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Abstract

Presented here is an outline of the kinematics of hard-scattering processes in
hadron-hadron collisions, with emphasis placed on the pp collisions produced by the
Fermilab Tevatron collider.
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1 Introduction

The majority of the pp collisions produced by the Fermilab Tevatron collider involve only
small momentum transfers between the constituent partons of each hadron, and therefore
fall outside the confines of perturbative QCD. However, there are collisions where the
momentum transfer is sufficiently large enough such that the interaction between the
partons can be predicted using a low-order QCD calculation.

It is this phenomenon of hard-scattering, which is, by definition, a process where
the momentum transfer is greater than 1 GeV, that is of paramount interest. We consider
the generic 2 — 2 process of the following hadronic interaction,

1+2—3+4 (1)

in terms of the parton model (Section 2). This allows the construction of the relevant
parton 4-momenta, from which we can calculate the Lorentz boost (8*) and Lorentz
gamma factor (7*), and thus transform between the rest (Lab) frame and the centre of
mass (CoM) frame (Section 3).

The relation between these two reference frames, the Lorentz Transformation, is
then used to introduce a new quantity called rapidity (and the associated quantity pseu-
dorapidity), which is an important concept in Experimental Particle Physics (Section
4). Finally, the Mandelstam variables are introduced so that the cross-section can be
expressed in terms of physically observable quantities (Section 5).



2 The Parton Model

The parton model states that we can consider high-energy hadrons as being comprised
of quasi-free particles (partons) that collectively hold the momentum of the hadron [1].
Therefore, a hadron of momentum p can be thought of as a collection of partons of
longitudinal momentum x; p", where the momentum fraction z; satisfies the following
relations:

Yiw =1, (2)
In terms of the co-ordinate system used at CDF, the longitudinal component of the

momentum lies along the z-axis. The generic lowest-order hadron-hadron interaction is
depicted in Figure 1 [2],
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Figure 1: A generic two-body parton scattering process.

the cross-section of which is:
dO’(pﬁ — 3+ 4) = 212 ZUlfp(.iUl) l'Qfﬁ(.iUg) dO’(l +2 =3+ 4) (3)

where f(z;) is the probability of finding a parton of momentum fraction z; in our initial
state hadron, h. The cross-section is considered in more detail in Section 5.

DThe assumption that the initial transverse momenta of the partons, typically O(300 MeV), is negli-
gible in comparison to the longitudinal momenta is adequate for our purposes.



3 4-Momenta

Now, consider the momenta 4-vectors of our initial-state partons, p; and ps. Assume that
the transverse momentum of each parton can be safely neglected, and that the mass of
the proton is small in comparison to the energy, Fjyeqm, of the parton. i.e.,

Pz = Dy = 07
b = T; P,
and p = FEpeam - (4)

Thus, the 4-momenta of our initial-state partons are:

P = (1'1 Ebeama 07 0,1‘1 Ebeam)a
D2 = (372 Ebeama 07 0,—372 Ebeam)- (5)

From the 4-momenta of the initial-state partons, we obtain the 4-momentum of the CoM
frame?, p*,

p* = ((-'L'l +1‘2) Ebeama 07 07 (IL’1 - x?) Ebeam) ) (6)

and hence the Lorentz boost, in terms of the initial-state partons,

* P T — T2
B FE X1+ X9 ( )

The Lorentz gamma factor, v*, can also be expressed in similar terms by substituting
Equation (7) into:
1
V= — (8)
(1—p%)
Thus,

y=1 (9
2 T1T2

The Lorentz Transform between the laboratory and the CoM frame can now be formulated
in terms of the parton model in a familiar form:

E* = y'(E - f"p.)
p: = 7(p.—BE). (10)

We are now in a position to introduce a new quantity: rapidity.

2)We define the CoM frame as being the rest frame of the hard-scattering subsystem.



4 Rapidity

Rapidity is often the quantity of choice of the Experimental Particle Physicist for mea-
suring polar angles because rapidities are additive under successive Lorentz boosts in the
same direction, and rapidity differences are Lorentz invariant (frame independent).

