PHY101 Electricity and Magnetism |
Topic 3 (Lectures 4 & 5) — Gauss’s Law

In this topic, we will cover:

1) Electric Flux

2) Gauss’s Law, relating flux to enclosed charge
3) Electric Fields and Conductors revisited

Introduction

In the last topic, we saw various important praperbf electric fields. By the principle of
superposition, we can calculate the electric faale to a distributed charge. However, the integral
needed to evaluate this may be tricky, and in cadege we can recognise the symmetry of the
field, there may be a much easier method. We kawthe field strength is equal to the density of
field lines, and we also saw that the number oédiistarting on a charge is proportional to the
magnitude of that charge. If we can define thestamt of proportionality, we can use these two
facts to determine the electric field at differguaints in space. The mathematician Carl Gauss
related the flux, or flow of field lines throughckbsed surface, with the total charge enclosedimvith
it. In fact, Gauss’s Law is not restricted to élestatics; it can also be used to relate graoiteai
field to mass.

Electric Flux

Consider a rectangular surface of afeenmersed
in a uniform electric fieldE. If the surface is
perpendicular to the field, the total flux cut Inetsurface, {\\
®, is justEA If the surface is inclined as shown, we have ~ S
two ways of looking at the situation. Tpeojected area
perpendicular to the field is nowwco®, so ® = EAcos.
We arrive at the same result if we resolve thetetec
field into components parallel to and normal
(perpendicular) to the surface. The normal compbBg
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is equal tdE co9®, so the flux through the surface is just E
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Note thatd is the angle between the lines of electric
field and the normal to the surface.
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We therefore have two equivalent definitions ot#ie flux:

The electric flux through an area is equal to thentoer of field lines intercepted by that area.

The electric flux through an area is the producthe area with the normal component of the figld

through that area.

We can usefully express [1] in vector notation. Alfis a vector representing the surface
whose magnitude is equal to the area and diredigiven by the normal to the surface, tlens
given by the dot-product

O=E[A. [2]

In general, the electric field will not be uniforiamd the surface we need to consider need not
be plane. However we can divide the surface imfinitesimal elementsAl within which the field
will be approximately constant. The flux througheement will be given byl® = E[¢A and the
total flux through the surface is given by integrgtover the surface:
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®=[E@A =[EcosH &y 3]

Field lines passing one direction through a surfgiwe a positive contribution to the flux,
while those going in the opposite direction wilvgia negative contribution. If we consider a
closed surface, such as a sphere, we define thitureds the number of field lines emerging from
the surface minus the number entering it. (If mores enter than leave, the net flux is negative.)
An important result is that since field lines alwastart and end on a charge, if there is no charge
within a surface, the net flux through that surfaugst be zero.

Gauss’s Law

Consider a point positive charg@g surrounded by a spherical
so-calledGaussian surfageas shown in the figure. By symmetry, the
electric field has the same value at all pointshas imaginary sphere,
and its direction is always perpendicular to thdage, so parallel to
the vector elementsAd of the surface. The total flux through the
closed surface is therefore

cb:gSEdA: E(JS dA= Ex 4mP. [4]

Herecﬁ represents an integral oveclasedsurface. Sinc& is constant, it has been taken out of
the integral, and the integrated area is just tinfase area of a sphere.

Q Q Q

=~ S0P = 4mr? =—<.

From Coulomb’s law, we have = 5
4T 1 4TE 1 €

The flux through this closed surface iggltimes the charge enclosed within the surface. The
number of field lines emerging from a chai@es thereforeQ/e;. Note that the above result does
not depend on the radius of the sphere; sihgel/r? andA O r? their product remains constant.

We can also extend the argument to an arbitrary-spherical
surface. Consider the irregular surface illusttat¥/e know that the
flux through the enclosed dotted spherical surfac@s,. Since there
is no charge presefietweenthe inner spherical and outer arbitrary
surface, we know that the net flux through the corafon of these
two surfaces must be zero. Therefore the flux ughothe outer
surface must also be equalQx,.

Gauss’s law states that:

If the volume within an arbitrary closed surfacentains a net charge Q, then the electric flux
through the surface iQ/¢o.

To summarise:

1) The net flux through any closed surface surroundingoint chargeQ is given by Q/g,
independent of the shape of the surface.

2) The net flux through a closed surface that surreuralnet charge is zero.

3) The electric field due to a number of charges éswéctor sum of the fields due to each charge.
The flux through a closed surface is therefore mive

®=PEMA = (E, +E, +-) WA .
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Using Gauss’s Law

Gauss’s law is particularly helpful in determinitige electrostatic field when the charge
distribution has a high degree of symmetry. We sék examples of this at the end of these notes.
In choosing the appropriate Gaussian surface dlf@ning points should always be considered:

1) Use the symmetry of the charge distribution to ghetee the pattern of field lines.
2) Choose a Gaussian surface so Ehi either parallel toA or perpendicular to it, if possible.
3) WherekE is parallel to &, the magnitude dE must be constant over this part of the surface.

