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PHY101 Electricity and Magnetism I 
Topic 5 (Lectures 7 & 8) – Capacitors and Dielectrics 

In this topic, we will cover: 
1) Capacitors and Capacitance 
2) Combinations of Capacitors – Series and Parallel 
3) The energy stored in a capacitor 
4) Dielectrics 

 
Introduction 

A capacitor is a means of storing electric charge.  We saw at the start of the course that an 
isolated conductor can be charged electrostatically, so this could be considered as the most basic 
sort of capacitor.  The charges on the conductor tend to repel each other, and to reduce their energy 
they will leak away to ground if any slightly conductive path is available.  We can store the charge 
more easily if we can reduce its energy, which means reducing its potential for a given charge.  This 
can be achieved by arranging that the conductor carrying charge Q is in close proximity to another 
conductor carrying –Q.  Although the charges within each conductor may be repelling each other, 
they will be attracted by those in the other conductor and their net energy will be reduced. 

Capacitors and Capacitance 
Consider two separated conducting plates, connected to a battery.  The electromotive force of 

the battery drives charge from one terminal to the other.  One plate will therefore end up with a 
positive charge while the other will have an equal negative charge.  The potential difference 
between the plates will be equal to the voltage supplied by the battery.  If the battery is 
disconnected, the charge will remain on the plates, which will maintain the same potential 
difference.  As we will see, the magnitude of the charge stored on either plate Q is directly 
proportional to the potential difference between the plates.  We can write this as 

 Q CV=  [1] 

where the constant of proportionality C is known as the capacitance of the system, which is called a 
capacitor.  The capacitance is thus the quantity of charge stored per unit potential difference 
between the plates.  The S.I. Unit of capacitance is the Farad (F), and 1 Farad = 1 Coulomb / Volt.  
The Farad (like the Coulomb) is a very large unit, and most practical capacitances are measured in 
microfarads (1 µF = 10–6 F) or picofarads (1 pF = 10–12 F).  We shall shortly see that capacitors 
store electrical energy, as well as charge. 

Parallel Plate Capacitor 
The simplest, and most common, 

geometry for a capacitor consists of two flat 
metal plates, close together but separated by a 
layer of insulating material.  When connected to 
a potential difference, they will carry opposite 
amounts of electric charge, ±Q.  If the 
separation of the plates is very small compared 
with their lateral dimensions (as it usually is), 
we can ignore fringe fields near the ends, and 
consider a uniform electric field which only 
exists between the plates. 
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The attraction between the charges means that they lie on the inner surfaces of the plates.  
Assume the plates have an area A and separation d.  Applying Gauss’s law to the dotted surface 
shown, which completely surrounds one plate, we have 
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(Note that this is different from the case of an isolated sheet of charge considered previously, as 
here the electric field is all on one side of the sheet, and so only cuts one side of the Gaussian 
“box”.) 

We calculate the potential difference V moving from lower to upper plate from 

 dV l Ed= − ⋅ =∫E  

where the cancelling minus sign comes from the fact that E and the path d are in opposite 
directions. 

Thus 
0

Qd
V

A
=

ε
. 

Using our definition for C from [1], we have 

 0AQ
C

V d

ε= = . [2] 

Rearranging this equation also provides us with an alternative, and more common, unit for ε0 which 
is F m–1. 

To store a large amount of charge at low potential, i.e. to produce a large capacitance, we 
obviously want a large plate area A and small separation d.  This can be manufactured from two 
long strips of aluminium foil, separated by a thin sheet of plastic film.  In a practical capacitor, this 
“sandwich” is covered by another sheet of plastic and then rolled up into a cylinder.  As we will see 
later, the plastic layer may have other benefits besides its insulating nature. 

Capacitors in Parallel and Series 
When two or more capacitors are connected together, they behave like a single capacitor 

with a modified capacitance.  It is useful to be able to calculate the effective capacitance of the 
combination in terms of the individual capacitances. 

Capacitors in Parallel 
If two capacitors are connected as shown, with one plate of each 
connected to ground (0 V) and the other to voltage V, then from [1] 
capacitor C1 will carry a charge 1 1Q C V=  and similarly for C2.  The 

total charge is ( )1 2 1 2Q Q Q C C V CV= + = + =  where C is the 

effective capacitance of the combination.  

C1 

0 V 

C2 

V 

 

So 1 2C C C= + . 

