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CHAPTER 5: GALAXIAN 
DEMOGRAPHY 

1. Introduction 
So far, we have considered galaxies in isolation from 
each other. We should now look at the how galaxies are 
distributed in luminosity and real space. First, though, 
let us look at what samples of galaxies are available for 
study. 

2. Samples of Galaxies 
2.1 Photographic Atlases 
There are two main photographic atlases of the sky – the 
Palomar Observatory Sky Survey (POSS) and the ESO-
SERC Southern Sky Survey. The former covers the 
northern sky from the Schmidt telescope on Mount 
Palomar in California. It consists of 879 pairs of glass 
plates 6 by 6 degrees in extent. The blue band plates 
reach magnitude 21.1 and the red plates magnitude 20.0. 
The ESO-SERC Southern Sky Survey covers the 
southern sky from the Schmidt telescope at Siding 
Spring in New South Wales. Again, it is on 6 by 6 
degree glass plates. More recently optical surveys such 
as the Sloan Digital Sky Survey (SDSS) have been 
carried out using modern CCD detectors. 

2.2 Optical Catalogues 
The two main galaxy – as opposed to general – 
catalogues are those of Shapley Ames, covering the 
northern sky down B~13, and Zwicky, also covering the 
northern sky but down to B~15. The New General 
Catalogue (NGC) and Upsala Galaxy Catalogue (UGC) 
also go down to this limit but include objects other than 
galaxies. 

2.3 Infrared Surveys 
The are several infrared surveys. The pioneering 
Caltech 2µm survey was carried out by Gerry 
Neugebauer and Eric Becklin in 1969 using a fairly 
primitive detector and a chart recorder. At the other end 
of the scale, the Infrared Astronomy Satellite (IRAS) 
mapped the entire sky at 12, 25, 60 and 120 µm in the 
mid-1980s and revealed several entirely new classes of 
object, including ultraluminous galaxies. 

2.4 X-Ray Surveys 
X-ray surveys have to be done from space because the 
Earth’s atmosphere is opaque to these rays. The classic 
surveys of the 1970s, by the UHURU, Ariel V and 
HEAO-1 satellites, found mostly (a) active galaxies and 
quasars, and (b) diffuse hot gas in clusters of galaxies. 
The Einstein satellite, in the 1980s and the ROSAT 
mission in the 1990s found yet more AGN but were 
sensitive enough to see normal galaxies as well. 

2.5 Radio Surveys 
These are carried out with large telescopes on the 
ground. By using interferometry between telescopes 
separated by up to intercontinental distances, very high 

angular resolution can be achieved. The early (1960s) 
low-frequency surveys such as the third Cambridge 
(3C) and the Parkes (PKS) Australian surveys revealed 
mainly the classic doubles sources and quasars. The 
higher-frequency surveys of the 1970s revealed blazers 
while the very deep surveys of the 1980s and 1990s 
contain starburst galaxies. 

2.6 Redshift Surveys 
All the above surveys are two-dimensional; that is, they 
give merely the angular position of the source on the 
sky. If we are to get a three-dimensional picture, we 
need to measure the redshifts for a whole sample of 
galaxies. Major redshift surveys include: 

• the Centre for Astrophysics (CfA) survey of all 
Zwicky galaxies in the north down to B ~ 14.5; 

• the extended CfA survey, which has “slices” of sky 
down to B ~ 15.5; 

• the Queen Mary, Durham, Oxford and Toronto 
(QDOT) all-sky survey of IRAS galaxies with 
S(60µm) > 0.6 Jy; 

• the Stromlo-APM Redshift Survey, 

• the Sloan Digital Sky Survey in N and S; 

• the 2 Degree Field Galaxy Redshift survey (2dF 
GRS) in the South; 

as well as several others over small areas of the sky. 

3. Luminosities of Galaxies 
3.1 Flux-Limited Surveys 
3.1.1 NUMBER COUNTS 

Suppose for a moment that all galaxies have the same 
luminosity L. Such a galaxy at a distance r will be 
observed with a flux density S given by1 
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Alternatively, the distance r(S) of a galaxy observed 
with flux density S is given by 
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1 In this Chapter we shall use S for the flux density instead of our 
previous notation F! 



PHY-412 Physics of Galaxies  Chapter 5 
 

© P E Clegg 2001, revised by B J Carr 2007 - 2 -  (28/11/2007) 

 
Figure 5-1. Observed volume of space. 

