$$
\begin{align*}
& \mathrm{A}=4 \underline{\mathrm{i}}+3 \mathrm{j}+3.32 \underline{\mathrm{k}} \mathrm{~N} \tag{M7}\\
& \underline{\mathrm{~B}}=2 \underline{\mathrm{i}}+1.5 \mathrm{j}+3.12 \underline{\mathrm{k}} \mathrm{~m}
\end{align*}
$$

(a) $\underline{A} \cdot \underline{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=(4)(2)+(3)(1.5)+(3.32)(3.12)=22.86 \mathrm{Nm}$
(b) $\mathrm{A}=\left[(4)^{2}+(3)^{2}+(3.32)^{2}\right]^{1 / 2}=6.0$
$B=\left[(2)^{2}+(1.5)^{2}+(3.12)^{2}\right]^{1 / 2}=4.0$
$\underline{A} \cdot \underline{B}=A B \cos \theta=22.86$
$\therefore \cos \theta=22.86 / 24$
$\theta=17.7^{0}$
(c) Magnitude of $\underline{A} x \underline{B}$ is $\mathrm{AB} \sin \theta=(6)(4) \sin \left(17.7^{\circ}\right)$

$$
=7.3 \mathrm{Nm}
$$

(M8)(i) $\mathrm{x}=\mathrm{A} \sin \omega \mathrm{t}+\mathrm{Bt}$
$y=A \cos \omega t+A$
where A, B, and ω are constants.
Velocity is given by $\underline{v}=(\mathrm{dx} / \mathrm{dt}, \mathrm{dy} / \mathrm{dt})$

$$
=(A \omega \cos \omega t+B,-A \omega \sin \omega t)
$$

Acceleration is given by $\underline{\mathbf{a}}=\left(d v_{\mathrm{x}} / \mathrm{dt}, \mathrm{dv}_{\mathrm{y}} / \mathrm{dt}\right)$

$$
=\left(-A \omega^{2} \sin \omega t,-A \omega^{2} \cos \omega t\right)
$$

(ii) When y is a maximum, $\cos \omega t$ must equal 1 , $\operatorname{so} \sin \omega t=0$.

$$
\begin{aligned}
\therefore \underline{\mathrm{v}} & =(\mathrm{A} \omega+\mathrm{B}, 0) \\
\underline{\mathrm{a}} & =\left(0,-\mathrm{A} \omega^{2}\right)
\end{aligned}
$$

When y is a minimum, $\cos \omega \mathrm{t}$ must equal -1 , and again $\sin \omega \mathrm{t}=0$.

$$
\begin{aligned}
\therefore \underline{v} & =(-A \omega+B, 0) \\
\underline{a} & =\left(0, A \omega^{2}\right)
\end{aligned}
$$

(M14) $12 \mathrm{~m} / \mathrm{s}$ at elevation of 40°

$$
\therefore u_{x}=12 \cos \left(40^{\circ}\right)=9.19 \mathrm{~m} / \mathrm{s}, \quad u_{y}=12 \sin \left(40^{\circ}\right)=7.71 \mathrm{~m} / \mathrm{s}
$$

Time to return to the same height given by $s_{y}=u_{y} t-\mathrm{gt}^{2} / 2$

$$
\begin{aligned}
& 0=7.71 \mathrm{t}-4.905 \mathrm{t}^{2} \\
& \mathrm{t}=1.57 \mathrm{~s}
\end{aligned}
$$

$$
\begin{array}{ll}
d \cos \left(30^{\circ}\right)=3+v t \cos \theta & \therefore 1.57 v \cos \theta=9.51 \\
d \sin \left(30^{\circ}\right)=v t \sin \theta & \therefore 1.57 v \sin \theta=7.2
\end{array}
$$

$$
\begin{aligned}
& \therefore \tan \theta=7.2 / 9.51, \theta=37^{\circ} \\
& v=9.51 /(1.57 \cos \theta))=7.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3-38. Using the fact that

$$
\hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}, \hat{\mathrm{j}} \times \hat{\mathrm{k}}=\hat{\mathrm{i}}, \quad \hat{\mathrm{k}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}}
$$

we obtain

$$
2 \vec{A} \times \vec{B}=2(2.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}}-4.00 \hat{\mathrm{k}}) \times(-3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}})=44.0 \hat{\mathrm{i}}+16.0 \hat{\mathrm{j}}+34.0 \hat{\mathrm{k}}
$$

