MATH 3305 General Relativity Problem sheet 7

Please hand in your solutions to exercises 1-4 by Friday, 4th December 2009. The bonus problem can be returned along with any of the remaining problem sheets.

Problem 1 (15 points) Suppose $g_{i j}$ is a metric tensor.
(a) Write out

$$
\nabla_{a} A^{i j}, \quad \nabla_{a} A_{j}^{i}
$$

using Christoffel symbols of $g_{i j}$.
(b) Show that

$$
\nabla I_{j}^{i}=0
$$

when $I^{i}{ }_{j}$ is the $\binom{1}{1}$-tensor $I^{i}{ }_{j}=\delta_{j}^{i}$.
(c) For a $\binom{0}{1}$-tensor A_{i} and a $\binom{1}{0}$-tensor B^{i} show that

$$
\nabla_{c}\left(A^{i} B_{i}\right)=\left(\nabla_{c} A^{i}\right) B_{i}+A^{i} \nabla_{c} B_{i}=W_{c i}^{i}
$$

when $W^{i}{ }_{c d}$ is the $\binom{1}{2}$-tensor $W^{i}{ }_{c d}=\nabla_{c}\left(A^{i} B_{d}\right)$.

Problem 2 (15 points) Suppose $X^{i}(\lambda)$ is a geodesic for a metric tensor $g_{i j}$, and $V^{i}(\lambda)$ is a $\binom{1}{0}$-tensor along X^{i}. Write out

$$
\frac{D}{d \lambda} \frac{D}{d \lambda} V^{i}+R_{c b d}{ }^{i} \frac{\partial X^{c}}{\partial \lambda} \frac{\partial X^{d}}{\partial \lambda} V^{b}=0
$$

in terms of Christoffel symbols of $g_{i j}$.
Problem 3 (35 points) Consider the line-element

$$
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}
$$

The non-vanishing components of the Christoffel symbol are

$$
\Gamma_{t t}^{r}=\frac{A^{\prime}}{2 B} \quad \Gamma_{t r}^{t}=\Gamma_{r t}^{t}=\frac{A^{\prime}}{2 A} \quad \Gamma_{r r}^{r}=\frac{B^{\prime}}{2 B}
$$

In two dimensions the Riemann curvature tensor has only one independent component. Show that

$$
R_{t r t r}=\frac{1}{4}\left[2 A^{\prime \prime}-A^{\prime}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)\right] .
$$

Problem 4 (35 points) Show that

$$
\nabla_{a} \nabla_{b} W_{c}-\nabla_{b} \nabla_{a} W_{c}=R_{a b c}{ }^{d} W_{d}
$$

when W_{i} is a $\binom{0}{1}$-tensor W_{i}, and $R_{a b c}{ }^{d}$ is the Riemann curvature tensor of a metric tensor $g_{i j}$.

Bonus Problem (40 points) Give a detailed argument for the identity

$$
R_{a b c d}+R_{b c a d}+R_{c a b d}=0
$$

when $R_{a b c d}=R_{a b c}{ }^{s} g_{s d}$ and $R_{a b c}{ }^{s}$ is the Riemann curvature tensor.

