width with a value of about 70 mb. This implies that the
resonance has spin J = 3/2 (decaying in a P-wave (ℓ = 1) pion-nucleon state) and isospin I =
3/2 (the latter under the assumption that isospin is conserved for the strong interactions).

• The J/ψ resonance in e+e− scattering. This is a narrow resonance discovered in 1974. Its mass
is M = 3096.88 MeV, the full width is Γ = 88 keV, the partial width into e+e− is Γee = 5.26
keV.

• The Z0 resonance in e+e− scattering with M = 91.2 GeV, Γ = 2.49 GeV. Essentially this
resonance can decay into quark-antiquark pairs or into pairs of charged leptons. All these
decays can be seen and leave an ’invisible’ width of 498 MeV, which is attributed to neutrinos.
Knowing that each neutrino contributes about 160 MeV (see next chapter), one can reconstruct
the resonance shape for different numbers of neutrino species. Three neutrinos explain the
resonance shape. The cross section at resonance is about 30 nb.

Exercises

Exercise 11.1

Show that the cross section for electron-electron scattering (exercise 10.4) can be written as

dσ

dt
=

4πα2

s(s− 4m2)
{f(t, u) + g(t, u) + f(u, t) + g(u, t)} ,

with

f(t, u) =
1

t2

[
1

2
(s2 + u2) + 4m2(t−m2)

]

g(t, u) =
2

tu

[

(
1

2
s−m2)(

1

2
s− 3m2)

]

Exercise 11.2

Calculate the flux factor,
1

ρcm
a ρcm

b |vcm
a − vcm

b | ,

in the center of mass system for two colliding particles a and b,
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Exercise 11.3

Complete the calculation of the decay width and lifetime of the pion by including the appropriate
phase space factors and using the calculation of the squared matrix element in Exc. 4.8. Compare
the results with the experimental π− lifetime τ = 2.6× 10−8 s and the relative decay widths Γ(π− →
µ−ν̄µ) = 0.999 877 Γ and Γ(π− → e−ν̄e) = 0.000 123 Γ. Calculate now fπ, a quantity which we will
encounter in the next chapter (section 12.2).

Exercise 11.4

The ∆ resonance in Nπ scattering appears in one partial wave (a P-wave) as a pole at the position
s = M2

∆ − iM∆ Γ∆. As discussed for unstable particles, we have here already used unitarity to find a
finite imaginary part. Show that unitarity can be used one step further to fix also the numerator of
the amplitude near the pole,

M1(s) =
−M∆Γ∆/q

s−M2
∆ + iM∆Γ∆

,

when Γ∆ is approximately constant near this pole.



Chapter 12

The standard model

12.1 Non-abelian gauge theories

In chapter 10 we have considered quantum electrodynamics as an example of a gauge theory. The pho-
ton field Aµ was introduced as to render the lagrangian invariant under local gauge transformations.
The extension to non-abelian gauge theories is straightforward. The symmetry group is a Lie-group
G generated by generators Ta, which satisfy commutation relations

[Ta, Tb] = i cabc Tc, (12.1)

with cabc known as the structure constants of the group. For a compact Lie-group they are antisym-
metric in the three indices. In an abelian group the structure constants would be zero (for instance
the trivial example of U(1)). Consider a field transforming under the group,

φ(x) −→ U(θ)φ(x) = ei θaLa φ(x)
inf
= (1 + i θaLa)φ(x) (12.2)

where La is a representation matrix for the representation to which φ belongs, i.e. for a three-
component field (written as ~φ) under an SO(3) or SU(2) symmetry transformation,

~φ −→ U(~θ) ~φ = ei ~θ·~L ~φ
inf
= ~φ− ~θ × ~φ. (12.3)

The complication arises (as in the abelian case) when one considers for a lagrangian density
L (φ, ∂µφ) the behavior of ∂µφ under a local gauge transformation, U(θ) = ei θa(x)La,

φ(x) −→ U(θ)φ(x), (12.4)

∂µφ(x) −→ U(θ)∂µφ(x) + (∂µU(θ))φ(x). (12.5)

Introducing as many gauge fields as there are generators in the group, which are conveniently combined
in the matrix valued field Wµ = W a

µLa, one defines

Dµφ(x) ≡
(
∂µ − igWµ

)
φ(x), (12.6)

and one obtains after transformation

Dµφ(x) −→ U(θ)∂µφ(x) + (∂µU(θ))φ(x) − igW ′µ U(θ)φ(x).

Requiring that Dµφ transforms as Dµφ → U(θ)Dµφ (or Dµ → U(θ)DµU
−1(θ)) gives

Dµφ(x) −→ U(θ)∂µφ(x) − ig U(θ)W µφ(x),

114
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which implies

W ′µ = U(θ)Wµ U
−1(θ) − i

g
(∂µU(θ))U−1(θ), (12.7)

or infinitesimal

W ′aµ = W a
µ − cabcθ

bW c
µ +

1

g
∂µθ

a = W a
µ +

1

g
Dµθ

a.

It is necessary to introduce the free lagrangian density for the gauge fields just like the term
−(1/4)FµνF

µν in QED. For abelian fields Fµν = ∂µAν − ∂νAµ = (i/g)[Dµ, Dν ] is gauge invariant. In
the nonabelian case ∂µW

a
ν − ∂νW

a
µ does not provide a gauge invariant candidate for Gµν = Ga

µνLa,
as can be checked easily. Generalizing the expression in terms of the covariant derivatives, provides a
gauge invariant definition for Gµν . We have

Gµν =
i

g
[Dµ, Dν ] = ∂µW ν − ∂νWµ − ig [Wµ,W ν ], (12.8)

with for the explicit fields
Ga

µν = ∂µW
a
ν − ∂νW

a
µ + g cabcW

b
µW

c
ν , (12.9)

transforming like
Gµν → U(θ)Gµν U

−1(θ). (12.10)

The gauge-invariant lagrangian density is now constructed as

L (φ, ∂µφ) −→ L (φ,Dµφ) − 1

2
TrGµνG

µν = L (φ,Dµφ) − 1

4
Ga

µνG
µν a (12.11)

with the standard normalization Tr(LaLb) = 1
2δab. Note that the gauge fields must be massless, as a

mass term ∝M2
WW a

µW
µ a would break gauge invariance.

