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Introduction

I Real bodies in the solar system are not point masses.

I The finite dimensions of a body mean that, in the presence of
another mass, there will be a gravitational gradient across the
body. This gives rise to a tidal bulge.

I Measurements of the amplitude of the bulge provide
information about the internal strucure of the body.
Rotational distortion can give similar information.

I The response of a satellite to the tidal bulge it raises on a
planet can lead to orbital evolution of the satellite.



The Tidal Bulge

The magnitude of the mean
force between a planet and a
satellite is

〈F 〉 = G
mpmS

r2

as

ap
=

mp

ms

a = ap + as
Here they both orbit about the mutual
center of mass in circular orbits.



The Tidal Bulge

Consider the paths of particles inside the planet, ignoring the
rotation of the planet.

All particles within th eplanet experience the same centrifugal force
(in magnitude and direction) but a different gravitational force, F,
because of their different distances from the satellite.



The Tidal Bulge

Hence:
〈F〉 = centrifugal force 6= F

The tide generating force is then:

FTidal = F− 〈F〉

Rotational forces also deform a body, but if tidal and rotational
deformations are small then they can be treated separately and
added.
We are actually more concerned with the gravitational potential
that gives rise to the tidal bulge. This is because if a body is in
hydrostatic equilibrium then its surface is equipotential.



The Tidal Bulge

Consider the potential V , at some point, P, on the surface of the
planet. Then we have
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Tidal Bulge

We expanded ∆ in terms of (Rp/a) and cosψ and find the tide
raising potential can be expressed as

V3(ψ) = −G
ms

a3
R2

pP2(cosψ)

where P2(x) = 1
2(3x2 − 1) is the Legendre polynomial of degree 2.

Since,

Ftidal

mp
=

F

mp
− 〈F〉

mp
= −∇V − 〈F〉

mp
≈ −∇V3(ψ)

this is the tide raising part of the potential.



The Tidal Bulge

This potential can also be written as:

V3(ψ) = −ζgP2(cosψ)

where

ζ =
ms

mp

(
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a

)3
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Gmp
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The Tidal Bulge - Amplitude

I Here the quantity, ζP2(cosψ) is the amplitude of the
equilibrium tide.

I A plot of P2(cosψ) = 1
2(3 cos2 ψ − 1) as a function of ψ,

shows two maxima and two minima per cycle. This is why
there are two tides per day.

I For the tide raised on the Earth by the Moon, ζ = 0.36m

I For the tide raised on the Earth by the Sun, ζ = 0.16m

I These interfere constructively/destructively depending on
orientation and phase of the Sun and Moon.

I And they have important other implications as well,. . .



Tidal Friction

Tidal oscillations always generate friction and this results in energy
loss and a phase shift in the tidal response of the planet.
The specific or tidal dissipation function Q is a measure of how
much dissipation is produced:

Q =
2πEo

∆E

Here ∆E is the energy lost over one cycle and Eo is the peak
energy stored during the cycle.
The tidal bulge will be carried ahead or lag behind the satellite by
an amount,ε. Note from earlier that this is related to the phase
shift, δ, and Q by

sin 2ε = sin δ =
1

Qp



Tidal Friction - Synchronous Orbit

I Lagging ahead or behind depends on the satellites orbit
relative to the synchronous orbit.

I A synchronous orbit is one where the mean motion (or angular
velocity) (n) is equal to that of the primary’s rotational
angular velocity Ωp.

I The radius of the synchronous orbit can then be found from
Kepler’s 3rd Law.

asynch =

(
Gmp

Ω2
p

)1/3



Tidal Torque

The response of the satellite to the tidal bulge it has raised
depends on whether the satellite is (a) outside synchronous orbit or
(b) inside synchronous orbit. The resulting asymmetry exerts a
torque on the satellite.



Tidal Torques

The torque, Γ, is determined by the cross product of the radius
with the force exerted on the satellite by the external potential of
the deformed planet. Hence

Γ = r × F where F = −ms∇Vext

Only the component of the force perpendicular to the line joining
the planet-satellite centers contributes to the torque.

Fψ = −
(ms

r

)(∂Vext

∂ψ

)



Torques and Energy Dissipation

For linear motion, the rate of change of energy (Power) can be
computed with

P = F · v

The rotational analog to this is

P = Γ · ω

where ω is some angular velocity.
In the present problem we have both rotational and orbital angular
velocities.



Torque & Power: Above Synchronous

I Bulge leads ahead satellite and a
torque is applied

I Work increase satellite’s orbital
energy at a rate Ės = Γn.

I An equal an opposite torque is
applied to the planet

I Work decreases planet’s rotational
energy at a rate of Ėp = −ΓΩp

I These rates are not equal.