Suppose that we observe a solid angle Ω on the sky, as 
shown in Figure 5-1. The volume V(S) of space 
observed out to distance r(S) is given by 
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Let the number of galaxies per unit volume of space be 
φ. Then the number N(S) of galaxies observed to have 
flux density greater than S is given by  
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That is, the observed number of galaxies brighter than a 
given flux density is inversely proportional to the three-
halves power of that flux density2. 

You will object that galaxies do not all have the same 
luminosity. On the contrary, they have a wide range of 
values of L. Surprisingly perhaps, this does not alter the 
above conclusion! Let φ(L)dL be the number of galaxies 
per unit volume with luminosity in the range L to 
L + dL. φ(L) is called the galaxy luminosity function. 
Then, following the above argument, the number 
dN(S,L)dL of galaxies whose luminosities lie in the 
range L to L + dL and which are observed to have flux 
greater than S is given by 
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2 Our derivation assumes (a) that space is Euclidean and static and (b) 
that φ(S) is independent of time. We shall see later that we shall have 
to modify these assumptions for objects at great distances. 

where r(S,L) is the distance at which a source of 
luminosity L will be observed with flux density S and 
V(S,L) is the observed volume of space within r(S,L). 
Integrating over all values of L, we get for N(S), the 
total number observed brighter than S, regardless of 
their luminosity, 
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This shows that N(S) is still inversely proportional to the 
three-halves power of S, regardless of the form of φ)L).  

3.1.2 REDSHIFT SURVEYS 

How can we estimate φ(L)? We have to allow for the 
fact that, whilst we can see very luminous galaxies a 
long way off, faint ones will only be seen if they are 
nearby. If we measure the distances r of individual 
galaxies3, we can determine their luminosities directly 
from their measured flux densities: according to 
equation (3.1), 

 SrL
2

4!= .  

Suppose we survey a solid angle Ω of the sky down to 
some limiting flux density Slim. That is, we count all 
galaxies within this solid angle whose flux density 
exceeds Slim. In such a survey, the distance rmax out to 
which a galaxy of luminosity L could still be seen is 
given, according to equation (3.2), by 
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A galaxy of luminosity L will therefore appear in the 
survey provided that it is in the volume Vmax(L) of space 
given by 

 ( )
( )

!=
3

3
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Lr
LV . (3.8) 

The total number N(L)dL of galaxies appearing in the 
survey, with luminosities in the range L to L + dL, is 
therefore given by 

 ( ) ( ) ( )dLLLVdLLN !"=
max

. (3.9) 

Re-arranging equation (3.9), we get 

                                                             
3 For all but the nearest galaxies, we do this by measuring the galaxy's 
redshift and using Hubble's law. Because each galaxy has its own 
peculiar velocity superimposed upon the Hubble velocity. this leads to 
some error in r. Alternatively. if we are trying to determine φ(L) for a 
cluster of galaxies, we can assume that they are all at the same 
distance. 
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In the last line we used equations (3.7) and (3.8) to 
show what is required to determine φ(L). The 
observational procedure for determining φ(L) is, 
therefore: 

(a) observe a solid angle Ω on the sky and catalogue all 
galaxies within it above the limiting flux density 
Slim; 

(b) determine the redshift and hence the distance of each 
galaxy within the sample; 

(c) calculate the luminosity of each galaxy and the 
corresponding maximum volume Vmax(L) using 
equations (3.7) and (3.8); 

(d) divide the sample into bins of width ΔL in 
luminosity; 

(e) for each bin, calculate φ(L)ΔL from 
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(f) draw a smooth curve from the resulting histogram of 
φ(L)ΔL to give an estimate of φ(L). 

 

3.2 The Luminosity Function 
3.2.1 THE OPTICAL LUMINOSITY FUNCTION 

3.2.1.1 The Schechter Function 

The result of carrying out the procedure of section 3.1.2 
is that we find φ(L) to be well represented by the 
Schechter function: 
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where φ, L  and α are constants. The observed values 
of these constants depend upon the type of galaxy and 
its environment but overall values are:4 
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The Schechter function is plotted in Figure 5-2. 

                                                             
4 Recall that the current value for h is now well determined as 0.7. 
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Figure 5-2. The Schechter luminosity function. 

