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SPECIAL RELATIVITY §7

llision of two moving particles. It will therefore be
specified by four coordinates, three of spatial position and
‘one of time, for example (x, y, z, ), if we employ
rectangular Cartesian space-coordinates x, p, z. Our

investigations will be largely concerned with events. ?I_nfﬁt, ”
ts

all physics can be regarded as a study of the pattern of events -

much as geometry is the study of the ints.

_ time occur at the same place would seem to be a Vﬁryl} h
Clearly, however, twaqa Wik

i "simple question. And so it is. ity

observers using different frames of reference W|]] 1o

Let us now examine the complementary problem,
namely how to determine whether two events which are
separated in space occur at the same time or not. It had
long been taken for granted that, in any given case, the
verdict of all competent observers would be unanimous.

¢ And yet this is not so. We shall adopt the following

+ practical definition of simultaneity: two events occurring

inS_if and only if light emitted at the two eventsyarrivés ,
X simultaneously Jat_the midpoint of the segment PQ in S. '7...
This definition is implied by the law of light-propagation
of §6 and it avoids all mention of clocks which would
here be an unnecessary complication. Now let 2 and 2
be two events occurring simultaneously at points P and Q
of an inertial frame & and let M be the midpoint of PQ
in @. Let & be a second inertial frame moving in the
direction of PQ and let P’ and Q' be the fixed points in
©’ at which 2 and 2 occur, and let M’ be the midpoint
of P'Q’ in & (see Fig. 1 (a); the two figures 1 (@) and
1 (b) are “snapshots” made in ). Since 2 and 2
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are simultaneous in S, the light-signals from 2 and

will meet at M. By this time M and M’ will have separa

owing to the finite velocity of light (Fig. 1 (b)). Since “‘"’ +
the.sgu cannot meet both at M and at M’, it follows &"v”*
that in &’ the events are not slmullanzc-us We conclude _<
that simultaneity at different place. t'é‘
The now inevitable rejection of Newton’s second premise

“time is absolute” is a very much more painful mental
process than that of his first.

It is the great achievement of Minkowski to have dis-
covered in the wreckage of absolute space and time some-
thing which, if perhaps less simple, is nevertheless absolute
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once more and constitutes-a suitable new background for
our_intuitive thought about the physical world: four-
%ﬁﬁjﬂg This is very much more than a
iere matter of terminology, as we shall see in chapter IV.

§ 8. The Lorentz Transformation. In this section we
shall consider the transformation of the coordinates of a
given event from one inertial frame to another. But as a
preliminary we should be quite clear about the method of
assigning coordinates to an event in any one frame. For
this purpose we assume that each observer presiding over
an inertial frame is equipped with (i) a standard clock,
which may be based on any agreed periodic phenomenon,
e.g. the vibration of the caesium atom (which has actually
been used for time measurements), and (i) a standard
of length, based, for example, on the wavelength of an
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agreed spectral line. By direct measurement, or by means
of a base line, two theodolites and an assistant (and
Euclidean geometry), the observer can then assign right-
handed rectangular Cartesian space-coordinates x, y, z
to any event he observes. Knowing the distance of the
event and n«@m@eﬁg%@gugml@wm it
he can, by appeal to the law of light-propagation, also
uniquely assign a time-coordinate ¢ to it. Such coordinates
(x, », z, t), which we shall call standard coordinates, will
be presupposed throughout this book.