I Mechanical energy is lost at a rate
of

Ė = Ėp + Ės = −Γ(Ωp − n) < 0



Torque & Power: Below Synchronous

I Bulge lags behind satellite and a
torque is applied

I Work decreases satellite’s orbital
energy at a rate Ės = −Γn.

I An equal an opposite torque is
applied to the planet

I Work increases planet’s rotational
energy at a rate of Ėp = ΓΩp

I Mechanical energy is lost at a rate
of

Ė = Ėp + Ės = Γ(Ωp − n) < 0

Where does the energy go?
What about angular momentum? Is it
being lost?



Tidal Energy Dissipation

In both cases the energy is dissipated as heat in the planet. The
rate of energy dissipation determines the rate of orbital evolution.
The total mechanical energy of the system is the sum of rotational
and orbital contributions. The rate of chane is

d

dt
E =

d

dt

(
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2
IΩ2
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mpms

2a
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= IΩpΩ̇p + G

mpms

2a2
ȧ

where I = 2/5MR2 is the moment of inertia of a sphere.
Kepler’s 3rd Law, G (mp + ms) = n2a3 allows us to write

Ė = IΩpΩ̇p +
1

2

mpms

(mp + ms)
n2aȧ

and this must be negative as mechanical energy is being dissipated
as heat.



Tidal Torques and Angular Momentum

However, the total angular momentum of the system is conserved.

L = IΩp +
mpms

(mp + ms)
a2n

L̇ = 0 and hence

I Ω̇p = −1

2

mpms

(mp + ms)
naȧ

This expression links orbital evolution of the satellite to the spin.
We can write subsequent expressions either in terms of Ω̇p or ȧ. If
we can find one, we also get the other.



A Common Substitution

Above have used the expression below to get a simple form.

d

dt
(a2n) = 2a

da

dt
n + a2 dn

dt

and
d

dt
(n) =

d

dt

(√
G (mp + ms)

a3/2

)
= −3

2

n

a

da

dt

so
d

dt

(
a2n
)

=

(
2an − 3

2
an

)
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Tidal Dissipation

The rate of change of mechanical energy can be written:

Ė = −1

2

mpms

(mp + ms)
naȧ(Ωp − n) (2)

Since this must be negative we have:

sgn(ȧ) = sgn(Ω̇p) = sgn(Ωp − n) (3)

Therefore:

I Satellite in prograde orbits beyond the synchronous orbit will
move outward.

I Satellites in prograde orbits inside the synchronous orbit will
move inwards.

(Also, satellites in retrograde orbits will move inward)

. . . yeah, yeah, but how fast?



The Potential the Satellite sees
The tidal potential due to the satellite that distorts the primary is:

V3(ψ) = −ζgP2(cosψ)

The amplitude of the tide that arises in the primary is

Cε2 =
(5/2)ζ

1 + µ̃

This is the amplitude (height) of the tide and it depends on the
physical response of the body to tidal distortion. Here C is the
mean radius and Here µ̃ is the ‘effective’ rigidity.

µ̃ =
19µ

2ρgR

and µ is the physical rigidity.

I µ = 5× 1010 N m−2 for rock

I µ = 4× 109 N m−2 for ice



The Love Numbers

In general, the tidal amplitude in the primary is

Cε2 =
(5/2)ζ

1 + µ̃
= h2ζ

Where h2 and k2 are the Love numbers

h2 =
(5/2)

1 + µ̃
k2 =

(3/2)

1 + µ̃

These parameterize the rigidity of the body in response to gravity.
k2 = 0 → 3/2
h2 = 0 → 5/2



What the Satellite Sees . . .

. . . is a primary that it deformed. This part of the potential
associated with the deformation.

Vnc,ext = −k2ζg

(
C

r

)3

P2(cosψ)

recall that

ζ =
ms

mp

(
C

r

)3

Rp

Using the mean radius Rp = C and r = a, the potential the
satellite sees due to its deformation of the primary is

Vnc,ext = −k2
Gms

C

(
C

r

)6

P2(cosψ)



The Tidal Torque

Now we can compute the magnitude of the torque and resulting
orbital evolution.

Γ = |Γ| = ms
∂Vnc,ext

∂ψ

∂P2(cosψ)

∂ψ
= −3

2
sin 2ψ

and the resulting torque has magnitude

Γ =
3

2
k2

Gm2
s

a6
C 5 sin 2ε

note dependence on k2, ms , and a. This can then be substituted
into our expression for Ė , Ω̇p and ȧ.