For N capacitors in parallel,  1 2 NC C C C= + + +⋯ . [3] 

(In a parallel combination, the total capacitance is always greater than any individual capacitance.) 

Capacitors in Series 
Two components are connected in series when they share a common 
terminal, as shown.  When connected to an external potential, a charge Q 
will flow onto the capacitors as shown.  Note that since there is no external 
connection to the centre point of the circuit, the total charge on the lower 
plate of C1 and the upper plate of C2 must be zero.  Therefore both 
capacitors must carry the same charge, Q.  The voltage across the circuit is 
just the sum of the voltages across the individual capacitors, 1 2V V V= + .  

But from [1], 1
1

1 1

Q Q
V

C C
= = , etc 

 

C1 

0 V 

C2 

V 
+Q 

–Q 

+Q 

–Q 

 



 

PHY101  E & M I  5  CNB 3 

So 
1 2

Q Q Q
V

C C C
= + = . 

and therefore 
1 2

1 1 1

C C C
= +  

or for N capacitors in series, 
1 2

1 1 1 1

NC C C C
= + + +⋯ . [4] 

(In a series combination, the total capacitance is always less than the smallest individual 
capacitance.) 

Energy Stored in a Capacitor 
We have seen that when charge is at an electrostatic potential, it possesses potential energy – 

that is, the ability to do work.  A charged capacitor must therefore store energy, as well as charge.  
The work required to add an infinitesimal charge dq to a capacitor already carrying charge q is 

d d d
q

W V q q
C

= = .  The total work done to charge a capacitor to charge Q is therefore 

 
2

0

d
2

Q q Q
W q

C C
= =∫ . 

This is the electrical potential energy U stored in the capacitor.  Using equation [1], this can be 
expressed in a variety of ways. 

 
2

21 1 1

2 2 2

Q
U QV CV

C
= = = . [5] 

The Energy Density of an Electric Field 
We can consider the energy stored in a capacitor (or other system of charges) either as being 

due to charges held at potentials or as energy stored in an extended electric field. 

Writing 21
2U CV=  and V Ed= , and using [2] 0A

C
d

ε= , we have 

 ( )2 20
0

1 1

2 2

A
U Ed AdE

d

ε= = ε . 

But Ad is the volume between the plates, that is the volume where the electric field exists.  The 
energy density, that is the energy per unit volume, is therefore just 

 
21

02u E= ε . [6] 

This expression is not only valid for the parallel plate capacitor, or indeed for any other sort of 
capacitor.  It is the general expression for the energy density in an electric field. 

Dielectrics 
The capacitance of a capacitor could obviously be increased if we could reduce the potential 

at which a given charge is stored.  This could be achieved if the electric field was reduced.  Is there 
some way this can be done, for a given geometry of capacitor?  The answer is that it can, if a 
material known as a dielectric is introduced into the gap between the capacitor plates.  We have 
already seen that a conductor contains free charges, and that in an external electric field these move 
until the net internal field reaches zero.  (We could not fill the gap between the capacitor plates with 
conductor, as this would allow charge to escape from one plate to the other, and no charge would be 
stored!) 
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A dielectric is an insulator which, though neutral overall, contains 
bound charges which cannot move throughout the bulk of the material but 
which can be displaced slightly under the influence of an electric field.  
Examples might be simple atoms, in which electrons move a small distance 
one way while the positive nucleus is displaced slightly the other when a 
field is applied, or more complicated organic molecules with polar groups 
which are positive and negative while being bound to the molecule.    
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In each case, the charges move under the influence of the applied field without leaving their 
parent atoms or molecules, until an internal restoring force balances the force due to the external 
field.  They therefore become microscopic dipoles, generating a dipole moment in the direction of 
the applied field.  In most materials, the displacement, and so the size of the dipole moment, is 
proportional to the applied electric field.   
The net effect of this is that within the dielectric, the material is 
neutral but the overall field is reduced, as the dipoles produce a 
field which opposes the applied field.  On the surface of the 
dielectric, excess bound charges exist, and the material is said to 
be polarised.  The diagram shows a slab of dielectric, polarised 
by an external field and so reducing the electric field within its 
bulk.  