QCD, an example of a nonabelian gauge theory

As an example of a nonabelian gauge theory consider quantum chromodynamics (QCD), the theory
describing the interactions of the colored quarks. The existence of an extra degree of freedom for
each species of quarks is evident for several reasons, e.g. the necessity to have an antisymmetric wave
function for the ∆++ particle consisting of three up quarks (each with charge +(2/3)e). With the
quarks belonging to the fundamental (three-dimensional) representation of SU(3)C , i.e. having three
components in color space

ψ =





ψr

ψg

ψb




,

the wave function of the baryons (such as nucleons and deltas) form a singlet under SU(3)C ,

|color〉 =
1√
6

(|rgb〉 − |grb〉 + |gbr〉 − |bgr〉 + |brg〉 − |rbg〉) . (12.12)

The nonabelian gauge theory that is obtained by making the ’free’ quark lagrangian, for one specific
species (flavor) of quarks just the Dirac lagrangian for an elementary fermion,

L = i ψ/∂ψ −mψψ,

invariant under local SU(3)C transformations has proven to be a good candidate for the microscopic
theory of the strong interactions. The representation matrices for the quarks and antiquarks in the
fundamental representation are given by

Fa =
λa

2
for quarks,

Fa = −λ
∗
a

2
for antiquarks,
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internal space

ψx (x) ψx+dx
(x)

x+dxψ(x+dx)

x-space

Figure 12.1: The vectors belonging to internal space located at each point in (one-dimensional) space

which satisfy commutation relations [Fa, Fb] = i fabcFc in which fabc are the (completely antisymmet-
ric) structure constants of SU(3) and where the matrices λa are the eight Gell-Mann matrices1. The
(locally) gauge invariant lagrangian density is

L = −1

4
F a

µνF
µν a + i ψ/Dψ −mψψ, (12.13)

with

Dµψ = ∂µψ − ig Aa
µFaψ,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g cabcA

b
µA

c
ν .

Note that the term i ψ/Dψ = i ψ/∂ψ + g ψ/AaFaψ = i ψ/∂ψ + jµ aAa
µ with jµ a = g ψγµFaψ describes

the interactions of the gauge bosons Aa
µ (gluons) with the color current of the quarks (this is again

precisely the Noether current corresponding to color symmetry transformations). Note furthermore
that the lagrangian terms for the gluons contain interaction terms corresponding to vertices with three
gluons and four gluons due to the nonabelian character of the theory. For writing down the complete
set of Feynman rules it is necessary to account for the gauge symmetry in the quantization procedure.
This will lead (depending on the choice of gauge conditions) to the presence of ghost fields. (For more
details see e.g. Ryder, chapter 7.)

A geometric picture of gauge theories

A geometric picture of gauge theories is useful for comparison with general relativity and topological
considerations (such as we have seen in the Aharonov-Bohm experiment). Consider the space

∏

x
xG

(called a fibre bundle). At each space-time point x there is considered to be a copy of an internal
space G (say spin or isospin). In each of these spaces a reference frame is defined. xψ(x) denotes a
field vector ψ(x) which belongs to a representation of G, i.e. forms a vector in the internal space (see
fig. 12.1). The superscript x denotes that it is expressed with respect to the frame at point x, i.e. the
basis of xG. Let fields Aa

µ(x) determine the ’parallel displacements’ in the internal space, i.e. connect

1The Gell-Mann matrices are the eight traceless hermitean matrices generating SU(3) transformations,
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the basis for xG and x+dxG,

x+dxψ(x) =
(
1 + ig dxµ Aa

µ(x)Ta

)x
ψ(x) (12.14)

=
(
1 + ig dxµ Aµ(x)

)x
ψ(x), (12.15)

which connects two identical vectors, but expresses them with respect to different bases.
If there is a ’true’ difference in the vector ψ(x) and ψ(x + dx) it is denoted with the covariant

derivative connecting the vectors expressed with respect to the same basis, i.e.

x+dxψ(x+ dx) =
(
1 + dxµ Dµ

)x+dx
ψ(x), (12.16)

which in the presence of the ’connection’ Aµ differs from the total change between xψ(x) and x+dxψ(x+
dx),

x+dxψ(x+ dx) = (1 + dxµ ∂µ)
x
ψ(x). (12.17)

The three equations given so far immediately give

Dµ = ∂µ − ig Aµ(x). (12.18)

We note that local gauge invariance requires that we can modify all local systems with a (local) unitary
transformation S(x). The relation in Eq. 12.16, should be independent of such transformations,
requiring that the ’connection’ Aµ(x) is such that Dµ → S(x)DµS

−1(x).
A ’constant’ vector that only rotates because of the arbitrary definitions of local frames satisfies

Dµ ψ(x) = 0, i.e.
[
∂µ − ig Aµ(x)

]
ψ(x) = 0

or considering a path xµ(s) from a fixed origin (0) to point x,

dxµ

ds

[
∂µ − ig Aµ(x(s))

]
ψ(x) = 0,

which is solved by

dψ(s)

ds
= ig Aµ(s)ψ(s)

dxµ

ds
,

ψ(s) = P exp

(

ig

∫ s

0

ds′
dxµ

ds′
Aµ(s′)

)

ψ(0),

which is the path-ordered integral denoted

ψ(x) = P eig
R

P
dxµ Aµ(x)ψ(0). (12.19)

This gives rise to a (path dependent) phase in each point.
In principle such a phase in a given point is not observable. However, if two different paths to the

same point give different phases the effects can be observed. What is this physical effect by which the
’connection’ Aµ can be observed? For this consider the phase around a closed loop,

dy-dy

-dx

dx

µ

µ

µ

µ

For a vector, the real change thus is given by

ψ(x) = (1 − dyρDρ)(1 − dxσDσ)(1 + dyνDν)(1 + dxµDµ)ψ(x)

=
(
1 + dxµdyν [Dµ, Dν ]

)
ψ(x)

=
(
1 − ig dσµν Gµν

)
ψ(x),
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where Gµν = (i/g)[Dµ, Dν ]. Similarly as the definition of the covariant derivative the effect is thus

frame-independent and we have the transformation law Gµν → S(x)GµνS
−1(x). In geometric lan-

guage the effect on parallel transport of a vector depends on the ’curvature’ Gµν . Only if this quantity
is nonzero a physically observable effect of Aµ exists. If it is zero one has

∮
dxµAµ(x) = 0, and equiva-

lently Aµ can be considered as a pure gauge effect, which means that by an appropriate transformation
S(x) it can be gauged away (see the example of Aharonov-Bohm effect).

12.2 Spontaneous symmetry breaking

In this section we consider the situation that the groundstate of a physical system is degenerate.
Consider as an example a ferromagnet with an interaction hamiltonian of the form

H = −
∑

i>j

Jij Si · Sj ,

which is rotationally invariant. If the temperature is high enough the spins are oriented randomly
and the (macroscopic) ground state is spherically symmetric. If the temperature is below a certain
critical temperature (T < Tc) the kinetic energy is no longer dominant and the above hamiltonian
prefers a lowest energy configuration in which all spins are parallel. In this case there are many
possible groundstates (determined by a fixed direction in space). This characterizes spontaneous
symmetry breaking, the groundstate itself appears degenerate. As there can be one and only one
groundstate, this means that there is more than one possibility for the groundstate. Nature will
choose one, usually being (slightly) prejudiced by impurities, external magnetic fields, i.e. in reality a
not perfectly symmetric situation.