In the same way that we introduced νS(ν) – the SED – 
as a crude measure of the power emitted by a galaxy at 
frequency ν, it is convenient to employ the luminosity 
distribution Lφ(L) as a measure of the number of 
galaxies with luminosity L. We have, from equation 
(3.12), 
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which is plotted in Figure 5-3. If we like, we can regard 
L as the luminosity of a “typical” galaxy and φ as the 
number of galaxies per unit volume with luminosity 
close to L. In this sense, a typical galaxy has a 
luminosity of about 1010 Lsun, like our own, and there is 
about one of them in every hundred cubic megaparsecs 
of space. We should realise, however, that there is an 
ever-increasing number of faint galaxies – dwarfs – and 
that there are rather few galaxies with luminosity greater 
than L.  
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Figure 5-3. The Schechter luminosity distribution. 

Given that the observed luminosity function has the 
Schechter form, we can now see what the distribution of 
luminosities in the flux-limited survey looks like. From 
equations (3.7), (3.8) and (3.9), we have 
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Figure 5-4. Numbers in flux-limited survey. 

N(L) is plotted in Figure 5-4. The number of galaxies in 
the survey can be seen as a function of luminosity near5 
L. Thus, the survey – our picture of the universe – is 
dominated by luminous galaxies, even though space 
itself is dominated by dwarfs6. 

3.2.1.2 The Total Number Density of Galaxies 

In principle, we should be able to obtain the total 
number of galaxies per unit volume Ngalaxies by 
integrating the observed luminosity function over all 
luminosities: 

 ( )dLLN != "galaxies . (3.16) 

Unfortunately, if we substitute the Schechter function 
for φ(L), the integral diverges at the low-luminosity 
end7. At face value, this implies that space is infinitely 
full of infinitesimally dull galaxies. In reality, we infer 
that the luminosity function must steepen somewhere 
towards the low end. Best estimates are that 

 -332
galaxies Mpc 10~ hN

! . (3.17) 

Relation (3.17) means that, on average, each galaxy 
occupies a volume Vgalaxy given by 

 33
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5 In fact at about 0.4 L. 
6 This is the same effect as we see when we look at the night sky. 
Although low-mass, low luminosity stars dominate the stellar 
population of the galaxy, our flux-limited eyes see mainly luminous 
stars. 
7 This is because α in the Schechter function is greater than unity. If it 
were less than unity, the integral would diverge at the high end. 

so that galaxies are typically separated by a distance 
rgalaxies given by 

 Mpc5~~ 13/1
galaxiesgalaxies

!
hVr . (3.19) 

3.2.1.3 The Total Luminosity Density of Galaxies 

The total luminosity density Ltotal is given by 

 ( )! dLLLL "=
total . (3.20) 

For the Schechter function, this converges at both ends 
and we find that 
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If we assume a mass-luminosity ratio for galaxies, we 
can estimate the mass-density ρgalaxies of matter in 
galaxies: 
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As we saw in chapter 2, the mass-luminosity ratio of 
galaxies is not well defined. If we use the value for 
spiral galaxies, derived from rotation curves, we get 
from equations (3.9) and (3.22), 
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If we use the value for ellipticals, on the other hand, we 
get 
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We may tentatively conclude that the total mass-density 
of the universe in the form of galaxies8 lies somewhere 
in this range. These figures should be compared with the 
critical density 

 

! 

"crit =1.8 #10$26
h

2 kg m-3  , (3.25) 

which must be exceeded to close the universe. 

 

3.2.2 THE LUMINOSITY FUNCTION AT OTHER 
WAVELENGTHS 

At radio and X-ray wavelengths, surveys are dominated 
by active galaxies. The form of the luminosity function 
is 

                                                             
8 We shall see shortly that there is a significant amount of matter in 
between galaxies. 
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This power-law is steeper than that for the optical band 
but there is no exponential cut-off. At the far-infrared 
wavelengths surveyed by the IRAS satellite, the 
function has the form 

 

! 

" L( )#L$% , % ~ 1$ 3 , (3.27) 

with the power falloff getting steeper as the luminosity 
increases. At low luminosities therefore, the function is 
flat as in the optical. At high luminosities, it is steep like 
active galaxies. 

4. Groups and Clusters of Galaxies  
4.1 A Tour of Clustering (cf. ref. [1]) 
4.1.1 THE GALAXY AND ITS SATELLITES 

Let us work up from the smallest associations to the 
biggest. Our own Galaxy, some 30 kpc in diameter, is 
accompanied by several satellites, the two largest being 
the Large Magellanic Cloud (LMC) at a distance of 
about 55 kpc and the Small Magellanic Cloud (SMC) 
about 67 kpc away, both irregular galaxies. Other dwarf 
satellites are Sculptor, Draco and Ursa Minor, all 
between 50 and 100  kpc away. 

