PHY101 Electricity and Magnetism |

Topic 5 (Lectures 7 & 8) — Capacitors and Dielectds

In this topic, we will cover:

1) Capacitors and Capacitance

2) Combinations of Capacitors — Series and Parallel
3) The energy stored in a capacitor

4) Dielectrics

Introduction

A capacitor is a means of storing electric charyfée saw at the start of the course that an
isolated conductor can be charged electrostaticatiythis could be considered as the most basic
sort of capacitor. The charges on the conductuat te repel each other, and to reduce their energy
they will leak away to ground if any slightly cordive path is available. We can store the charge
more easily if we can reduce its energy, which meaducing its potential for a given charge. This
can be achieved by arranging that the conducteyiogrchargeQ is in close proximity to another
conductor carrying @. Although the charges within each conductor maydpelling each other,
they will be attracted by those in the other conduand their net energy will be reduced.

Capacitors and Capacitance

Consider two separated conducting plates, connéctadattery. The electromotive force of
the battery drives charge from one terminal todtieer. One plate will therefore end up with a
positive charge while the other will have an equoabative charge. The potential difference
between the plates will be equal to the voltagepbegp by the battery. If the battery is
disconnected, the charge will remain on the platesich will maintain the same potential
difference. As we will see, the magnitude of therge stored on either pla@ is directly
proportional to the potential difference between phates. We can write this as

Q=CV [1]

where the constant of proportionalifyis known as theapacitanceof the system, which is called a
capacitor. The capacitance is thus the quantitcharge stored per unit potential difference
between the plates. The S.I. Unit of capacitasdbe Farad (F), and 1 Farad = 1 Coulomb / Volt.
The Farad (like the Coulomb) is a very large uaitgd most practical capacitances are measured in
microfarads (IuF = 10°F) or picofarads (1 pF = 1§ F). We shall shortly see that capacitors
store electrical energy, as well as charge.

Parallel Plate Capacitor

The simplest, and most common, A
geometry for a capacitor consists of two flat
metal plates, close together but separated by a |
layer of insulating material. When connected to
a potential difference, they will carry opposite
amounts of electric charge, Qt If the
separation of the plates is very small compared ‘
with their lateral dimensions (as it usually is), <
we can ignore fringe fields near the ends, and
consider a uniform electric field which only
exists between the plates.
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The attraction between the charges means thatliheyn the inner surfaces of the plates.
Assume the plates have an afeand separatiod. Applying Gauss’s law to the dotted surface
shown, which completely surrounds one plate, weehav

EA:Q = E:i
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(Note that this iglifferentfrom the case of an isolated sheet of charge cereidpreviously, as
here the electric field is all on one side of tireet, and so only cuts one side of the Gaussian
“bOX”.)

We calculate the potential differendamoving from lower to upper plate from
V= —I E @l = Ed

where the cancelling minus sign comes from the that E and the pathd are in opposite
directions.

Thus =Q—d.
€A
Using our definition foiIC from [1], we have
Q_gA
C===—"*_
v dl [2]

Rearranging this equation also provides us withalgrnative, and more common, unit fgrwhich
is Fm™.

To store a large amount of charge at low potenti@l,to produce a large capacitance, we
obviously want a large plate ardaand small separatioth This can be manufactured from two
long strips of aluminium foil, separated by a teheet of plastic film. In a practical capacitdrist
“sandwich” is covered by another sheet of plastid then rolled up into a cylinder. As we will see
later, the plastic layer may have other benefisdes its insulating nature.

Capacitors in Parallel and Series

When two or more capacitors are connected togethey, behave like a single capacitor
with a modified capacitance. It is useful to béealo calculate the effective capacitance of the
combination in terms of the individual capacitances

Capacitors in Parallel
If two capacitors are connected as shown, with plage of each Vv ]‘
connected to ground (0 V) and the other to voltdgthen from [1]

capacitorC, will carry a chargeQ, = C}V and similarly forC,. The — C | C, —
total charge isQ=Q+Q=(G+ C) V= CV where C is the l

effective capacitance of the combination. oV

So C=C+0G,.