Nevertheless, we can disregard those ’perturbations’ and look at the ideal situation, e.g. a theory
for a scalar degree of freedom (a scalar field) having three (real) components,

~φ =





φ1

φ2

φ3




,

with a lagrangian density of the form

L =
1

2
∂µ
~φ · ∂µ~φ−1

2
m2 ~φ · ~φ− 1

4
λ(~φ · ~φ)2

︸ ︷︷ ︸

−V (~φ)

. (12.20)

The potential V (~φ) is shown in fig. 12.2. Classically the (time-independent) ground state is found for

V(  )φ

|φ|F

Figure 12.2: The symmetry-breaking ’potential’ in the lagrangian for the case that m2 < 0.
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a constant field (∇~φ = 0) and the condition

∂V

∂~φ

∣
∣
∣
∣
~ϕc

= 0 −→ ~ϕc · ~ϕc = 0 or ~ϕc · ~ϕc = −m
2

λ
≡ F 2,

the latter only forming a minimum for m2 < 0. In this situation one speaks of spontaneous symmetry
breaking. The classical groundstate appears degenerate. Any constant field with ’length’ F is a
possible groundstate. The presence of a nonzero value for the classical groundstate value of the field
will have an effect when the field is quantized. A quantum field theory has only one nondegenerate
groundstate |0〉. Writing the field ~φ as a sum of a classical and a quantum field, ~φ = ~ϕc + ~φquantum
where for the (operator-valued) coefficients in the quantum field one wants 〈0|c† = c|0〉 = 0, so one
has

〈0|vecphiquantum|0〉 = 0 and hence 〈0|~φ|0〉 = ~ϕc. (12.21)

Stability of the action requires the classical groundstate ~ϕc to have a well-defined value (which can
be nonzero), while the quadratic terms must correspond with non-negative masses. In the case of
degeneracy, therefore a choice must be made, say

〈0|~φ|0〉 =





0
0
F




. (12.22)

The situation now is the following. The original lagrangian contained an SO(3) invariance under
(length conserving) rotations among the three fields, while the lagrangian including the nonzero
groundstate expectation value chosen by nature, has less symmetry. It is only invariant under ro-
tations around the 3-axis.

It is appropriate to redefine the field as

~φ =





ϕ1

ϕ2

F + η




, (12.23)

such that 〈0|ϕ1|0〉 = 〈0|ϕ2|0〉 = 〈0|η|0〉 = 0. The field along the third axis plays a special role because
of the choice of the vacuum expectation value. In order to see the consequences for the particle
spectrum of the theory we construct the lagrangian in terms of the fields ϕ1, ϕ2 and η. It is sufficient
to do this to second order in the fields as the higher (cubic, etc.) terms constitute interaction terms.
The result is

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 +
1

2
(∂µη)

2 − 1

2
m2 (ϕ2

1 + ϕ2
2)

−1

2
m2 (F + η)2 − 1

4
λ (ϕ2

1 + ϕ2
2 + F 2 + η2 + 2Fη)2 (12.24)

=
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 +
1

2
(∂µη)

2 +m2 η2 + . . . . (12.25)

Therefore there are 2 massless scalar particles, corresponding to the number of broken generators (in
this case rotations around 1 and 2 axis) and 1 massive scalar particle with mass m2

η = −2m2. The
massless particles are called Goldstone bosons.

Realization of symmetries

In this section we want to discuss a bit more formal the two possible ways that a symmetry can be
implemented. They are known as the Weyl mode or the Goldstone mode:

Weyl mode. In this mode the lagrangian and the vacuum are both invariant under a set of symmetry
transformations generated by Qa, i.e. for the vacuum Qa|0〉 = 0. In this case the spectrum is described
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by degenerate representations of the symmetry group. Known examples are rotational symmetry and
the fact that the spectrum shows multiplets labeled by angular momentum ℓ (with members labeled
by m). The generators Qa (in that case the rotation operators Lz, Lx and Ly or instead of the latter
two L+ and L−) are used to label the multiplet members or transform them into one another. A bit
more formal, if the generators Qa generate a symmetry, i.e. [Qa, H ] = 0, and |a〉 and |a′〉 belong to
the same multiplet (there is a Qa such that |a′〉 = Qa|a〉) then H |a〉 = Ea|a〉 implies that H |a′〉 =
Ea|a′〉, i.e. a and a′ are degenerate states.

Goldstone mode. In this mode the lagrangian is invariant but Qa|0〉 6= 0 for a number of generators.
This means that they are operators that create states from the vacuum, denoted |πa(k)〉. As the
generators for a symmetry are precisely the zero-components of a conserved current Ja

µ(x) integrated
over space, there must be a nonzero expectation value 〈0|Ja

µ(x)|πa(k)〉. Using translation invariance
and as kµ is the only four vector on which this matrix element could depend one may write

〈0|Ja
µ(x)|πb(k)〉 = fπ kµ e

i k·x δab (fπ 6= 0) (12.26)

for all the states labeled by a corresponding to ’broken’ generators. Taking the derivative,

〈0|∂µJa
µ(x)|πb(k)〉 = fπ k

2 ei k·x δab = fπ m
2
πa ei k·x δab. (12.27)

If the transformations in the lagrangian give rise to a symmetry the Noether currents are conserved,
∂µJa

µ = 0, irrespective of the fact if they annihilate the vacuum, and one must have mπa = 0, i.e. a
massless Goldstone boson for each ’broken’ generator. Note that for the fields πa(x) one would have
the relation 〈0|πa(x)|πa(k)〉 = ei k·x, suggesting the stronger relation ∂µJa

µ(x) = fπ m
2
πa πa(x).

Chiral symmetry

An example of spontaneous symmetry breaking is chiral symmetry breaking in QCD. Neglecting at
this point the local color symmetry, the lagrangian for the quarks consists of the free Dirac lagrangian
for each of the types of quarks, called flavors. Including a sum over the different flavors (up, down,
strange, etc.) one can write

L = ψ(i/∂ −M)ψ, (12.28)

where ψ is extended to a vector in flavor space and M is a diagonal matrix,

ψ =





ψu

ψd

...




, M =





mu

md

. . .