4.1 Definitions:

i. Rapidity

Since the hyperbolic tangent function always lies between —1 and +1, it is sensible to
define velocities along the z-axis () in such terms, i.e.

tanhy = B ) (11)

This is the definition of rapidity, y. However, the rapidity is more commonly expressed
in the following way:

E +p,

1
= 21 12
Y o, (12)
which can be obtained using the inverse hyperbolic definition of tanh,
1.1
tanh 'z = ~1In Ry (13)
1—=2

The Lorentz gamma factor can also be obtained in terms of rapidity by substituting
Equation (11) into Equation (8), which gives us:

coshy = . (14)
By combining Equations (11) and (14), we obtain the following:

sinhy = v . (15)

We can now rewrite Equations (10) in terms of rapidity by using the identities from
Equations (14) and (15):

E* = coshy E —sinhy p,
p; = —sinhy F+coshyp, . (16)

c.f. ¥ = cosf x+sinf y
y = —sinf x+cosby . (17)

As we can see, this is mathematically analogous to a rotation about an axis. Just as
successive rotations about the same axis, 6, followed by 0, say, are additive (Oo10; = 01
+ 6), successive rapidity boosts in the same direction, y; followed by ys, say, are also
additive (Ysorar = Y1 + ¥2).



ii. Pseudorapidity

The quantity pseudorapidity is a handy approximation to the rapidity when the mass of
the particle can be assumed to be small in comparison to the energy. It is typically used
when either the mass or the momentum of the particle is unknown. In this case, it is
necessary to express (3 in terms of the scattering angle , 6 (see Figure 2), i.e.

B =cosf . (18)
Substituting this expression into Equation (12):
1., 1+cosf
= —In——. 19
Y 2 "1~ cosd (19)

Using the following ¢t-formula identity, where ¢ = tan g

1 —¢? 1 — tan?
1+ 14+ tan?

(20)
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and some trigonometric manipulation, we obtain an expression for the pseudorapidity,
which we denote as 1 in order to distinguish it from the rapidity:

7
n = —lntan§. (21)
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Figure 2: The Scattering Angle, #*, in the CoM frame.

iii. Notes on Rapidity and Pseudorapidity

Through a combination of laziness and the sloppy use of the English language, it is not
uncommon for the terms rapidity and pseudorapidity to be used interchangeably. This is
wrong! Pseudorapidity is an approximation to rapidity when either the mass of a particle
can be assumed to be small in comparison to its energy, or the mass and/or momentum
of the particle is unknown. It is therefore common that pseudorapidity is correctly used,
and denoted appropriately as 7, but is still referred to as rapidity®. For the duration of
this chapter, we consider rapidities; only in subsequent chapters will pseudorapidity be
considered, and only when we have justification for doing so.

3)this is probably because pseudorapidity is shorter than rapidity, which also explains why pseudora-
pidity is often referred to as eta!



4.2 Lorentz Transformation

We now want to be able to move freely between the Lab frame and the CoM frame in
terms of rapidity. To do this, we start with Equation (12) in the CoM frame, i.e.

1 E’* *
o L B

——Z 22
2nE*—p’; (22)

and substitute in our expressions for E* and p} from Equations (10). Expanding out and
rearranging:
— 1 n fY*(E B B*pz) + f)/*(pz - 5*
7*(E - 5*]72) - 7*(pz - B*
2 7*(E_6*pz _pz+B*E
1 (E+4p:)1—-5)

E
E

)
)
)
)

=y ==In . 23
2" (B p)(1+ ) 2
By using the properties of logarithms, we obtain the intermediate result:
1. E+p, 1.1 *
y* ==1In +P - n + 5 : (24)
2 E-—p, 2 1-p
This can be condensed further:
y* =Y — Yboost - (25)

where y is the rapidity in the Lab frame, y* is the rapidity in the CoM frame, and o0
is the boost to the rapidity required to move from one frame to the other.

Equations (24) and (25) have been written in this form so that s Wwill be posi-
tive when z; > x,.

4.3 UYs and Ya

In the CoM frame, the rapidities of partons 3 and 4 will be equal and opposite, thus
yst =~y =y~ (26)

The decision to take y3* as being positive is purely arbitrary and is just a question of
convention.