For N capacitors in parallel, C=C+GC+--+ . [3]

(In a parallel combination, the total capacitarscalivays greater than any individual capacitance.)

Capacitors in Series
Two components are connected in series when thayesa common Vv
terminal, as shown. When connected to an extgot@ntial, a charg® +Q
will flow onto the capacitors as shown. Note thigice there is nexternal -Q — 1 Cy
connection to the centre point of the circuit, tbgl charge on the lower
plate of C; and the upper plate o, must be zero. Therefore both +Q
capacitors must carry the same chaf@e,The voltage across the circuit is _Q N )
just the sum of the voltages across the individuzgdacitors,V =V, +V,.

0

Y,
But from [1], V, :% =%, etc

1
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So V—Q Q Q.

G G C
and therefore 1 = 1 +_1
cC G G
or for N capacitors in series 1.1 +—1+~--+—1 [4]
' C G G G|

(In a series combination, the total capacitancealisays less than the smallest individual
capacitance.)

Energy Stored in a Capacitor

We have seen that when charge is at an electioptatential, it possesses potential energy —
that is, the ability to do work. A charged capacinust therefore store energy, as well as charge.
The work required to add an infinitesimal chargetd a capacitor already carrying charges

dw = qu:% dq. The total work done to charge a capacitor tagdQ is therefore

‘fﬂ _Q

5 C 2C
This is the electrical potential energyy stored in the capacitor. Using equation [1], ttés be
expressed in a variety of ways.

U:EQ_Z:}QV:_]'CVZI [5]

The Energy Density of an Electric Field
We can consider the energy stored in a capacitootfeer system of charges) either as being
due to charges held at potentials or as energgdiaran extended electric field.

Writing U =4CV? andV = Ed, and using [2]C =£%A , we have

U =28A (g = e AdE.
2 d 2
But Ad is the volume between the plates, that is themelwvhere the electric field exists. The

energy density, that is the energy per unit voluisitherefore just

UZ%EOEZ- [6]

This expression is not only valid for the paralihte capacitor, or indeed for any other sort of
capacitor. It is the general expression for thergyn density in an electric field.

Dielectrics

The capacitance of a capacitor could obviouslynoeeiased if we could reduce the potential
at which a given charge is stored. This coulddieexed if the electric field was reduced. Is ¢her
some way this can be done, for a given geometrgapficitor? The answer is that it can, if a
material known as a dielectric is introduced irtte gap between the capacitor plates. We have
already seen that a conductor contains free chaagesthat in an external electric field these move
until the net internal field reaches zero. (Weldmot fill the gap between the capacitor platethwi
conductor, as this would allow charge to escapa fooe plate to the other, and no charge would be
stored!)
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A dielectric is an insulator which, though neutoaferall, contains A NN
boundcharges which cannot move throughout the bulkhefrhaterial but @ @ @
which can be displaced slightly under the influeloean electric field.
Examples might be simple atoms, in which electronse a small distance C C
one way while the positive nucleus is displacedhdly the other when a
field is applied, or more complicated organic males with polar groups @ @ @
which are positive and negative while being boumthe molecule.

In each case, the charges move under the influeinte applied field without leaving their
parent atoms or molecules, until an internal r@stpforce balances the force due to the external
field. They therefore become microscopic dipofgmerating a dipole moment in the direction of
the applied field. In most materials, the dispiaeat, and so the size of the dipole moment, is
proportional to the applied electric field.

The net effect of this is thatithin the dielectri¢c the material is N T \ N /I\
neutral but the overall field is reduced, as th@ollis produce a

field which opposes the applied fieldOn the surface of the
dielectric, excess bound charges exist, and the materiaidste
be polarised The diagram shows a slab of dielectric, polarise
by an external field and so reducing the electetdfwithin its
bulk.