The rates of change

We know that:

Ė = −1

2

mpms

(mp + ms)
naȧ(Ωp − n)

and
Ė = −Γ(Ωp − n)

we get

Γ = −1

2

mpms
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(you should confirm the algebra and substitutions here,
e.g. Kepler’s 3rd n2 = G (mp + ms)/a

3)



Observable Consequences #1

I Apollo astronauts placed reflectors
on the lunar surface. These are
used to very accurately track the
Moon’s movements.

I For the Moon, ȧ ≈ +10−9 m/s or
about 3cm per year.

I As the Moon moves away, the
Earth’s spin slows down. Shorter
days are recorded in the fossil
record.



Tidal Orbital Evolution

The expression for ȧ can be easily integrated to give

2

13
a13/2

[
1−

(ao

a

)13/2
]

=
3k2p

Qp

(
G

mp

)1/2

C 5
p ms∆t

where ao is the initial semimajor axis and a is its value after time
∆t.
If we ignore the second term on the LHS then:

2

13
a13/2 =

3k2p

Qp

(
G
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C 5
p ms∆t

or

log a =
2

13
log ms + constant

for tidally evolved systems.



Observable Consequences #2

Saturn System Uranian System

I In both systems there seems to be evidence for tidal evolution,
with the more massive satellites lying further away from the
planet.

I We can use current a and ao = asynch to estimate lower limit
on Qp.



‘Planet’ or Primary Tides - Summary

I Tidal bulge raised in primary dissipate energy, heating the
primary.

I Tidal bulge and phase lag due to friction allow exchange of
angular momentum between orbit of secondary (satellite) and
spin of primary (planet).

I Rate of exchange is controlled by masses, separations, as well
as the rigidity of the primary and the frictional properties of
the primary (which are poorly known, and not likely constant).

I We can use observed locations of satellites near synchronous
orbit and assume they formed right at the synchronous orbit,
to estimate Qp of a planet or primary.



Despinning

From angular momentum conservation we can obtain despinning
rates. If Ip = αpmpC

2
p (where αp ≤ 2/5)

Ω̇p = − sgn(Ωp − n)
3k2p

2αpQp

m2
s

mp(mp + ms)

(
Cp

a

)3

n2 (4)

The planet also raises a tide in the satellite; facilitating angular
momentum exchange.
We can use precisely the same model to estimate the torque, and
spin evolution of the secondary.

Ω̇s = − sgn(Ωs − n)
3k2s

2αsQs

m2
p

ms(mp + ms)

(
Cs

a

)3

n2

where s denotes the satellite. Note the symmetry and mass ratio
dependence.
Generally, ms � mp, and spin-down of the satellite is much faster.



Iapetus - orbital characteristics

I Semimajor axis
a = 3.56× 106km = 59RS

I e = 0.0286125

I Prograde and inclined:
17.28◦ (to the ecliptic)
15.47◦ (to Saturn’s
equator)
7.52◦ (to local Laplace
plane)



Iapetus - physical characteristics

I A ’mid-sized’ icy satellite
of Saturn

I Mean radius R = 735 km

I Triaxial ellipsoid:
≈ 747× 749× 712 km

I Mean density ρ = 1083.0
kg m−3, (mostly ice)

I Heavily cratered ancient
surface

I Slow synchronous rotation
(79.3215 days)

I Has gross dark/light
global shading
like a frosted mini-wheat.



Iapetus - Cassini’s 2004 flyby

I Revealed Iapetus’ equatorial ridge

I Ridge height varies 10-20 km

I Sections over 1300 km

I Ridge is cratered →old

I Ridge only appears in the dark
colored area (coverage is yet not
complete)

I What produced the ridge?



What if Iapetus had its own Rings/Satellites!

I Iapetus has a large Hill sphere relative to Saturn.

I It could sustain a ring system shortly after the satellite’s
formation.

I As Iapetus despun the ring system collapsed to the satellite
surface → the ridge is a pile-up of the debris of the ring
system material.

I However, . . .
I The ridge appears quite solid rather than made of rubble.
I Recent images show the ridge to have faults running along it.



What if Iapetus formed molten and spinning rapidly?

I A rotating fluid Iapetus would be rotationally flattened.

I As Iapetus cooled it formed a thick outer ice shell (which has
some strength/rigidity).

I Tides from Saturn resulted in despinning of Iapetus
I Oblate triaxial ellipsoid is no longer supported by rotation.
I Stress causes shell to buckle at the equator as Iapetus is

despun.

I Requires that despinning takes longer than cooling and
thickening of ice shell (both things we can easily
calculate/estimate).

Neither model explains why the ridge only appears in Iapetus’ dark
colored region. . . . Stay Tuned.


