MATH 3305 General Relativity Problem sheet 7

Please hand in your solutions to exercises 1-4 by Friday, 4th December 2009. The bonus problem can be returned along with any of the remaining problem sheets.

Problem 1 (15 points) Suppose g_{ij} is a metric tensor.

(a) Write out

$$\nabla_a A^{ij}, \quad \nabla_a A^i{}_j$$

using Christoffel symbols of g_{ij} .

(b) Show that

$$\nabla I^{i}_{\ i} = 0$$

when I_{j}^{i} is the $\binom{1}{1}$ -tensor $I_{j}^{i} = \delta_{j}^{i}$.

(c) For a $\binom{0}{1}$ -tensor A_i and a $\binom{1}{0}$ -tensor B^i show that

$$\nabla_c (A^i B_i) = (\nabla_c A^i) B_i + A^i \nabla_c B_i = W^i_{ci}$$

when W^{i}_{cd} is the $\binom{1}{2}$ -tensor $W^{i}_{cd} = \nabla_{c}(A^{i}B_{d})$.

Problem 2 (15 points) Suppose $X^i(\lambda)$ is a geodesic for a metric tensor g_{ij} , and $V^i(\lambda)$ is a $\binom{1}{0}$ -tensor along X^i . Write out

$$\frac{D}{d\lambda}\frac{D}{d\lambda}V^{i} + R_{cbd}^{i}\frac{\partial X^{c}}{\partial\lambda}\frac{\partial X^{d}}{\partial\lambda}V^{b} = 0$$

in terms of Christoffel symbols of g_{ij} .

Problem 3 (35 points) Consider the line-element

$$ds^2 = -A(r)dt^2 + B(r)dr^2.$$

The non-vanishing components of the Christoffel symbol are

$$\Gamma^r_{tt} = \frac{A'}{2B} \qquad \Gamma^t_{tr} = \Gamma^t_{rt} = \frac{A'}{2A} \qquad \Gamma^r_{rr} = \frac{B'}{2B}$$

In two dimensions the Riemann curvature tensor has only one independent component. Show that

$$R_{trtr} = \frac{1}{4} \left[2A'' - A' \left(\frac{A'}{A} + \frac{B'}{B} \right) \right].$$

Problem 4 (35 points) Show that

$$\nabla_a \nabla_b W_c - \nabla_b \nabla_a W_c = R_{abc}{}^d W_d,$$

when W_i is a $\binom{0}{1}$ -tensor W_i , and $R_{abc}{}^d$ is the Riemann curvature tensor of a metric tensor g_{ij} .

Bonus Problem (40 points) Give a detailed argument for the identity

$R_{abcd} + R_{bcad} + R_{cabd} = 0,$

when $R_{abcd} = R_{abc}{}^{s}g_{sd}$ and $R_{abc}{}^{s}$ is the Riemann curvature tensor.