(12.29)

(Note that each of the entries in the vector for ψ is a 4-component Dirac spinor). This lagrangian
density then is invariant under unitary (vector) transformations in the flavor space,

ψ −→ ei ~α·~Tψ, (12.30)

which for instance including only two flavors form an SU(2)V symmetry (isospin symmetry) gen-

erated by the Pauli matrices, ~T = ~τ/2. The conserved currents corresponding to this symmetry
transformation are found directly using Noether’s theorem (see chapter 6),

~V µ = ψγµ ~Tψ. (12.31)

Using the Dirac equation, it is easy to see that one gets

∂µ
~V µ = i ψ [M, ~T ]ψ. (12.32)
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Furthermore ∂µ
~V µ = 0 ⇐⇒ [M, ~T ] = 0. From group theory (Schur’s theorem) one knows that the

latter can only be true, if in flavor space M is proportional to the unit matrix, M = m ·1. I.e. SU(2)V

(isospin) symmetry is good if the up and down quark masses are identical. This situation, both are
very small, is what happens in the real world. This symmetry is realized in the Weyl mode with
the spectrum of QCD showing an almost perfect isospin symmetry, e.g. a doublet (isospin 1/2) of
nucleons, proton and neutron, with almost degenerate masses (Mp = 938.3 MeV/c2 and Mn = 939.6
MeV/c2), but also a triplet (isospin 1) of pions, etc.

There exists another set of symmetry transformations, socalled axial vector transformations,

ψ −→ ei ~α·~Tγ5ψ, (12.33)

which for instance including only two flavors form SU(2)A transformations generated by the Pauli

matrices, ~Tγ5 = ~τγ5/2. Note that these transformations also work on the spinor indices. The currents
corresponding to this symmetry transformation are again found using Noether’s theorem,

~Aµ = ψγµ ~Tγ5ψ. (12.34)

Using the Dirac equation, it is easy to see that one gets

∂µ
~Aµ = i ψ {M, ~T} γ5 ψ. (12.35)

In this case ∂µ
~Aµ = 0 will be true if the quarks have zero mass, which is approximately true for the up

and down quarks. Therefore the world of up and down quarks describing pions, nucleons and atomic
nuclei has not only an isospin or vector symmetry SU(2)V but also an axial vector symmetry SU(2)A.
This combined symmetry is what one calls chiral symmetry.

That the massless theory has this symmetry can also be seen by writing it down for the socalled
lefthanded and righthanded fermions, ψR/L = 1

2 (1 ± γ5)ψ, in terms of which the Dirac lagrangian
density looks like

L = i ψL/∂ψL + i ψR/∂ψR − ψRMψL − ψLMψR. (12.36)

If the mass is zero the lagrangian is split into two disjunct parts for L and R showing that there is
a direct product SU(2)L ⊗ SU(2)R symmetry, generated by ~TR/L = 1

2 (1 ± γ5)~T , which is equivalent
to the V-A symmetry. This symmetry, however, is by nature not realized in the Weyl mode. How
can we see this. The chiral fields ψR and ψL are transformed into each other under parity. Therefore
realization in the Weyl mode would require that all particles come double with positive and negative
parity, or, stated equivalently, parity would not play a role in the world. We know that mesons and
baryons (such as the nucleons) have a well-defined parity that is conserved.

The conclusion is that the original symmetry of the lagrangian is spontaneously broken and as the
vector part of the symmetry is the well-known isospin symmetry, nature has choosen the path

SU(2)L ⊗ SU(2)R =⇒ SU(2)V ,

i.e. the lagrangian density is invariant under left (L) and right (R) rotations independently, while the
groundstate is only invariant under isospin rotations (R = L). From the number of broken generators
it is clear that one expects three massless Goldstone bosons, for which the field (according to the
discussion above) has the same behavior under parity, etc. as the quantity ∂µA

µ(x), i.e. (leaving
out the flavor structure) the same as ψγ5ψ, i.e. behaves as a pseudoscalar particle (spin zero, parity
minus). In the real world, where the quark masses are not completely zero, chiral symmetry is not
perfect. Still the basic fact that the generators acting on the vacuum give a nonzero result (i.e. fπ 6= 0
remains, but the fact that the symmetry is not perfect and the right hand side of Eq. 12.35 is nonzero,
gives also rise to a nonzero mass for the Goldstone bosons according to Eq. 12.27. The Goldstone
bosons of QCD are the pions for which fπ = 93 MeV and which have a mass of mπ ≈ 138 MeV/c2,
much smaller than any of the other mesons or baryons.
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12.3 The Higgs mechanism

The Higgs mechanism occurs when spontaneous symmetry breaking happens in a gauge theory where
gauge bosons have been introduced in order to assure the local symmetry. Considering the same
example with rotational symmetry (SO(3)) as for spontaneous symmetry breaking of a scalar field
(Higgs field) with three components, made into a gauge theory,

L = −1

4
~Gµν · ~Gµν +

1

2
Dµ

~φ ·Dµ~φ− V (~φ), (12.37)

where
Dµ

~φ = ∂µ
~φ− igW a

µLa
~φ. (12.38)

Since the explicit (adjoint, in this case three-dimensional) representation reads (La)ij = −i ǫaij, one

sees that the fields ~Wµ and ~Gµν also can be represented as three-component fields,

Dµ
~φ = ∂µ

~φ+ g ~Wµ × ~φ, (12.39)

~Gµν = ∂µ
~Wν − ∂ν

~Wµ + g ~Wµ × ~Wν . (12.40)

The symmetry is broken in the same way as before and the same choice for the vacuum,

~ϕc = 〈0|~φ|0〉 =





0
0
F




.

is made. The difference comes when we reparametrize the field ~φ. We have the possibility to perform
local gauge transformations. Therefore we can always rotate the field φ into the 3-direction in order
to simplify the calculation, i.e.

~φ =





0
0
φ3




=





0
0

F + η




. (12.41)

Explicitly one then has

Dµ
~φ = ∂µ

~φ+ g ~Wµ × ~φ =





gF W 2
µ + gW 2

µ η
−gF W 1

µ − gW 1
µ η

∂µη




,

which gives for the lagrangian density up to quadratic terms

L = −1

4
~Gµν · ~Gµν +

1

2
Dµ

~φ ·Dµ~φ− 1

2
m2~φ · ~φ− λ

4
(~φ · ~φ)2

= −1

4
(∂µ

~Wν − ∂ν
~Wµ) · (∂µ ~W ν − ∂ν ~Wµ) − 1

2
g2F 2

(
W 1

µW
µ 1 +W 2

µW
µ 2
)

+
1

2
(∂µη)

2 +m2 η2 + . . . , (12.42)

from which one reads off that the particle content of the theory consists of one massless gauge boson
(W 3

µ), two massive bosons (W 1
µ and W 2

µ with MW = gF ) and a massive scalar particle (η with m2
η =

−2m2. The latter is a spin 0 particle (real scalar field) called a Higgs particle. Note that the number
of massless gauge bosons (in this case one) coincides with the number of generators corresponding to
the remaining symmetry (in this case rotations around the 3-axis), while the number of massive gauge
bosons coincides with the number of ’broken’ generators.

