MAS423/AST001 Solar System

Coursework \#3

1. Several weeks back we showed that the radial distance of an object from the primary is related to its true anomaly, f, by the equation $r=a\left(1-e^{2}\right) /(1+e \cos f)$ where a is the semi-major axis and e the eccentricity of the orbit.
(a) Use the expressions for v^{2} (i.e. the vis-viva equation), r as a function of f and $C=-\mu / 2 a$ to show that for small values of the eccentricity e,

$$
v \approx \sqrt{\frac{\mu}{a}}\left(1+e \cos f+e^{2}\right) .
$$

(b) For small eccentricities (i.e., keeping terms to first order in e) what is the difference in speed between an object on an eccentric orbit and one with the same semi-major axis, but on a circular orbit?
(c) What is the root mean square value of this speed difference? This is sometimes called the relative or random velocity of the object. We'll use this simple result later in examining planetary accretion.