The electric field inside the material is reducgdalfactork known as thelielectric constanof the
material. This means that the potential differebetveen the two plates of a capacitor filled with

Q

dielectric material is also reduced By From equation [1]’C=V

[ + | +

, we therefore see that the

capacitance is increased by the same factor. Huarallel plate capacitor containing dielectric
keg A 7]
q |

material, the capacitance is therefore |C=

(The dimensionless constaktis also sometimes known a&g the relative permittivity of the
material.)

Putting What You Have Learnt Into Practice

Question 1

A parallel plate capacitor has plates with dimensi8 cm by 4 cm, separated by 2 mm. The plates
are connected across a 60 V battery. Find (ag¢dbpacitance; (b) the magnitude of charge on each
plate; (c) the energy stored in the capacitor.

Solution
(a) The area of the plates is 12%'19°. The capacitance is

_g,A _8.85x10%x 1x 10'
d 2x10°

(b) The charge stored is Q=CV=5.31x10"%x 60= 3.% 10° ¢

C =5.3pF.

(c) The stored energy is U =1CV?=0.5x5.3% 10”*x 60= 9.6 I0
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Question 2
What is the capacitance of an isolated metalli@splbf radiugk = 20 cm?

Solution
The potential of the sphere when carrying a ch@ ge
V= Q .
4me,R
C =§ = 4T R= 4% 8.85¢ 10%2x 0.2 2.2 10!
Capacitance is 22 pF.
Question 3
For the circuit shown opposite, find: (a) the efifee total C1=6p =1uF

capacitance; (b) the charge and potential diffexdoceach

individual capacitor. ]
Solution Co=3uF
(a) We start with the parallel sub-circuit©f andCs;, and have
C,,=C,+ C,=4pF. Ci=120F——
This combination is in series with the other twpaators, so the |=
total equivalent capacitance is given by |
48 V

1 1 1 1 1 1 1 1

s T+ 4+ =T Ty =

C C C3 C 6 4 12 2

C=2uF.

(b) Capacitors in series have the same chargethsé also the chardg@ on the overall equivalent
capacitance.

Q=CV=2x10°x 48= 961 C
So Q=Q,=Q,=96uC

SinceC, andC; have a common potential difference across theiniteals, the charge they carry
will be proportional to their capacitance, so ¥4 wé onC,, and % orCs.

Q =244C;  Q=72C

We find the voltages from

6
2Q9BxI0° oy, Q9610
C, 6x10 C, 12x10
Q, _ 24x10° ., _Q,_ 7210
T T S 2AVE ==V,
C, 1x10 C, 3x10

(As a checkyV, +V,,+V, =16+ 24+ 8= 48V as required.)
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Question 4 — Cylindrical Capacitor

What is the capacitance of a long cylindrical (¢aBxcable of
inner radius, outer radiud and lengti. as shown? How is the
capacitance changed if the insulation betweenahéuwctors is
plastic with a dielectric constak®

Solution

Consider a charge@on the inner conductor, an@-on the outer.
Choose as a Gaussian surfaces a cylinder of ldngtid radiug,
between the other cylinders. From Gauss’s law axeh

(ﬁEEiA=g.
€0
E><2Trr><L:g = E= Q :
€ 2TErL

To find the potential difference between the conadis; we integrate over a radial path from the
outer to the inner conductor

V:—TEdr=—j} Qdr =- Q In(éj:iln(—bj
s 21, rL 2rel \b) 2l \a

b

:m.

If an insulator of dielectric constakfills the space between the conductors, the ctgram® is just
increased by a factér

SinceC =8 , we have C

Question 5 — Spherical Capacitor
What is the capacitance of two concentric sphedoablucting shells of inner radiasand outer
radiusb?

Solution

We take the same approach as in question 4, comgjde charge @ on the inner conductor, and
—Q on the outer sphere. For a Gaussian surfacepn&der a concentric sphere of radiusvhere
a<r<b. Applying Gauss’s law yields

= E—Q

Ex4mr? = = S
4T

O

Integrating from outer to inner conductor to fitne tpotential difference we get

V:_TEdr:_fQ_df:&H :i(}_}jzﬁﬁ_
dre,(r |, 4me,\a b) 4e, ab

Then fromC 28 , we have C= 4T1£oa—b :
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