+ + + 

– – – 

 
The electric field inside the material is reduced by a factor k known as the dielectric constant of the 
material.  This means that the potential difference between the two plates of a capacitor filled with 

dielectric material is also reduced by k.  From equation [1], 
Q

C
V

= , we therefore see that the 

capacitance is increased by the same factor.  For a parallel plate capacitor containing dielectric 

material, the capacitance is therefore 0k A
C

d

ε= . [7] 

(The dimensionless constant k is also sometimes known as εr, the relative permittivity of the 
material.) 
 
 
 
 
Putting What You Have Learnt Into Practice 
Question 1 
A parallel plate capacitor has plates with dimensions 3 cm by 4 cm, separated by 2 mm.  The plates 
are connected across a 60 V battery.  Find (a) the capacitance; (b) the magnitude of charge on each 
plate; (c) the energy stored in the capacitor. 

Solution  
(a) The area of the plates is 12×10–4 m2.  The capacitance is  

 
12 4

0
3

8.85 10 12 10
5.3pF

2 10

A
C

d

− −

−

ε × × ×= = =
×

. 

(b) The charge stored is 12 105.31 10 60 3.2 10 CQ CV − −= = × × = × . 

(c) The stored energy is 2 12 2 91
2 0.5 5.31 10 60 9.6 10 JU CV − −= = × × × = ×  
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Question 2 
What is the capacitance of an isolated metallic sphere of radius R = 20 cm? 

Solution  
The potential of the sphere when carrying a charge Q is 

 
04

Q
V

R
=

πε
. 

 12 11
04 4 8.85 10 0.2 2.2 10 F

Q
C R

V
− −= = πε = π× × × = ×  

Capacitance is 22 pF. 

 
Question 3 
For the circuit shown opposite, find: (a) the effective total 
capacitance; (b) the charge and potential difference for each 
individual capacitor. 

Solution 
(a) We start with the parallel sub-circuit of C2 and C3, and have 

 23 2 3 4 FC C C= + = µ . 

This combination is in series with the other two capacitors, so the 
total equivalent capacitance is given by 

48 V 

C3=3µF 

C4=12µF 

C2=1µF C1=6µF 

1 23 4

1 1 1 1 1 1 1 1

6 4 12 2C C C C
= + + = + + = . 

C = 2 µF. 

(b) Capacitors in series have the same charge, and this is also the charge Q on the overall equivalent 
capacitance. 

 62 10 48 96 CQ CV −= = × × = µ  

So 1 4 23 96 CQ Q Q= = = µ  

Since C2 and C3 have a common potential difference across their terminals, the charge they carry 
will be proportional to their capacitance, so ¼ will be on C2, and ¾ on C3. 

 2 324 C; 72 CQ Q= µ = µ  

We find the voltages from 
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(As a check, 1 23 4 16 24 8 48VV V V+ + = + + =  as required.) 
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Question 4 – Cylindrical Capacitor 
What is the capacitance of a long cylindrical (coaxial) cable of 
inner radius a, outer radius b and length L as shown?  How is the 
capacitance changed if the insulation between the conductors is 
plastic with a dielectric constant k? 

Solution 
Consider a charge +Q on the inner conductor, and –Q on the outer.  
Choose as a Gaussian surfaces a cylinder of length L and radius r, 
between the other cylinders.  From Gauss’s law we have 

 

a 

b 

0
dA=
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ε∫ E� . 
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2

2
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. 

To find the potential difference between the conductors, we integrate over a radial path from the 
outer to the inner conductor 

 
0 0 0

d
d ln ln

2 2 2

a a

b b

Q r Q a Q b
V E r

rL L b L a
   = − = − = − =   πε πε πε   

∫ ∫  

Since 
Q

C
V

= , we have  ( )
02

ln

L
C

b
a

πε= . 

If an insulator of dielectric constant k fills the space between the conductors, the capacitance is just 
increased by a factor k. 

 
Question 5 – Spherical Capacitor 
What is the capacitance of two concentric spherical conducting shells of inner radius a and outer 
radius b? 

Solution  
We take the same approach as in question 4, considering a charge +Q on the inner conductor, and  
–Q on the outer sphere.  For a Gaussian surface, we consider a concentric sphere of radius r, where 
a r b< < .  Applying Gauss’s law yields 

 2
2

0 0

4
4

Q Q
E r E

r
× π = ⇒ =

ε πε
 

Integrating from outer to inner conductor to find the potential difference we get 
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d
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Q r Q Q Q b a
V E r
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Then from 
Q

C
V

= , we have  04
ab

C
b a

= πε
−

. 