Next, making use of

$$
\begin{aligned}
& \hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1 \\
& \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0
\end{aligned}
$$

we have

$$
\begin{aligned}
3 \vec{C} \cdot(2 \vec{A} \times \vec{B}) & =3(7.00 \hat{\mathrm{i}}-8.00 \hat{\mathrm{j}}) \cdot(44.0 \hat{\mathrm{i}}+16.0 \hat{\mathrm{j}}+34.0 \hat{\mathrm{k}}) \\
& =3[(7.00)(44.0)+(-8.00)(16.0)+(0)(34.0)]=540 .
\end{aligned}
$$

3-43. From the figure, we note that $\vec{c} \perp \vec{b}$, which implies that the angle between \vec{c} and the $+x$ axis is $\theta+90^{\circ}$. In unit-vector notation, the three vectors can be written as

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{\mathrm{i}} \\
& \vec{b}=b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}=(b \cos \theta) \hat{\mathrm{i}}+(b \sin \theta) \hat{\mathrm{j}} \\
& \vec{c}=c_{x} \hat{\mathrm{i}}+c_{y} \hat{\mathrm{j}}=\left[c \cos \left(\theta+90^{\circ}\right)\right] \hat{\mathrm{i}}+\left[c \sin \left(\theta+90^{\circ}\right)\right] \hat{\mathrm{j}}
\end{aligned}
$$

The above expressions allow us to evaluate the components of the vectors.
(a) The x-component of $\stackrel{1}{a}$ is $a_{x}=a \cos 0^{\circ}=a=3.00 \mathrm{~m}$.
(b) Similarly, the y-componnet of $\stackrel{\perp}{a}$ is $a_{y}=a \sin 0^{\circ}=0$.
(c) The x-component of $\stackrel{1}{b}$ is $b_{x}=b \cos 30^{\circ}=(4.00 \mathrm{~m}) \cos 30^{\circ}=3.46 \mathrm{~m}$,
(d) and the y-component is $b_{y}=b \sin 30^{\circ}=(4.00 \mathrm{~m}) \sin 30^{\circ}=2.00 \mathrm{~m}$.
(e) The x-component of ${ }_{c}^{1}$ is $c_{x}=c \cos 120^{\circ}=(10.0 \mathrm{~m}) \cos 120^{\circ}=-5.00 \mathrm{~m}$,
(f) and the y-component is $c_{y}=c \sin 30^{\circ}=(10.0 \mathrm{~m}) \sin 120^{\circ}=8.66 \mathrm{~m}$.
(g) The fact that $\stackrel{\mathrm{r}}{c}=p \stackrel{\mathrm{r}}{a}+q \stackrel{1}{b}$ implies

$$
\vec{c}=c_{x} \hat{\mathrm{i}}+c_{y} \hat{\mathrm{j}}=p\left(a_{x} \hat{\mathrm{i}}\right)+q\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}\right)=\left(p a_{x}+q b_{x}\right) \hat{\mathrm{i}}+q b_{y} \hat{\mathrm{j}}
$$

or

$$
c_{x}=p a_{x}+q b_{x}, \quad c_{y}=q b_{y}
$$

Substituting the values found above, we have

$$
\begin{aligned}
-5.00 \mathrm{~m} & =p(3.00 \mathrm{~m})+q(3.46 \mathrm{~m}) \\
8.66 \mathrm{~m} & =q(2.00 \mathrm{~m})
\end{aligned}
$$

Solving these equations, we find $p=-6.67$.
(h) Similarly, $q=4.33$ (note that it's easiest to solve for q first). The numbers p and q have no units.

4-8. Our coordinate system has \hat{i} pointed east and \hat{j} pointed north. The first displacement is $\vec{r}_{A B}=(483 \mathrm{~km}) \hat{\mathrm{i}}$ and the second is $\vec{r}_{B C}=(-966 \mathrm{~km}) \hat{\mathrm{j}}$.
(a) The net displacement is

$$
\vec{r}_{A C}=\vec{r}_{A B}+\vec{r}_{B C}=(483 \mathrm{~km}) \hat{\mathrm{i}}-(966 \mathrm{~km}) \hat{\mathrm{j}}
$$

which
$\left|\vec{r}_{A C}\right|=\sqrt{(483 \mathrm{~km})^{2}+(-966 \mathrm{~km})^{2}}=1.08 \times 10^{3} \mathrm{~km}$.
yields