Using the above formula with Equation (25), we are now in a position to write
down explicitly the relationship between the Lab frame and the CoM frame in terms of
the rapidities of each of the final-state partons. Consider first final-state parton 3,

*

Ys = Y3 — Yboost
=Yz = y3* + Ybvoost (27)



Similarly,

_y4* = Y4 = Yboost
= Y4 = Yboost — y4* (28)

It is not uncommon for the subscripts 3 and 4 to be dropped from the 3;* terms, so
Equations (27) and (28) are often written as:

Ys = y*+yboost
Yys = yboost_y>k (29)

By rearranging Equations (29), we can obtain the following expressions for y* and ypops:
in terms of y3 and yy:

. 1
y = 5(?!3 - y4)
1
Yboost = §(y3 + y4) (30)

With expressions for the rapidities of partons 3 and 4 in both the Lab frame and the CoM
frame, we can now see that the difference between the rapidities is 2y,, regardless of the
frame, i.e. rapidity differences are invariant.

4.4 Example of a Rapidity Boost

Figure 3 illustrates the rapidities of the final-state parton 3 and 4 in both the Lab frame
and the CoM frame, and the rapidity boost between the two.

Figure 3: A Rapidity Boost between the Lab frame and the CoM frame.



5 Cross-Section

We assume that the mass of the partons are small in comparison to the energy, therefore
pseudorapidity is used instead of rapidity. In parton terms, the cross-section for the
generic 2 — 2 process is:

C137”( 531 4) = (e folm2) (142 = 34+ 4) (31)
dz1drydi PF = SRR ’

where { is a measure of the 4-momentum transfered (See § 5.1). It is necessary to trans-
late this expression for the cross-section into a form that contains physically observable
parameters of the final state. The three physically observable parameters in the final state
are chosen to be the transverse momenta, p,, of the partons and the pseudorapidities,
N3, N4, of the final-state partons. It will shown that the set of variables (s, n4, p.) are
related in a straight-forward manner to the underlying parton variables, (z;, 2, f).

5.1 The Mandelstam Variables

We first define three new quantities, known collectively as the Mandelstam variables:

= (M +p2)? = (p3s+ps)?
= (Pl—P3)2 = (P2—P4)2
i = (p—p)® = (p2—ps)’° (32)

The Mandelstam variables are Lorentz invariant quantities that are used extensively to
describe the kinematics of particle reactions. The physical interpretation of these quan-
tities are as follows: § is the CoM energy squared of the hard-scattering subsystem®; £ is
the squared 4-momentum transfered between the initial-state parton 1 and the final-state
parton 3; and @ is the 4-momentum squared transfered between the initial-state parton
1 and the final-state parton 4.

SPSVAPY

Note 1: f and @ are similar. In fact, they essentially represent the squared 4-
momentum transfered in the forward and backward directions respectively.

Note 2: It is the /-momentum that is used, not the 3-momentum. In a purely elastic
case, however, the energy would remain unchanged, so you would therefore only be
required to consider the 3-momentum.

The Mandelstam variables may be written in the following way:

§ = T1x9S
. 1
t = —=5(1—cosf")
2
1
o = —§§(1 + cos 0%) (33)

4) 2

beam

c.f. the CoM energy squared of the pp system, s = 4FE



5.2 Miscellaneous Equations

Before we consider the cross-section, we need equations for x1, z9, £ and p, in terms of
pseudorapidity, for reasons that will become clear in the following section.

i. ; and 2,

The pseudorapidity boost, Myeest, can be written in terms of x; and xo by inserting Equa-
tion (7) into:

14 p*

1
oost = — 1 . 34
Tlboost 9 ﬂl — B (34)
Therefore:
1 T
oost = — In — . 35
Mboost 5 nx2 ( )

Using this expression for the rapidity boost and the Mandelstam variable §, which we
recall is the CoM energy squared of our hard-scattering subsystem, we can determine x;
and za:

eXp(T/boost) )

Tr, =

eXp(_nboost) . (36)

P

ii. £ and p,

Re-arranging Equation (21), we obtain the following expression for ¢

t = —exp(n). (37)
By substituting the appropriate t-formulae into the following equations,
2t
E, = F sinf = F ——
1 Sin 11 2 s
2t
pL= p. tand = p, 1—2 (38)

and then evaluating using Equation (37), we obtain expressions for the energy and longi-
tudinal momentum of any given final-state parton in terms of the transverse momentum
and the pseudorapidity:

E = pjcoshn,
p. = pysinhy. (39)



5.3 The Cross-Section in Physically Observable Terms

In the CoM frame of the hard-scattering subsystem, the total energy is v/ and, by
definition, the momentum of the final-state partons share this energy equally. Therefore,

* 1 A *
Pz = 5 Vscos 7
1
Pl = 3 §sinf* | (40)

with p, orientated exactly opposite.