4.1.2 THE LOCAL GROUP 

Excluding the Magellanic Clouds, there are three major 
players in the local group, listed in Table 5.1, which 
also gives their types, magnitudes, distances and 
velocities9 with respect to the Galaxy. Note that both 
M31 (Andromeda) and M33 are approaching us, 
showing that they are too close for their velocities to be 
dominated by the Hubble flow. 

Table 5.1. The Local Group 

Galaxy Type MV Distance 
(kpc) 

Velocity 
(km s-1) 

Galaxy Sbc -20.5 - - 

M31 Sbc -21.2 710 -299 

M33 Sc -19.1 850 -183 

The local group also contains about 26 dwarf galaxies10 
– mostly irregular and elliptical – with apparent 
magnitudes down to about –7.9. Their distances range 
out to about 600 kpc. 

 

 

 

 

 

                                                             
9 Velocities are conventionally given a positive sign if they are 
receding from us. 
10 Remember that most galaxies are dwarfs. 

4.1.3 NEARBY GROUPS 

Table 5.2. Nearby Groups 

Group Distance 
(Mpc) 

Velocity 
(km s-1) 

Sculptor 1.9 -59 

M81 2.9 298 

NGC5128 4.3 695 

Canes Venatici I 5.1 574 

M101 6.8 498 

Table 5.2 lists the major nearby groups, which are 
similar to the Local Group, with a few large galaxies 
and lots of small ones. The quoted distances and 
velocities are the mean values for the group. Note that 
the velocities are still governed by local dynamics rather 
than the Hubble flow. NGC5128, for example, has 2.5 
times the velocity predicted for h = 0.65. There are 
about ten other small groups out to about 15 Mpc. 

4.1.4 THE VIRGO CLUSTER 

The Virgo Cluster, which dominates the northern sky 
and of which we are a part, contains thousands of 
galaxies. The centre of the cluster is 13-20 Mpc away 
and velocities are in the range 1200±500 km s-1, now 
Hubble dominated. 

4.1.5 OTHER NEARBY CLUSTERS11 

There are several clusters as striking as Virgo out to a 
redshift of 0.03, corresponding to a velocity of recession 
of 10,000 km s-1 and a distance of 100h Mpc. These 
clusters are listed in Table 5.3. 

Table 5.3. Local Clusters 

Cluster Velocity 
(km s-1) 

Distance 
(h-1 Mpc) 

Centaurus 3,500 350 

Hydra 3,500 350 

Pisces 5,000 500 

Perseus 5,200 520 

Coma 7,000 700 

Hercules 10,000 1,000 

 

4.1.6 SUPERCLUSTERS 

Superclusters are rather loosely defined as clusters of 
clusters on scales of 20 – 100 Mpc, with very large 
voids in between. Examples are: 

Local Supercluster 
Perseus-Pisces-A569 
Coma-A1367 
Hydra-Centaurus 
Hercules-A2197-A2199 

                                                             
11 Not that the radius of the observable universe is about 3000/h Mpc. 
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It is not clear, however, that the concept of superclusters 
is useful or has any meaning (see later). 

 

4.2 Rich Clusters of Galaxies 
4.2.1 ABELL CLUSTERS 

George Abell, one of the team carrying out the POSS in 
the 1940s, defined the concept of a rich cluster as one in 
which there was no doubt that the galaxies clustered on 
the plate were really part of a physical entity. He 
compiled a statistically complete12 catalogue of 1682 
clusters (necessarily in the northern hemisphere) and 
assigned them to classes according to their “richness”, 
defined by a rather complicated criterion. Let the third 
brightest member of the cluster have magnitude m3. 
Then the richness of the cluster is determined by the 
number of its members, within 1.7/z arcminutes – 
equivalent to 1.5 h-1 Mpc – of the cluster centre, brighter 
then m3 + 2. In terms of flux density, if the third 
brightest member has flux density S3, then the richness 
is determined by the number of galaxies in the cluster 
with flux-densities greater than 6.3 × S3. The complete 
classification is given in Table 5.4. Note that, in order to 
count as Abell-rich13, a cluster must have at least 50 
galaxies brighter than m3 + 2. 

The Abell scheme has now been extended to the 
southern sky using the ESO-SERC Southern Sky 
Survey and the combined catalogue contains 4073 
clusters. 