(b) The angle is given by

$$
\theta=\tan ^{-1}\left(\frac{-966 \mathrm{~km}}{483 \mathrm{~km}}\right)=-63.4^{\circ} .
$$

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° east of south.
(c) Dividing the magnitude of $\vec{r}_{A C}$ by the total time (2.25 h) gives

$$
\vec{v}_{\mathrm{avg}}=\frac{(483 \mathrm{~km}) \hat{\mathrm{i}}-(966 \mathrm{~km}) \hat{\mathrm{j}}}{2.25 \mathrm{~h}}=(215 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}-(429 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}}
$$

with a magnitude $\left|\vec{v}_{\text {avg }}\right|=\sqrt{(215 \mathrm{~km} / \mathrm{h})^{2}+(-429 \mathrm{~km} / \mathrm{h})^{2}}=480 \mathrm{~km} / \mathrm{h}$.
(d) The direction of $\vec{v}_{\text {avg }}$ is 26.6° east of south, same as in part (b). In magnitude-angle notation, we would have $\vec{v}_{\text {avg }}=\left(480 \mathrm{~km} / \mathrm{h} \angle-63.4^{\circ}\right)$.
(e) Assuming the $A B$ trip was a straight one, and similarly for the $B C$ trip, then $\left|\vec{r}_{A B}\right|$ is the distance traveled during the $A B$ trip, and $\left|\vec{r}_{B C}\right|$ is the distance traveled during the $B C$ trip. Since the average speed is the total distance divided by the total time, it equals

$$
\frac{483 \mathrm{~km}+966 \mathrm{~km}}{2.25 \mathrm{~h}}=644 \mathrm{~km} / \mathrm{h} .
$$

4-27. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below the release point. We write $\theta_{0}=-30.0^{\circ}$ since the angle shown in the figure is measured clockwise from horizontal. We note that the initial speed of the decoy is the plane's speed at the moment of release: $v_{0}=290 \mathrm{~km} / \mathrm{h}$, which we convert to SI units: $(290)(1000 / 3600)=80.6 \mathrm{~m} / \mathrm{s}$.
(a) We use Eq. 4-12 to solve for the time:

$$
\Delta x=\left(v_{0} \cos \theta_{0}\right) t \Rightarrow t=\frac{700 \mathrm{~m}}{(80.6 \mathrm{~m} / \mathrm{s}) \cos \left(-30.0^{\circ}\right)}=10.0 \mathrm{~s}
$$

(b) And we use Eq. 4-22 to solve for the initial height y_{0} :

$$
y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} \Rightarrow 0-y_{0}=(-40.3 \mathrm{~m} / \mathrm{s})(10.0 \mathrm{~s})-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(10.0 \mathrm{~s})^{2}
$$

which yields $y_{0}=897 \mathrm{~m}$.
$4-32$. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial position for the ball as it begins projectile motion in the sense of $\S 4-5$), and we let θ_{0} be the angle of throw (shown in the figure). Since the horizontal component of the velocity of the ball is $v_{x}=v_{0} \cos 40.0^{\circ}$, the time it takes for the ball to hit the wall is

$$
t=\frac{\Delta x}{v_{x}}=\frac{22.0 \mathrm{~m}}{(25.0 \mathrm{~m} / \mathrm{s}) \cos 40.0^{\circ}}=1.15 \mathrm{~s}
$$

(a) The vertical distance is

$$
\Delta y=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}=(25.0 \mathrm{~m} / \mathrm{s}) \sin 40.0^{\circ}(1.15 \mathrm{~s})-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.15 \mathrm{~s})^{2}=12.0 \mathrm{~m} .
$$

(b) The horizontal component of the velocity when it strikes the wall does not change from its initial value: $v_{x}=v_{0} \cos 40.0^{\circ}=19.2 \mathrm{~m} / \mathrm{s}$.
(c) The vertical component becomes (using Eq. 4-23)

$$
v_{y}=v_{0} \sin \theta_{0}-g t=(25.0 \mathrm{~m} / \mathrm{s}) \sin 40.0^{\circ}-\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.15 \mathrm{~s})=4.80 \mathrm{~m} / \mathrm{s}
$$

(d) Since $v_{y}>0$ when the ball hits the wall, it has not reached the highest point yet.