One may wonder about the degrees of freedom, as in this case there are no massless Goldstone
bosons. Initially there are 3 massless gauge fields (each, like a photon, having two independent spin
components) and three scalar fields (one degree of freedom each), thus 9 independent degrees of
freedom. After symmetry breaking the same number (as expected) comes out, but one has 1 massless
gauge field (2), 2 massive vector fields or spin 1 bosons (2 × 3) and one scalar field (1), again 9 degrees
of freedom.
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12.4 The standard model SU(2)W ⊗ U(1)Y

The symmetry ideas discussed before play an essential role in the standard model that describes
the elementary particles, the quarks (up, down, etc.), the leptons (elektrons, muons, neutrinos, etc.)
and the gauge bosons responsible for the strong, electromagnetic and weak forces. In the standard
model one starts with a very simple basic lagrangian for (massless) fermions which exhibits more
symmetry than observed in nature. By introducing gauge fields and breaking the symmetry a more
complex lagrangian is obtained, that gives a good description of the physical world. The procedure,
however, implies certain nontrivial relations between masses and mixing angles that can be tested
experimentally and sofar are in excellent agreement with experiment.

The lagrangian for the leptons consists of three families each containing an elementary fermion
(electron e−, muon µ− or tau τ−), its corresponding neutrino (νe, νµ and ντ ) and their antiparticles.
As they are massless, left- and righthanded particles, ψR/L = 1

2 (1 ± γ5)ψ decouple. For the neutrino
only a lefthanded particle (and righthanded antiparticle) exist. Thus

L
(f) = i eR/∂eR + i eL/∂eL + i νeL/∂νeL + (µ, τ). (12.43)

One introduces a (weak) SU(2)W symmetry under which eR forms a singlet, while the lefthanded
particles form a doublet, i.e.

L =




νe

eL



 with TW =
1

2
and T 3

W =

{
+1/2
−1/2

and
R = eR with TW = 0 and T 3

W = 0.

Thus the lagrangian density is
L

(f) = i L/∂L+ i R/∂R, (12.44)

which has an SU(2)W symmetry under transformations ei~α·~TW , explicitly

L
SU(2)W−→ ei ~α·~τ/2L, (12.45)

R
SU(2)W−→ R. (12.46)

One notes that the charges of the leptons can be obtained as Q = T 3
W − 1/2 for lefthanded particles

and Q = T 3
W − 1 for righthanded particles. This is written as

Q = T 3
W +

YW

2
, (12.47)

and YW is considered as an operator that generates a U(1)Y symmetry, under which the lefthanded
and righthanded particles with YW (L) = −1 and YW (R) = −2 transform with eiβYW /2, explicitly

L
U(1)Y−→ e−i β/2L, (12.48)

R
U(1)Y−→ e−i βR. (12.49)

Next the SU(2)W ⊗U(1)Y symmetry is made into a local symmetry introducing gauge fields ~Wµ and

Bµ in the covariant derivative Dµ = ∂µ + i g ~Wµ · ~TW + i g′BµYW /2, explicitly

DµL = ∂µL− i

2
g ~Wµ · ~τ L+

i

2
g′Bµ L, (12.50)

DµR = ∂µR+ i g′Bµ R, (12.51)
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where ~Wµ is a triplet of gauge bosons with TW = 1, T 3
W = ±1 or 0 and YW = 0 (thus Q = T 3

W ) and
Bµ is a singlet under SU(2)W (TW = T 3

W = 0) and also has YW = 0. Putting this in leads to

L
(f) = L

(f1) + L
(f2), (12.52)

L
(f1) = i Rγµ(∂µ + ig′Bµ)R + i Lγµ(∂µ +

i

2
g′Bµ − i

2
g ~Wµ · ~τ )L

L
(f2) = −1

4
(∂µ

~Wν − ∂ν
~Wµ + g ~Wµ × ~Wν)2 − 1

4
(∂µBν − ∂νBµ)2.

In order to break the symmetry to the symmetry of the physical world, the U(1)Q symmetry (generated
by the charge operator), a complex Higgs field

φ =




φ+

φ0



 =





1√
2
(θ2 + iθ1)

1√
2
(θ4 − iθ3)



 (12.53)

with TW = 1/2 and YW = 1 is introduced, with the following lagrangian density consisting of a
symmetry breaking piece and a coupling to the fermions,

L
(h) = L

(h1) + L
(h2), (12.54)

where

L
(h1) = (Dµφ)†(Dµφ)−m2 φ†φ− λ (φ†φ)2

︸ ︷︷ ︸

−V (φ)

,

L
(h2) = −Ge(LφR+Rφ†L),

and

Dµφ = (∂µ − i

2
g ~Wµ · ~τ − i

2
g′Bµ)φ. (12.55)

The Higgs potential V (φ) is choosen such that it gives rise to spontaneous symmetry breaking with
ϕ†ϕ = −m2/2λ ≡ v2/2. For the classical field the choice θ4 = v is made, which assures with the
choice of YW of the Higgs field assures that Q generates the remaining U(1) symmetry. Using local
gauge invariance θi for i = 1, 2 and 3 may be eliminated (the necessary SU(2)W rotation is precisely

e−i~θ(x)·τ ), leading to the parametrization

φ(x) =
1√
2




0

v + h(x)



 (12.56)

and

Dµφ =





ig
2

(
W 1

µ−iW 2
µ√

2

)

(v + h)

1√
2
∂µh− i

2

(
gW 3

µ−g′Bµ√
2

)

(v + h)




. (12.57)

Up to cubic terms, this leads to the lagrangian

L
(h1) =

1

2
(∂µh)

2 +m2 h2 +
g2 v2

8

[
(W 1

µ)2 + (W 2
µ)2
]

+
v2

8

(
gW 3

µ − g′Bµ

)2
+ . . . (12.58)

=
1

2
(∂µh)

2 +m2 h2 +
g2 v2

8

[
(W+

µ )2 + (W−µ )2
]

+
(g2 + g′2) v2

8
(Zµ)2 + . . . , (12.59)
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where the quadratically appearing gauge fields that are furthermore eigenstates of the charge operator
are

W±µ =
1√
2

(
W 1

µ ± iW 2
µ

)
, (12.60)

Zµ =
gW 3

µ − g′Bµ
√

g2 + g′2
≡ cos θW W 3

µ − sin θW Bµ, (12.61)

Aµ =
g′W 3

µ + g Bµ
√

g2 + g′2
≡ sin θW W 3

µ + cos θW Bµ, (12.62)

and correspond to three massive particle fields (W± and Z0) and one massless field (photon γ) with