In theory it is most convenient to think of the (standard)
coordinates of an event as determined locally by auxiliary
observers. Once space-coordinates are assigned to all
points of the frame, we can imagine identical standard
clocks to be placed at the lattice points and observed by
auxiliary observers. These clocks can be identified with the
free particles defining the frame. They can be synchronized
by a control signal emitted, let us say, from the origin at
ime 7 by the origin clock. When the signal arrives at a
%lock whose distance from the origin is r, that clock must

e set to indicate time #fo+r/c. On the classical theory this

«, process would evidently synchronize all the stationary

clocks of the frame so that equal pointer readings of any
two of them always constitute simultaneous events in the
sense of the definition of § 7. Now none of the relevant
classical laws, in particular the law of light-propagation
concerning fixed sources and observers, is affected by
relativity. Consequently in relativity, too, the process
is a valid one for clock synchronization.f Our imaginary

+ It should be noted that, although the light-signalling method is
the one usually described for clock synchronization, we could theo-
retically synchronize the clocks in the frame by purely mechanical
means: e.g., by projecting standard particles from standard gunsin all
directions from a given point. The speed of such particles could be
previously determined by projecting one from a point 4 to a point 8
‘whereupon a second must at once be projected back from B to 4.
The sought is evidently twice the distance 4B divided by the
time ﬁapsed at A.

§8 THE SPECIAL PRINCIPLE OF RELATIVITY 15

coordinate lattice carrying auxiliary clocks and observers
now allows the space- and time-coordinates (x, y, z, t) of
any event to be determined locally.

Let us consider two such frames, G and &', in uniform
relative motion. Let the standard coordinates x, y, 2,
in G and x', y', z, t' in & be chosen in such a way that
(i) ©' moves in the direction of the positive x-axis of &
with constant velocity v; (ii) the two x-axes and their

y v
G 3
. —5
-

i,

positive senses coincide; (iii) the coordinate planes y = 0,
and z =0 coincide permanently with the coordinats
planes » =0 and z’ =0, respectively; and (iv) th
two spatial origins coincide when their local clocks bol
read zero. We shall in future call this the standard
configuration of two frames & and &' (Fig. 2). Outside
of classical mechanics the feasibility of stipulations (ii)
and (iii) needs justification. We return to this point below
(on p. 17); till then the argument is independent of the
configuration.

If (x, , 7, 1) and (', y’, 2/, t') are the coordinates in
@ and &' respectively of an arbitrary event, our problem
is to find the relations between these two sets of numbers.
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«  The simple so-called Galilean transformation,
X =x—0t, Y=y, 2=z t'=4 an

which is valid in Newtonian mechanics, is not in accord-

ance with our result that simultaneity is relative. More-

over we cannot remedy this defect by a mere amendment

of the last member, for a simple consideration shows that

the transformation of the x-coordinate is affected by the

same objection (see §10, penultimate paragraph). We

shall therefore derive the required transformation equations

afresh by appeal to the relativity principle and the law of

light-propagation.

\ Consider any event 2 and a neighbouring event 2

i (close to 2 in & and &') whose coordinates differ from

those of 2 by dx, dy, dz, dt in S and by dx’, dy’, dz’,

di’ in . Suppose that at the event & a flash of light is

emitted and that 2 is the event of some particle in space

[‘)} ~¢»  being illuminated by that flash. In accordance with the

/V’? law of light-propagation the observer in & will find that
fartl (dx2+dy2+d2)t = cd, or

5] Lo dx? +dy +dz —c%di? =0, dt>0, 1.2
e q/yﬂ it
(7 2 and, similarly, the observer in &' will find that

dx?+dy? +dz* —c2dr?* =0, dt'>0. (1.3)

Conversely, any event near 2 whose coordinates satisfy
either (1.2) or (1.3) is illuminated by the flash from £ and

Now, no matter what the transformations between the
coordinates themselves may be, Vi hey are di

entiable, the transformations between the differentials at
any fixed event 2 are linear and homogeneous (as always)
and fhus the Ieft ' member of (1.3) equals a homogeneous
quadratic in dx, dy, dz, dt. This quadratic, as we have
just seen, must vanish for all real values of the differentials
which satisfy (1.2). It can easily be shown (see exercise

Cart] 8,5 1+ (2o2)

therefore its coordinates will satisfy both (1.2) and (1.3)..
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I (1), p. 21) that it must therefore be a multiple of the
/quadratic in (1.2). And since only the ratios of the |
| differentials matter here, we have introduced no restriction | ~
| by confining our attention to an infinitesimal neighbourhood
| of 2. Thus at any event 2 the following relation holds:

B4 dy2 L d2— it = K(dx24dy2+de2—dr), (14)| L

" where K is independent of the differentials. Furthermore,

K at 2 is independent of the choice of standard coordinates
in & and &. For, since the frames are Euclidean, the
values of dx2+dy2+dz2 and dx'2+dy'2+dz'? relevant to 2
and 2 are independent of the choice of axes, and by the
homogeneit; ime the values of dr2 and df?2 are inde-
pendent of the choice of the origins of Lime.‘ ‘Without
ting the of a ‘we can therefore choose
coordinates so that # = (0, 0, 0, 0) in & and &'. Since
the orientations of the rectangular axes in G and &’ can
be arbitrary for the present argument, and since inertial
frames are isotropic, the relation of G and &' relative to
each other and to the event 2 is now completely sym-
metric whence we must have, as well as (1.4), .

2 dy e 2 — 22 = K(dx+dy2+dz2— c2dr?). ‘\:\” e
It follows that K = +1. K = —1 can at once be dls.\,/ enlatt

missed, since (1.4) must rematn valid as 050, Conquently, ‘,"3‘]"‘

N S T dx’2+dy’2+d_z'2—c1dt’2 (15) [out g
for differentials at 2 and evidently at all other events too. | Q(" "/;S:"

Equation (1.5) implies that the transformation equations
between the primed and unprimed coordinates must be
linear. (For a proof, see exercise IV (1), p. 74. The proof is/
postponed only because the most convenient notation for, w
it is not introduced until chapter IV. See also exercise 4™
1), p.21)

The linearity of the transformation implies that the. 5 4 ¥
coordinate axes can indeed be oriented to give the -

art /V(“’ﬁf’ be hiv-s for
P reg.
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“standard configuration ” mentioned gbove. n G
consider a fixed plane with equation Ix+my+nz+p = 0.
In & this becomes, say I(a;x'+b,y +c,z'+dt'+e;)
~Am(ayx'+..)+n(ax'+...)+p = 0, which represents a
moving plane unless Id, +md,+nd; = 0, i.e., unless the
normal vecterXl, m, n) to the plane in & is perpendicular
to the vector (dy, dy, d;). All such planes evidently intersect
in lines which are fixed in both & and &, and which are
parallel to the vector (d;, dy, d3) in &. These lines must
correspond to the direction of relative motion of the
frames. By symmetry, two such planes which are ortho-
gonal in & must also be orthogonal in &". This allows the
choice of the two common coordinate planes.
~ Under a transformation the finite coordinate
lter o | differences satis e same transformation equations as
jwe o the differentials. It therefore follows from (1.5) when

anv ' lapplied to the event (0, 0, 0, 0) that, for a.ny event with

Vs e

7 (1 |coordinates (x, y, z, 1) in & a.nd &, ¥y, 2, t) in &, the
4 following relation holds:

Bprn peeend X222 U2 = X2y 22— 22, (1.6)
l,20.7 | Now, by hypothesis, the coordinate planes y = 0 and ' = 0

Y!!u | coincide permanently. Thus y = 0 must 1mp1y =0,

fe wnity whence we can set = Bx B
b s Y=, o gD,

Wi b wlmrc A4 is a constant (possibly depcndmg on u)

Var 'reversing the directions of the x- and z-axes in G and &'

liwiss / we can mtm'chxngc the roles of these frames (presupposing
@~ isotropy as in the argument for K) without affecting (1. Dy ¢

s but then, by symmetry, we also have K

y =4y,

whence 4 = +1. The negatlve sign can again be dxsnusscd
| since v—0 must imply y'~p, and so 4 = 1. The argument
for z is similar, whence we have