To obtain a relationship between 6#* and n*, substitute the above expression for
the transverse momentum into the equation for energy in Equations (39).

1
E; = (5\/§sin ") coshn*
1
= = hn* 41
sin 0* oSt (41)
The Mandelstam variables,
4 2
;= L
sin” 6*
. 1
t = —§§(1 —cos "), (42)
can then be rewritten as:
§ = 4p? cosh?p*
t = —2p* coshn*exp(—n*) (43)

Using this expression for s, we can rewrite the equations for z; and x, given by Equa-
tions (36),

T = Py cosh n* exp( )
1 \/E n Mboost ) »
2
Ty = % cosh " exp(—Mpoost) - (44)

With expressions for x1, 2, and ¢ in terms of 73, 74 and p,, the cross-section can be
translated into terms of physically observable quantities by using the Jacobian:

0 t 8p? 2p. 8
(xh T, ) — ﬂ COSh2 77* — pLs . (45)
8(7737 7747pL) S
Multiplying Equation (31) by this factor gives:
d3o 2p. S do
_— = T T —(1+2—=>3+14). 46
dnzdnadp @) foles) dt ( ) (46)



This can be simplified further using the following relations:

§ = x1228 ,
d’py
dp, = 47
piapy on (47)
which gives our final result:
d'o 1 do
———— =z fi(x)za fo(re) — —=(1+2—=>3+4) . 48
G = T - S ) (43)

5.4 Notes on the Cross-Section

In our final formula for the cross-section, Equation (48), z7, z2 and the Mandelstam
variables of the hard-scattering subsystem are:

2p

T, = 7; cosh 1™ exp(Mvoost)
2
Tog = % cosh 7’]* eXp(_nboost) .
$ 4p% cosh® n*
t = —2p* coshn*exp(—n*)
@ = —2p° coshn*exp(+n*) (49)

The cross-section is related to the matrix element, M, which is the quantum-mechanical
amplitude for a given process to occur. This is analogous to the scattering amplitude in
non-relativistic quantum mechanics, so it follows that |M]? is the probability with which
a given process will occur. The relationship between the cross-section and the matrix
element is:

do T

2
(6]
= = T IMP (50)
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Appendix A: Key Relations

Rapidities

Scattering Angle

Mandelstam Variables

> U

<>

>

S Y

1l E +p,

= —In

Y 2 E—p,
= —Intan—

n nan2

Ys = y*+yboost
Yys = yboost_y*

. 1

y = §(y3 - ?J4)

1

Yboost — _(y3 + y4)

2

= coshn*
sin 6* n

cosf* = tanhn”

= sinhnp*
tan 0* g

2
_ A T1X95
T osinZgr M

1

— 3(1— cost*
23( cos 0%)
1

~

= —=5(14cosf")

[\]

4p% cosh® n*
—2p?% cosh n* exp(—n*)
—2p% cosh n* exp(+n*)

(51)

(52)

(53)

(54)

(58)

(59)



Appendix B: The Squared Matrix Element, | M|

The squared matrix element, |M|?, describes the cross-section of various hard-scattering
processes, and is defined in terms of the Mandelstam variables. The squared matrix
element for some of the key hard-scattering processes are defined below:

0192 — q1G2; M = g% (60)
O — Q1q1; M = % - ;iﬂ §2;f2) — ;72—2 (61)
¢01G2 = q14G2; IM]? = %L& —;2@2 (62)
ag = aq;  (MP = g(§2;a2 2 ;_2112) B %Z_: (63)
aq — g9, [IM]P = %p LUQ - 252 ;QQ (64)
99 = qqi;  IM]P = %fz ;“2 — gp ;QQ (65)
gn = 9q;  IMPP = —§§2 ;uQ + QQ; & (66)
99— 99, M = —2(3—2—2— j—?— Z—Z) (67)

It can be seen that the squared matrix element for each process is independent of the
CoM energy of the hard-scattering subsystem, and that it only depends on the scattering
angle, #. The squared matrix elements for each of the above processes as a function of
the scattering angle are illustrated in Figures 4 and 5.
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Figure 4: Plots of [M|? as a function of 6.
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Figure 5: More Plots of [M]? as a function of 6.