Table 5.4. Abell Richness Classes 

Richness Class Number of 
Galaxies brighter 

than m3 + 2 

Number of 
Clusters 

1 50 – 79 1224 

2 80 – 129 383 

3 130 – 199 68 

4 200 – 299 6 

5 >300 1 

It is found that the number density NAbell of Abell 
clusters is given by 

 -335
Abell Mpc10 hN

!
= , (4.1) 

so that, according the argument of section 3.2.1.2, the 
average separation rAbell of cluster centres is given by 

 Mpc50~~ 1-1/3
AbellAbell

!
hNr , (4.2) 

ten times the average separation of galaxies themselves. 

4.2.2 PROPERTIES OF RICH CLUSTERS 

                                                             
12 In fact, the complete catalogue also restricts the redshift range to 
between 0.02 and about 0.2. 
13 A class 0 is sometimes introduced for clusters with 30 to 49 galaxies 
brighter than m3 + 2, but Abell’s catalogue is not complete for these. 

4.2.2.1 Contents of the Clusters 

Abell divided his clusters into regular and irregular 
types. Regular clusters: 

• are circularly (and therefore probably spherically) 
symmetric; 

• are concentrated towards the centre; 
• contain very few spirals and consist primarily of 

elliptical and S0 galaxies. 

They are the easier to study. Examples are Coma and 
Corona Borealis. Irregular clusters, such as Hercules 
and Virgo, are not centrally concentrated and contain 
more spirals. Oemler [2] distinguished the Abell types 
given in Table 5.5, which gives a brief description of the 
types and the relative proportions of elliptical, lenticular 
and spiral galaxies in each type. 

Table 5.5. 

Type Content E:S0:S 

cD Dominant cD galaxy 
(sometimes two) 

3:4:2 

Spiral-rich Similar to field galaxies 1:2:3 

Spiral-poor No dominant cD galaxy 1:2:1 

A cD galaxy is a giant elliptical with an extended stellar 
envelope up to 100 kpc in size. They are found only in 
regions of significantly enhanced galaxian density, 
suggesting that they come about form the merger of 
lesser galaxies. 

4.2.2.2 The Density Profile of Rich Clusters 

If we measure the surface number density s(θ) of 
galaxies – that is, the number of galaxies per unit solid 
angle – in a rich cluster, as a function of angular 
distance θ from the centre of the cluster, we find that it 
can be well fitted by 

 ( )
( )2

core

o

1 !!
!

+
=

s
s , (4.3) 

where so is the surface number density at the centre of 
the cluster and θcore is the angular radius at which the 
density fall to half its central value. If we assume that 
the cluster is spherically symmetric, then the spatial 
number density n(r) corresponding to (4.3) is given by 

 

! 

n r( ) =
n

o

1+ 2
2 / 3
"1( ) r r

core( )
2[ ]

 3/2

, (4.4) 

where no is the number density at the centre of the 
cluster and rcore is the core radius at which the density 
falls to half its central value. Typical values obtained 
from observations of rich clusters are: 

 
Mpc. 0.4-51.0~

;Mpc 3000~

core

-3
o

r

n
 (4.5) 

For the Coma cluster, rcore is 220 kpc. 
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4.2.2.3 Binding of Clusters 

By measuring the redshifts of individual galaxies, we 
can determine the root-mean-squared line-of-sight 
velocity 2

r
v  of the galaxies with respect to the centre 

of the cluster. A typical value is 1000 km s-1. Assuming 
that the velocity distribution is isotropic, we have for the 
total mean-squared velocity  

 

! 

v
2

= 3 v
r

2
i.e. v

2
1/ 2

= 3 v
r

2
1/ 2

. (4.6) 

A typical velocity v  of a galaxy in a cluster is, 
therefore, some 1,700 km s-1. The time τcrossing for a 
galaxy to cross the cluster is given by 

 
v

rcluster
crossing ~! . (4.7) 

Taking the size of the cluster to be ten times its core 
radius, say, we have 

 
v

rcore
crossing 10~! . (4.8) 

or, putting in  numbers, 
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( )

( )1-3

core10
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10~y

v

r
!   . (4.9) 

Typically, τcrossing is about 109 years and the galaxies 
have had time to make many crossings in the life of the 
universe. This is evidence that the galaxies we see in the 
cluster are bound since otherwise the cluster would have 
dispersed by now. 

4.2.2.4 Cluster Relaxation Times 

In chapter 3, we derived an expression for the time 
τcollision between collisions of objects of moving 
randomly. In a notation suitable for our present case, we 
have 

 
vnRgalaxy

2collision

4

1

!
" = , (4.10) 

where Rgalaxy is the radius of an individual galaxy and n 
is the number-density of galaxies in the cluster. Putting 
in numbers, we get 

 

! 