M2
W =

g2 v2

4
, (12.63)

M2
Z =

g2 v2

4 cos2 θW
=

M2
W

cos2 θW
, (12.64)

M2
γ = 0. (12.65)

The weak mixing angle is related to the ratio of coupling constants, g′/g = tan θW .
The coupling of the fermions to the physical gauge bosons are contained in L (f1) giving

L
(f1) = i eγµ∂µe+ i νeγ

µ∂µνe − g sin θW eγµeAµ

+
g

cos θW

(

sin2 θW eRγ
µeR − 1

2
cos 2θW eLγ

µeL +
1

2
νeγ

µνe

)

Zµ

+
g√
2

(
νeγ

µeLW
−
µ + eLγ

µνeW
+
µ

)
. (12.66)

From the coupling to the photon, we can read off

e = g sin θW = g′ cos θW . (12.67)

The coupling of electrons or muons to their respective neutrinos, for instance in the amplitude for
the decay of the muon

µν µν

µ−
µ−e− e−

νe

νe

−W =

is given by

−iM = −g
2

2
(νµγ

ρµL)
−i gρσ + . . .

k2 +M2
W

(eLγ
σνe)

≈ i
g2

8M2
W

(νµγρ(1 − γ5)µ)
︸ ︷︷ ︸

(j
(µ)†
L

)ρ

(eγρ(1 − γ5)νe)
︸ ︷︷ ︸

(j
(e)
L

)ρ

(12.68)

≡ i
GF√

2
(j

(µ)†
L )ρ (j

(e)
L )ρ, (12.69)
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the good old four-point interaction introduced by Fermi to explain the weak interactions, i.e. one has
the relation

GF√
2

=
g2

8M2
W

=
e2

8M2
W sin2 θW

=
1

2 v2
. (12.70)

In this way the parameters g, g′ and v determine a number of experimentally measurable quantities,
such as

e2/4π ≈ 1/137, (12.71)

GF = 1.166 4× 10−5 GeV−2, (12.72)

sin2 θW = 0.231 2, (12.73)

MW = 80.40 GeV, (12.74)

MZ = 91.19 GeV. (12.75)

The coupling of the Z0 to fermions is given by (g/ cos θW )γµ multiplied with

T 3
W

1

2
(1 − γ5) − sin2 θW Q ≡ 1

2
CV − 1

2
CA γ5, (12.76)

with

CV = T 3
W − 2 sin2 θW Q, (12.77)

CA = T 3
W . (12.78)

From this coupling it is straightforward to calculate the partial width for Z0 into a fermion-antifermion
pair,

Γ(Z0 → ff) =
MZ

48π

g2

cos2 θW
(C2

V + C2
A). (12.79)

For the electron, muon or tau, leptons with CV = −1/2 + 2 sin2 θW ≈ −0.05 and CA = −1/2 we
calculate Γ(e+e−) ≈ 78.5 MeV (exp. Γe ≈ Γµ ≈ Γτ ≈ 83 MeV). For each neutrino species (with CV =
1/2 and CA = 1/2 one expects Γ(νν) ≈ 155 MeV. Comparing this with the total width into (invisible!)
channels, Γinvisible = 480 MeV one sees that three families of (light) neutrinos are allowed. Actually
including corrections corresponding to higher order diagrams the agreement for the decay width into
electrons can be calculated much more accurately and the number of allowed (light) neutrinos turns
to be even closer to three.

The masses of the fermions and the coupling to the Higgs particle are contained in L (h2). With
the choosen vacuum expectation value for the Higgs field, one obtains

L
(h2) = −Ge v√

2
(eLeR + eReL) − Ge√

2
(eLeR + eReL)h

= −me ee−
me

v
eeh. (12.80)

First, the mass of the electron comes from the spontaneous symmetry breaking but is not predicted
(it is in the coupling Ge). The coupling to the Higgs particle is weak as the value for v calculated e.g.
from the MW mass is about 250 GeV, i.e. me/v is extremely small.

Finally we want to say something about the weak properties of the quarks, as appear for instance
in the decay of the neutron or the decay of the Λ (quark content uds),

e-

νe

-
W

d

u

n −→ pe−νe ⇐⇒ d −→ ue−νe,

e-

νe

-
W

u

s

Λ −→ pe−ν̄e ⇐⇒ s −→ ue−ν̄e.
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Figure 12.3: Appropriate YW and T 3
W assign-

ments of quarks, leptons, their antiparticles
and the electroweak gauge bosons as appearing
in each family. The electric charge Q is then
fixed, Q = T 3

W + YW /2 and constant along
specific diagonals as indicated in the figure.
The pattern is actually intriguing, suggesting
an underlying larger unifying symmetry group,
for which SU(5) or SO(10) are actually nice
candidates. We will not discuss this any fur-
ther in this chapter.

The quarks also turn out to fit into doublets of SU(2)W for the lefthanded species and into singlets
for the righthanded quarks. As shown in Fig. 12.3, this requires particular YW -T 3

W assignments to get
the charges right.

A complication arises for quarks (and as we will discuss in the next section in more detail also
for leptons) as it are not the ’mass’ eigenstates that appear in the weak isospin doublets but linear
combinations of them, 


u
d′





L




c
s′





L




t
b′





L

,

where 



d′

s′

b′





L

=





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b





L

(12.81)

This mixing allows all quarks with T 3
W = −1/2 to decay into an up quark, but with different strength.

Comparing neutron decay and Λ decay one can get an estimate of the mixing parameter Vus in the
socalled Cabibbo-Kobayashi-Maskawa mixing matrix. Decay of B-mesons containing b-quarks allow
estimate of Vub, etc. In principle one complex phase is allowed in the most general form of the CKM
matrix, which can account for the (observed) CP violation of the weak interactions. This is only true
if the mixing matrix is at least three-dimensional, i.e. CP violation requires three generations. The
magnitudes of the entries in the CKM matrix are nicely represented using the socalled Wolfenstein
parametrization

V =





1 − 1
2 λ

2 λ λ3A(ρ− i η)
−λ 1 − 1

2 λ
2 λ2A

λ3 A(1 − ρ− i η) −λ2A 1




+ O(λ4)

with λ ≈ 0.227, A ≈ 0.82 and ρ ≈ 0.22 and η ≈ 0.34. The imaginary part i η gives rise to CP violation
in decays of K and B-mesons (containing s and b quarks, respectively).
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12.5 Family mixing in the Higgs sector and neutrino masses

The quark sector

Allowing for the most general (Dirac) mass generating term in the lagrangian one starts with

L
(h2,q) = −QLφΛdDR −DRΛ†dφ

†QL −QLφ
cΛuUR − URΛ†uφ

c†QL (12.82)

where we include now the three lefthanded quark doublets in QL, the three righthanded quarks with
charge +2/3 in UR and the three righthanded quarks with charges −1/3 inDR, each of these containing

the three families, e.g. UR =


uR cR tR



. The Λu and Λd are complex matrices in the 3×3 family

space. The Higgs field is still limited to one complex doublet. Note that we need the conjugate Higgs
field to get a U(1)Y singlet in the case of the charge +2/3 quarks, for which we need the appropriate
weak isospin doublet

φc =




φ0∗

−φ−


 =
1√
2




v + h

0



 .