Electric Conductors in Electrostatic Equilibrium

We saw in the last topic that the electrons in doator are free to move within the body of
the conductor in response to an applied field. yTha&l move towards the surfaces of the
conductor, accumulating a net negative charge atstte and leaving a net positive charge at the
other, until the resulting electric field withingtconductor (due to the combination of the applied
field and the displaced charge) is zero. (Thisdan is known aglectrostatic equilibriun) We
can now show that the net electric charge can eesity on the surface of a conductor. Consider
an arbitrary Gaussian surface drawn entirely witthe body of the conductor. Within the
conductor there is no field, so the net flux thriodlge surface must be zero. Therefore, by Gauss’s
law, the net charge within the Gaussian surfacet tmeizero. Net charge cannot reside within the
conductor. (Chargean reside on the surface of the conductor, because &esurrounding
Gaussian surface would be partly within the conoluahd partly outside. The electric fiadtside
the conductor wilhot be zero.) In summary:

1) The electric field is zero everywhere inside a aartdr.
2) When an isolated conductor carries a charge, idesn the surface of the conductor.

3) The electric field just outside a charged conduid@ways perpendicular to its surface, and has
a magnitude/so whereo is the surface charge density at that point.

4) On an irregularly shaped conductor, the surfacegehdensity is greatest in regions where the
radius of curvature of the surface is smallest.

Putting What You Have Learnt Into Practice

Question 1
What is the electric flux through a sphere of raditD m containing a charge of gC at its centre?

Solution by Coulomb’s Law
The electric field at a distance of 1 m is radialiywards and, as determined by Coulomb’s law, its
magnitude is

6
.. Q _ 1x10°

= == — =8.99x 16 NC'
ATE,r?  4mx 8.85¢ 107 x 1.6

The area of the sphere = 4mr? = 4n1.G = 12.6 M.

So since the field and surface are everywhere pdipglar, the flux is

®=EA=8.99x10x 12.6= 1.18 0 Nm TC.

Solution by Gauss’s Law
Foranysurface, the flux is

6
== 0 ;1316 Nnf
g, 8.85¢10
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Question 2
Find the electric field due to a point chagasing Gauss’s law

Solution

For a point charge, the electric field must be siphly symmetric. Consider therefore a Gaussian
surface which is a sphere centred on the charge.electric field at the surface of the sphere must
therefore be constant in magnitude and radial. GByss’s law

= JE A = [ EdA= EmerZ:%)

E=—21
4T v
Question 3 2
What is the electric field due to an infinitely pmvire carrying a linear .
charge density C m™? ﬂ\
Solution \&/
In this case, the electric field must be spreadiafiyd in two h
dimensions. A suitable Gaussian surface is thezefocylinder, as ﬂ E
shown. Once again, the electric field will be megicular to the \
curved surface of the cylinder. By Gauss’s lawe #lectric field PRSI,
multiplied by the surface area must equal the ahamrlosed divided \./
by €. (Since the ends of the cylinder are paralleth® field, they
provide no contribution to the flux.) If we coneida lengthh of the
wire and cylinder, we therefore have
® =EA= Ex 2T[I’h=ﬂ =ﬂ
& &
A
21E
Contrast the 1/dependence d here with 1r? for the point charge.
Question 4
What is the electric field due to a large uniforhest of charge with a A
. _2,) /
surface charge density 6fC m PR
Solution % *
Once again, we can use symmetry to see that tb&ieléeld must be + { ) |+
uniform and everywhere perpendicular to the shéatharge. For a P e v

Gaussian surface, we can take a cylinder with balsaseaA on either
side of the sheet, as shown. In this case, therena lines of flux + + + o+
cutting the curved surface of the cylinder, andonly need to consider
the field passing through the two ends. Thesesléad

®o=2A= 2 =9A
8O 80
-0
2,

(This is the result already obtained in Questionf 3 opic 2.)
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Question 5
A chargeQ is distributed uniformly throughout a sphere afivgR. Calculate the electric field
(a) at a point outside the sphere; (b) at a poititivthe sphere.

Solution

As in questions 1 & 2, we have spherical synmetrg ao can consider a spherical Gaussian
surface, of radius, centred on the centre of the charge distributi@ince the electric field will
everywhere be perpendicular to the surface, Gailass'sells us that

ATT 2E = Qwithin
80
whereQuitin IS the charge contained inside the surface.
(@) If r >R, thenQ,,,,, = Q as all the charge Q is contained inside the Gaossirface. Hence
E= Q >
4T 1
identical to the field when Q is concentrated pbat at the centre of the sphere.

Q

HTR

(b) The charge density inside the sphereis . Forr <R, the charge contained inside the

3
: : r
Gaussian surface is therefo@g,,, = px 4%’ = QE _

Hence = 32: Qr S
are,re 4re R
In other words, the field rises linearly from O at the centrg % at the surface. This is
TEO

identical to the value calculated in part (a) immediabeitgidethe surface.
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