" collision y( ) =
7.6 #1016

Rgalaxy

2 (kpc)n(Mpc-3) v (km s$1)
 (4.11) 

Taking Rgalaxy ~ 15 kpc, 

! 

v
2
1/ 2

~ 2000 km s-1. and n ~ 

3000 Mpc-3 for the cores of clusters, we find that τcollision 
is a few times 107 years, so that many collisions have 
taken place in the lifetime of the cluster. Even in the 
outer regions, where the density has fallen by an order 
of magnitude, collisions will still be frequent on a 

cosmological time scale. We may therefore consider 
these rich clusters to be dynamically relaxed. (i.e. there 
has been plenty of time for the galaxies within the 
cluster to interact gravitationally with each other and 
share their energies.) 

4.2.2.5 The Isothermal Sphere 

Equation (4.4) is a good approximation to what we 
should expect to find if cluster were an isothermal 
sphere. What do we mean by this? Consider a perfect 
gas at temperature T. The mean kinetic energy K of the 
molecules making up the gas is given by 

 kTvmK
2

3

2

1 2

moleculesH
=! µ , (4.12) 

where µ is the mean molecular weight of the molecules, 
mH is the mass of the hydrogen atom and <v2

molecules> is 
the mean-squared velocity of the molecules.  

If the cluster is dynamically relaxed, that is, there has 
been plenty of time for the galaxies within the cluster to 
interact gravitationally with each other and share their 
energies, as discussed above, then we should expect that 
their average kinetic energy is the same everywhere in 
the cluster. By analogy with the gas of molecules, 
therefore, we should expect to be able to model the 
cluster as a perfect gas of galaxies with an effective 
temperature Tcluster given by  

 cluster
2

galaxies
2

3

2

1
kTvm = , (4.13) 

where mgalaxies is the average mass of a galaxy in the 
cluster and <v2> is their mean-squared velocity.  

If this “thermal” energy is supporting it against 
gravitational collapse, then the cluster – assumed 
spherically symmetric – must obey the equation of 
hydrostatic equilibrium14: 

 ( ) ( ) ( )
2r

rrGM

dr

rdp !
"=  (4.14) 

where p(r) and ρ(r) are respectively the density and 
effective pressure exerted by the galaxies at radius r 
from the centre of the cluster and M(r) is the mass of the 
cluster interior to r. 

Treating the galaxies as a perfect gas enables us to find 
the pressure, 

 kT
m

nkTp
!

==  , (4.15) 

so we can rewrite equation (4.14) as 
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14 See, for example, the course PHY-212 Physics and Astronomy of 
Stars. 
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or, since for this isothermal gas Tcluster is the same 
everywhere and therefore independent of r , 
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. (4.17) 

This is a differential equation in the unknown density 
ρ(r), but also involves the unknown mass M(r) which 
can only be found once the density is known by 
integrating out to r.15  However the derivative of M(r) is 
a simple function of r and ρ(r), which suggests we 
differentiate both sides of equation (4.17), to get a 
differential equation in ρ(r) alone: 
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 (4.18) 

where we have used equation (4.13) to eliminate both 
the unknowns Tcluster and mg in favour of the measured 
quantity <v2>. 

We can now recast this equation into dimensionless 
form by writing the density in units of the central 
density ρ0 and the radial coordinate in units of some 
convenient radius α. Distributing these factors equally 
on both sides of equation (4.18) gives 

 

),/()/(
v

12

)/(

)/(

)/(

1
)/(

)/(

0
2

0
2

2

0

0

2

!!"!"
#

"

!!

!!
"

"

r
G

rd

d
r

rd

d

$
$
$

%

&

'
'
'

(

)
*=

+
,

-
.
/

0

 (4.19) 

which is now in dimensionless form. Since we are free 
to choose the radius α at our convenience the obvious 
choice is to make the bracketed constant on the right 
side of equation (4.19) unity. The equation is then 
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where 
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Notice that since the mass density ρ(r) is related to the 
number density n(r) by 
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so that (4.20) is equally an equation for n(r)/no, where no 
is the central-number density. 