For the (squared) complex matrices we can find positive eigenvalues,

Λu Λ†u = VuG
2
u V
†
u , and Λd Λ†d = Vd G

2
d V
†
d , (12.83)

where Vu and Vd are unitary matrices, allowing us to write

Λu = VuGu W
†
u and Λd = Vd Gd W

†
d , (12.84)

with Gu and Gd being real and positive and Wu and Wd being different unitary matrices. Thus one
has

L
(h2,q) =⇒ −DLVd MdW

†
dDR −DRWd Md V

†
d DL − ULVu MuW

†
uUR − URWu Mu V

†
uUL (12.85)

with Mu = Guv/
√

2 (diagonal matrix containingmu, mc andmt) and Md = Gdv/
√

2 (diagonal matrix
containing md, ms and mb). One then reads off that starting with the family basis as defined via the
left doublets that the mass eigenstates (and states coupling to the Higgs field) involve the righthanded

states Umass
R = W †uUR and Dmass

R = W †dDR and the lefthanded states Umass
L = V †uUL and Dmass

L =

V †d DL. Working with the mass eigenstates one simply sees that the weak current coupling to the W±

becomes UL γ
µDL = U

mass

L γµ V †uVd D
mass
L , i.e. the weak mass eigenstates are

D′L = Dweak
L = V †u Vd D

mass
L = VCKMDmass

L , (12.86)

the unitary CKM-matrix introduced above in an ad hoc way.

The lepton sector (massless neutrinos)

For a lepton sector with a lagrangian density of the form

L
(h2,ℓ) = −LφΛeER − ERΛ†eφ

†L, (12.87)

in which

L =




NL

EL





is a weak doublet containing the three families of neutrinos (NL) and charged leptons (EL) and ER is
a three-family weak singlet, we find massless neutrinos. As before, one can write Λe = Ve GeW

†
e and

we find
L

(h2,ℓ) =⇒ −Me

(
ELVeW

†
eER − ERWeV

†
e EL

)
, (12.88)

with Me = Gev/
√

2 the diagonal mass matrix with masses me, mµ and mτ . The mass fields Emass
R

= W †eER, Emass
L = V †e EL. For the (massless) neutrino fields we just can redefine fields into Nmass

L =
V †e NL, since the weak current is the only place where they show up. The W -current then becomes
EL γ

µNL = E
mass

L γµNmass
L , i.e. there is no family mixing for massless neutrinos.



The standard model 129

The lepton sector (massive Dirac neutrinos)

In principle a massive Dirac neutrino could be accounted for by a lagrangian of the type

L
(h2,ℓ) = −LφΛeER − ERΛ†eφ

†L− LφcΛnNR −NRΛ†nφ
c†L (12.89)

with three righthanded neutrinos added to the previous case, decoupling from all known interactions.
Again we continue as before now with matrices Λe = VeGe W

†
e and Λn = Vn GnW

†
n, and obtain

L
(h2,ℓ) =⇒ −ELVe MeW

†
eER − ERWe Me V

†
e EL −NLVnMnW

†
nNR −NRWnMn V

†
nNL. (12.90)

We note that there are mass fields Emass
R =W †eER, Emass

L = V †e EL, Nmass
L = V †nNL andNmass

R =W †nNR

and the weak current becomes EL γ
µNL = Emass

L γµ V †e VnN
mass
L . Working with the mass eigenstates

for the charged leptons we see that the weak eigenstates for the neutrinos are Nweak
L = V †e NL with

the relation to the mass eigenstates for the lefthanded neutrinos given by

N ′L = Nweak
L = V †e VnN

mass
L = U †PMNSN

mass
L , (12.91)

with UPMNS = V †n Ve known as the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix.
For neutrino’s this matrix is parametrized in terms of three angles θij with cij = cos θij and

sij = sin θij and one angle δ,

UPMNS =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13 e
iδ

0 1 0
−s13 eiδ 0 c13









c12 s12 0
−s12 c12 0

0 0 1




, (12.92)

a parametrization that in principle also could have been used for quarks. In this case, it is particularly
useful because θ12 is essentially determined by solar neutrino oscillations requiring ∆m2

12 ≈ 8 × 10−5

eV2 (conventionm2 > m1), while θ23 then is determined by atmospheric neutrino oscillations requiring
|∆m2

23| ≈ 2.5×10−3 eV2. The mixing is intriguingly close to the Harrison-Perkins-Scott tri-bimaximal
mixing matrix

UHPS =





1 0 0

0
√

1/2 −
√

1/2

0
√

1/2
√

1/2









√

2/3
√

1/3 0

−
√

1/3
√

2/3 0
0 0 1




=





√

2/3
√

1/3 0

−
√

1/6
√

1/3 −
√

1/2

−
√

1/6
√

1/3
√

1/2




.

(12.93)

The lepton sector (massive Majorana fields)

An even simpler option than sterile righthanded Dirac neutrinos, is to add in Eq. 12.88 a Majorana
mass term for the (lefthanded) neutrino mass eigenstates,

L
mass,ν = −1

2

(
MLN c

LNL +M∗LNLN
c
L

)
, (12.94)

although this option is not attractive as it violates the electroweak symmetry. The way to circumvent
this is to introduce as in the previous section righthanded neutrinos, with for the righthanded sector
a mass term MR,

L
mass,ν = −1

2

(
MRNRN

c
R +M∗RN

c
RNR

)
. (12.95)

In order to have more than a completely decoupled sector, one must for the neutrinos as well as
charged leptons, couple the right- and lefthanded species through Dirac mass terms coming from the
coupling to the Higgs sector as in the previous section. Thus (disregarding family structure) one has
two Majorana neutrinos, one being massive. For the charged leptons there cannot exist a Majorana
mass term as this would break the U(1) electromagnetic symmetry. For the leptons, the left- and
righthanded species then just form a Dirac fermion.
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For the neutrino sector, the massless and massive Majorana neutrinos, coupled by a Dirac mass
term, are equivalent to two decoupled Majorana neutrinos (see below). If the Majorana mass MR ≫
MD one actually obtains in a natural way one Majorana neutrino with a very small mass. This is
called the see-saw mechanism (outlined below).