Y=g 2=z b (1.8)
as in the Galilean case. "3‘7’)]‘7 Y Onda br
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In virtue of (1.8), equation (1.6) now reduces to
X2—c22 = x'2— 22, 1.9
Since X’ = 0 must imply x = v/, we can set
x' = B(x—uvt), I

where B is a constant (possibly depending on v). From
this and (1.9) it follows that ¢’ is of the form
¢ = Cxt+r, (ke €29t EGtF2

~— whir
where C and D are constants (posslbly depenémg on u) %
When these expressions for x” and ' are substituted in
(1.9), and the three equations that result from comparing
the coefficients of x2, xt, 2 are solved, we find

1 —vfc?
B=D= "
. TA—v )P T 1o
where again we must choose the positive sign for the
same reason as before. Thus, collecting our results, we
have obtained the transformation equations

x—ut o yz—zth vx/c?

A—o?et)¥’ : T e

whichare usually called the Lorentz eq'natmns lf the
tivity principle is true, then all the la

ar id_in_an inertial frame must be i iant under

(1.10)

these transforim equations. _We pr o Tist some
of tl ‘more important properties:
L]

(i) The Lorentz equations replace the older Galilean
equations (1.1), to which they nevertheless approximate
whenvissufficiently small. (For example, (1 —v%/c%) "% <1-01
as long as v<lc, at which speed the earth is circled ia
one second.) This is in agreement with the high degree
of accuracy with which Newtonian mechanics (invariant
under the Gdlilean transformation) describes a large domain
of nature.
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(i) We can see how inti;
v timately the diffe
the Ga_hlean and the Lorentz equations is ge;::cl?;‘:?:

corresponding to equal valu
correspond to cqual yalues ot‘f’s_ of ¢ do not necessarily

(v) Equations (1 10) a i
o I 5 e symmetric not only i
ut also in x and cr. (The reader should v:ri‘fj'sl' J;Ina:db;

= te(r‘;eri;I:]:t Lorcutz transformations are non-singular (their
i és easily seen to l?e unity) and they possess th

¥ R 8roup properties.t First, direct ﬂlgebmi(e:
roduct of o clmont o e LB groupars ) e
aw (ab)e.= albe) holds: i thre % 3.5‘;?3"51;&"2..'."?2'3?{;}'2‘.%";’

a fc s (i
that a-lg — gat i”:‘ (iv) each element 4 has an inverse a~1 such

rmation group. For this
Properties. The only explicit marco " (@) and (5) are clled the
Drovide this name for (o) Loy s of group theory inthis book s (4

{
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solution of (1.10) for x, y, z, ¢ gives
Xt o Rl

A=A y=y,z=2,1 U=y .11y
and thus the inverse of (1.10) is a Lorentz transformation
with parameter —v instead of v, as must indeed be the y)
case from symmetry considerations. Second, the resultant
of two successive Lorentz transformations, with parameters
vy and v, respectively, is also found to be of type (1.10)
with parameter v = (v1+12)/(1+v1v2/c?).

‘We note, finally, that any effect whose speed of propa-
gation in vacuo is finite and constant could have been used, as
light was, in the derivation of the Lorentz equations. Since.
only one transformation can be valid, it follows that all suc]
effects must be propagated with the speed of light. Exampk
are provided by electromagnetic waves of all frequencies.

Exercises 1
(Unless otherwise indicated, two frames & and &’ will always
be understood to be in standard configuration.)

XJ (1) Prove that if the polynomial

=aX?+bY*+cZ*+dT*+gXT+hYT
+kZT+1YZ+mXZ+nXY

vanishes whenever the polynomial
0= XL 2T

vanishes for real X, Y, Z, Tand T>0, then P can differ from

Q by at most a constant factor. [Hint: substitute into P

in turn the following obvious zeros of QL (+1, 0, 0,_1),
/ @ £1,0,1),(0,0, £1, 1), O, /42, 1//2, 1), (112, 0,

142, 1), (12, 1/4/2, 0, 1), and solve the resulting

conditions on the coefficients.

% | (2) For proof of the linearity of the transformation
een the standard coordinates in two inertial frames,

=
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