Equation (4.20) is a non-linear differential equation and 
must be solved numerically; its solution ω(r) is plotted 
against ξ(r) in Figure 5-5 as a full line. 
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Figure 5-5. Cluster number density profiles 

We can now evaluate α from this graph by 
remembering that the isothermal core radius rcore is the 
radius at which the number density is half the central 
density - see equation (4.4). From Figure 5-5 this 
happens at r/α = 2.25; hence α = rcore/2.25, where rcore is 
already known from fitting density profile observations 
with equations (4.3) and (4.4).  With α now known we 
can also plot in Figure 5-5 the profile (4.4) which fits 
the observed number density – the dashed curve. It can 
be seen that there is very good agreement with the 
isothermal sphere profile. We may therefore conclude 
that rich clusters are remarkably well described as 
isothermal spheres. 

Having now determined α we can use the measured 
mean-squared line-of-sight velocity <vr

2> of the 
galaxies in the cluster in the third of equations (4.21) to 
obtain the central density ρ0,16   
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The central density can therefore be obtained directly 
from observation.  

The total mass of the cluster can now be obtained by 
integrating the profile for an isothermal sphere out to 

                                                             
16 Since we can only measure the line-of-sight velocity squared 
dispersion <vr

2> we assume an isotropic velocity distribution to write 
<v2> = 3<vr

2> to estimate the full 3-dimensional value. 
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some maximum radius, say ~10rcore.17 For the Coma 
cluster, this gives a mass of 1.8 × 1015 h-1 Msun. 
Alternatively, the mass can be estimated by applying the 
virial theorem to the cluster (cf. chapter 3). Typically, 
these dynamical methods give masses of the order of 
1015 Msun for rich clusters. 

 

4.2.2.6 Intracluster Gas 

As we saw at the beginning of this chapter, X-ray 
surveys revealed diffuse emission from clusters. The gas 
responsible for this emission is at temperatures of 107 –
 108 K. Let us suppose that this gas is in hydrostatic 
equilibrium in the gravitational potential of the cluster 
so that its pressure p(r) and density ρ(r) at distance r 
from the centre of the cluster – assumed spherically 
symmetric – are related by the equation of hydrostatic 
equilibrium (4.14). We can use this equation to get a 
rough estimate of the pressure of the gas pcentre at the 
centre of the cluster. We approximate the left-hand side 
of the equation by 
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, (4.24) 

where the pressure poutside outside the cluster is taken to 
be negligible compared with that at the centre. The right 
hand side of equation (4.14) can be approximated as 
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From relations (4.24) and (4.25), we get 
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or 

 
centre

cluster

cluster

centre
~ !
r

GM
p . (4.27) 

If the gas is in thermal equilibrium18 at temperature T, 
then we can use equation (4.15) to obtain 

 kT
m

p
H

µ

!
= , (4.28) 

where µ is the mean molecular weight of the gas and mH 
is the mass of the hydrogen atom. Substituting from 

                                                             
17 This is physically reasonable as the cluster does not extend out to 
infinity. This integral would diverge if it was continued out to infinity 
so this cut-off has to be applied (cf. Longair, loc. cit.) 
18 In fact, the X-ray observations show considerable variation in 
temperature. In particular, the gas in towards the centre of the cluster 
is significantly cooler that that outside. Nevertheless, the 
approximation is adequate for our rough estimate of the cluster mass. 

(4.28) into (4.27), we get for the central temperature 
Tcentre, 
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which we can use to estimate the mass of the cluster. 
Putting in numbers, we get 
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where I have taken µ  to be about 0.5, appropriate for 
ionised primordial gas.  For a typical cluster size of a 
few Mpc, this gives masses of the order of 1015 Msun, in 
good agreement with previous estimates. 

In fact, we can do much better than this. The equation of 
hydrostatic equilibrium (4.14) can be combined with the 
perfect gas equation (4.28) to give 
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Detailed X-ray observations can determine the density 
and temperature of the gas, as a function of the distance 
from the centre of the cluster, and thus provide a 
detailed profile of the mass distribution. Again the 
results are in good agreement with other methods. 

The total mass of the cluster is typically several times 
the mass in its constituent galaxies. 

4.3 Statistics of Clustering 
4.3.1 THE PROBABILITY FUNCTIONS 

Let P(r)dV be the probability that we find a galaxy 
within volume dV at point r in space, where r is 
measured from an arbitrary origin, as shown in Figure 
5-6. If the distribution of galaxies is random, and if 
there are φ galaxies per unit volume, then 

 ( ) !=rP . (4.32) 

 

 
Figure 5-6. Probability of finding single galaxy. 



PHY-412 Physics of Galaxies  Chapter 5 
 

© P E Clegg 2001, revised by B J Carr 2007 - 10 -  (28/11/2007) 

 
Figure 5-7. Probability of finding pair of galaxies. 