For these light Majorana neutrinos one has, as above, a unitary matrix relating them to the weak
eigenstates. Absorption of phases in the states is not possible for Majorana neutrinos, however, hence
the mixing matrix becomes

VPMNS = UPMNSK with K =





eiα1/2 0 0

0 eiα2/2 0
0 0 1




. (12.96)

containing three (CP-violating) phases (α1, α2 and δ).

The see-saw mechanism

Consider (for one family N = n) the most general Lorentz invariant mass term for two independent
Majorana spinors, Υ′1 and Υ′2 (satisfying Υc = Υ and as discussed in chapter 6, Υc

L ≡ (ΥL)c = ΥR

and Υc
R = ΥL). We use here the primes starting with the weak eigenstates. Actually, it is easy to see

that this incorporates the Dirac case by considering the lefthanded part of Υ′1 and the righthanded
part of Υ′2 as a Dirac spinor ψ. Thus

Υ′1 = nc
L + nL, Υ′2 = nR + nc

R, ψ = nR + nL. (12.97)

As the most general mass term in the lagrangian density we have

L
mass = −1

2

(
ML nc

L nL +M∗L nL n
c
L

)
− 1

2

(
MR nR n

c
R +M∗R n

c
R nR

)

− 1

2

(
MD nc

L n
c
R +M∗D nL nR

)
− 1

2

(
MD nR nL +M∗D nc

R n
c
L

)
(12.98)

= −1

2



nc
L nR







ML MD

MD MR








nL

nc
R



+ h.c. (12.99)

which for MD = 0 is a pure Majorana lagrangian and for ML = MR = 0 and real MD represents the
Dirac case. The mass matrix can be written as

M =




ML |MD| eiφ

|MD| eiφ MR



 (12.100)

taking ML and MR real and non-negative. This choice is possible without loss of generality because
the phases can be absorbed into Υ′1 and Υ′2 (real must be replaced by hermitean if one includes
families). This is a mixing problem with a symmetric (complex) mass matrix leading to two (real)
mass eigenstates. The diagonalization is analogous to what was done for the Λ-matrices and one finds
U M UT = M0 with a (unitary) matrix U , which implies U∗M † U † = U∗M∗U † = M0 and a ’normal’
diagonalization of the (hermitean) matrix MM †,

U (MM †)U † = M2
0 , (12.101)

Thus one obtains from

MM † =




M2

L + |MD|2 |MD|
(
ML e

−iφ +MR e
+iφ
)

|MD|
(
ML e

+iφ +MR e
−iφ
)

M2
R + |MD|2



 , (12.102)
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the eigenvalues

M2
1/2 =

1

2

[

M2
L +M2

R + 2|MD|2

±
√

(M2
L −M2

R)2 + 4|MD|2 (M2
L +M2

R + 2MLMR cos(2φ))

]

, (12.103)

and we are left with two decoupled Majorana fields Υ1 and Υ2, related via



Υ1L

Υ2L



 = U∗



nL

nc
R



 ,




Υ1R

Υ2R



 = U




nc

L

nR



 . (12.104)

for each of which one finds the lagrangians

L =
1

4
Υi i

↔
/∂ Υi −

1

2
Mi Υi Υi (12.105)

for i = 1, 2 with real masses Mi. For the situation ML = 0 and MR ≫ MD (taking MD real) one
finds M1 ≈M2

D/MR and M2 ≈MR.

Exercises

Exercise 12.1

Consider the case of the Weyl mode for symmetries. Prove that if the generators Qa generate a
symmetry, i.e. [Qa, H ] = 0, and |a〉 and |a′〉 belong to the same multiplet (there is a Qa such that
|a′〉 = Qa|a〉) then H |a〉 = Ea|a〉 implies that H |a′〉 = Ea|a′〉, i.e. a and a′ are degenerate states.

Exercise 12.2

Derive for the vector and axial vector currents, ~V µ = ψγµ ~Tψ and ~Aµ = ψγµγ5
~Tψ

∂µ
~V µ = i ψ [M, ~T ]ψ,

∂µ
~Aµ = i ψ {M, ~T} γ5 ψ.

Exercise 12.3

(a) The coupling of the Z0 particle to fermions is described by the vertex

−i g

2 cos θW

(

Cf
V γ

µ − Cf
A γ

µγ5

)

,

with

CV = T 3
W − 2Q sin2 θW ,

CA = T 3
W .

Write down the matrix element squared (averaged over initial spins and summed over final
spins) for the decay of the Z0. Neglect the masses of fermions and use the fact that the sum
over polarizations is

3∑

λ=1

ǫ(λ)
µ (p)ǫ(λ)∗

ν (p) = −gµν +
pµpν

M2
.

to calculate the width Γ(Z0 → f f̄),

Γ(Z0 → f f̄) =
MZ

48π

g2

cos2 θW

(

Cf 2
V + Cf 2

A

)

.
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(b) Calculate the width to electron-positron pair, Γ(Z0 → e+e−), and the width to a pair of neu-
trino’s, Γ(Z0 → νeν̄e). The mass of the Z0 is MZ = 91 GeV, the weak mixing angle is given by
sin2 θW = 0.231.

Exercise 12.4

Calculate the lifetime τ = 1/Γ for the top quark (t) assuming that the dominant decay mode is

t → b +W+.

In the standard model this coupling is described by the vertex

−i g
2
√

2
(γµ − γµγ5) .

The masses are mt ≈ 175 GeV, mb ≈ 5 GeV and MW ≈ 80 GeV.

Exercise 12.5

Show that the coupling to the Higgs (W+W−h, ZZh, hhh and e+e−h) are proportional to the mass
squared (bosons) or mass (fermions) of the particles. Note that you can find the answer without
explicit construction of the interaction terms in the lagrangian.

Exercise 12.6

Check that the use of the Wolfenstein parametrization in the CKM matrix indeed gives a unitary
matrix, at least up to a high (which?) order in λ.

Exercise 12.7

In this exercise two limits are investigated for the two-Majorana case.

(a) Calculate for the special choice ML = MR = 0 and MD real, the mass eigenvalues and show
that the mixing matrix is

U =
1√
2




1 1
i −i





which enables one to rewrite the Dirac field in terms of Majorana spinors. Give the explicit
expressions that relate ψ and ψc with Υ1 and Υ2.

(b) A more interesting situation is 0 = ML < |MD| ≪ MR, which leads to the socalled see-saw
mechanism. Calculate the eigenvalues ML = 0 and MR = MX . Given that neutrino masses
are of the order of 0.05 eV, what is the mass MX if we take for MD the electroweak symmetry
breaking scale v (about 250 GeV).