Now consider the probability P(r1,r2)dV1dV2 of finding 
a galaxy within volume dV1 at r1 and another galaxy 
within dV2 at r2, as shown in Figure 5-7. By Bayes’ law, 
we have 
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P r
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,r

2( ) = P r
2

 r
1( ) P r1( ) (4.33) 

where ( )
12

 rrP dV1dV2 is the conditional probability of 
finding a galaxy within dV2 at r2, given that there is 
already one within dV1 at r1. If the distribution of 
galaxies were entirely random, then the probability of 
finding a galaxy within dV2 at r2 will be completely 
independent of the presence of the galaxy within dV1 at 
r1. In that case 

 ( ) ( ) !==
212

 rrr PP , (4.34) 

and 

 ( ) 21
2

2121, dVdVdVdVP !=rr , (4.35) 

Suppose that this is not the case but that the probability 
of finding the second galaxy is dependent on the 
presence of the first. If space is isotropic, then ( )

12
 rrP  

will depend only on the magnitude r of the difference 
between r1 and r2: 

 ( ) ( ) ( )rPPP =!=
1212

 rrrr . (4.36) 

4.3.2 THE TWO-POINT CORRELATION FUNCTION 

Let us write P(r) in the form 

 ( ) ( )[ ]rrP !" += 1 . (4.37) 

ξ(r) is called the two-point correlation function because 
it is a measure of the probability of finding galaxies at 
two different points in space. Note that, if ξ(r) is zero, 
then P(r) is independent of r and is equal to φ. This 
means that the probability of finding the second galaxy 
is independent of the presence of the first. ξ(r) therefore 
measures the excess probability, above random, of 
finding a second galaxy near the first. Note that if 
ξ(r) > 0, then the probability is greater than random, 
indicating that galaxies tend to cluster together. If, on 

the other hand, ξ(r) < 0,  galaxies tend to avoid each 
other and we have anti-clustering. 

A statistical analysis of galaxy-pairs gives 
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so that ξ(r) is positive as we should expect. The result 
(4.38) shows that the probability of finding another 
galaxy at 1 Mpc from another is 12 times the random 
probability and, even at 10 Mpc, is 1.2 times greater 
than if the distribution were random. 

We find that ξ(r) given by (4.38) is the same 
everywhere except in rich clusters: it is a universal 
clustering function. Note that it is scale-free. It has no 
characteristic scale length that would determine a 
typical size for clusters; it merely goes on decreasing 
indefinitely. This is what we should expect if it is 
determined by gravity, which itself has no characteristic 
scale length. 

We do not observe the three-dimensional function ξ(r) 
directly, of course. We use two-dimensional atlases or 
catalogues to estimate the probability P(θ)dΩ of finding 
another galaxy within solid angle dΩ at an angular 
separation θ of another galaxy. If we write P(θ)dΩ in 
the form 

 ( ) ( )[ ]!"#! +$= 1ddP , (4.39) 

where σ is the average surface-density of galaxies on 
the sky, then it is easy to show that 
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where γ is the same index as appears in relation (4.13). 
If we measure ω(θ ) we can therefore determine ξ(r). 

In Figure 5-8 we show the recently published 
(November, 2005) two-point correlation function ξ(r) 
from the Sloan Digital Sky Survey extending out to 250 
Mpc (using h = 0.72). This plot is remarkable in 
showing a small enhancement in the galaxy correlation 
on scales around 150 Mpc: this is precisely the scale at 
which the Cosmic Background Radiation (CBR) 
asymmetry has a large peak (Figure 1-12, Chapter 1) 
corresponding to acoustic waves in the early universe 
400,000 years after the big bang when the (CBR) 
photons had decoupled from the matter. What we are 
seeing is the trace both in the galaxy distribution and in 
the CBR of the longest wavelength sound waves in the 
early universe. 
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Figure 5-8. the two-point correlation function ξ(r) from 
the Sloan Digital Sky Survey (ApJ 633,560,2005) 

We can also apply the correlation process to Abell 
clusters themselves. That is, we can ask for the 
probability of finding a cluster within a given distance 
of another. We find that the two-point correlation 
function ξintracluster(r) is of the same form as (4.19): 
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The power-law exponent is therefore the same as for 
individual galaxies but the scale-factor is some five 
times as great. This result emphasises that clustering, at 
least as described by the two-point correlation function, 
is a universal phenomenon. 
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