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PHY101 Electricity and Magnetism I 
Topic 3 (Lectures 4 & 5) – Gauss’s Law 

 
In this topic, we will cover: 
1) Electric Flux 
2) Gauss’s Law, relating flux to enclosed charge 
3) Electric Fields and Conductors revisited 

 
Introduction 

In the last topic, we saw various important properties of electric fields.  By the principle of 
superposition, we can calculate the electric field due to a distributed charge.  However, the integral 
needed to evaluate this may be tricky, and in cases where we can recognise the symmetry of the 
field, there may be a much easier method.  We saw that the field strength is equal to the density of 
field lines, and we also saw that the number of lines starting on a charge is proportional to the 
magnitude of that charge.  If we can define the constant of proportionality, we can use these two 
facts to determine the electric field at different points in space.  The mathematician Carl Gauss 
related the flux, or flow of field lines through a closed surface, with the total charge enclosed within 
it.  In fact, Gauss’s Law is not restricted to electrostatics; it can also be used to relate gravitational 
field to mass. 

Electric Flux 
Consider a rectangular surface of area A immersed 

in a uniform electric field E.  If the surface is 
perpendicular to the field, the total flux cut by the surface, 
Φ, is just EA.  If the surface is inclined as shown, we have 
two ways of looking at the situation.  The projected area 
perpendicular to the field is now A cosθ, so cosEAΦ = θ .  
We arrive at the same result if we resolve the electric 
field into components parallel to and normal 
(perpendicular) to the surface.  The normal component En 
is equal to E cosθ, so the flux through the surface is just  

 n cosE A EAΦ = = θ . [1] 

Note that θ is the angle between the lines of electric 
field and the normal to the surface. 
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We therefore have two equivalent definitions of electric flux: 

The electric flux through an area is equal to the number of field lines intercepted by that area. 

The electric flux through an area is the product of the area with the normal component of the field 
through that area. 

We can usefully express [1] in vector notation.  If A is a vector representing the surface 
whose magnitude is equal to the area and direction is given by the normal to the surface, then Φ is 
given by the dot-product 

 Φ = ⋅E A . [2] 

In general, the electric field will not be uniform, and the surface we need to consider need not 
be plane.  However we can divide the surface into infinitesimal elements dA within which the field 
will be approximately constant.  The flux through an element will be given by d dΦ = ⋅E A  and the 
total flux through the surface is given by integrating over the surface: 
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 d cos dE AΦ = ⋅ = θ∫ ∫E A . [3] 

Field lines passing one direction through a surface give a positive contribution to the flux, 
while those going in the opposite direction will give a negative contribution.  If we consider a 
closed surface, such as a sphere, we define the net flux as the number of field lines emerging from 
the surface minus the number entering it.  (If more lines enter than leave, the net flux is negative.)  
An important result is that since field lines always start and end on a charge, if there is no charge 
within a surface, the net flux through that surface must be zero. 

Gauss’s Law 
Consider a point positive charge Q surrounded by a spherical 

so-called Gaussian surface, as shown in the figure.  By symmetry, the 
electric field has the same value at all points on this imaginary sphere, 
and its direction is always perpendicular to the surface, so parallel to 
the vector elements dA of the surface.  The total flux through the 
closed surface is therefore  

 2d d 4E A E A E rΦ = = = × π∫ ∫� � . [4]  

r 
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Here ∫� represents an integral over a closed surface.  Since E is constant, it has been taken out of 

the integral, and the integrated area is just the surface area of a sphere. 

From Coulomb’s law, we have 
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The flux through this closed surface is 1/ε0 times the charge enclosed within the surface.  The 
number of field lines emerging from a charge Q is therefore Q/ε0.  Note that the above result does 
not depend on the radius of the sphere; since E ∝ 1/r2 and A ∝ r2 their product remains constant. 

We can also extend the argument to an arbitrary, non-spherical 
surface.  Consider the irregular surface illustrated.  We know that the 
flux through the enclosed dotted spherical surface is Q/ε0.  Since there 
is no charge present between the inner spherical and outer arbitrary 
surface, we know that the net flux through the combination of these 
two surfaces must be zero.  Therefore the flux through the outer 
surface must also be equal to Q/ε0.    

Q 

 

Gauss’s law states that: 

If the volume within an arbitrary closed surface contains a net charge Q, then the electric flux 
through the surface is Q/ε0. 

To summarise: 

1) The net flux through any closed surface surrounding a point charge Q is given by Q/ε0, 
independent of the shape of the surface. 

2) The net flux through a closed surface that surrounds no net charge is zero. 

3) The electric field due to a number of charges is the vector sum of the fields due to each charge.  
The flux through a closed surface is therefore given by 

 ( )1 2d dΦ = ⋅ = + + ⋅∫ ∫E A E E A⋯� � .  
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Using Gauss’s Law 
Gauss’s law is particularly helpful in determining the electrostatic field when the charge 

distribution has a high degree of symmetry.  We will see examples of this at the end of these notes.  
In choosing the appropriate Gaussian surface, the following points should always be considered: 

1) Use the symmetry of the charge distribution to determine the pattern of field lines. 

2) Choose a Gaussian surface so that E is either parallel to dA or perpendicular to it, if possible. 

3) Where E is parallel to dA, the magnitude of E must be constant over this part of the surface. 

Electric Conductors in Electrostatic Equilibrium 
We saw in the last topic that the electrons in a conductor are free to move within the body of 

the conductor in response to an applied field.  They will move towards the surfaces of the 
conductor, accumulating a net negative charge at one side and leaving a net positive charge at the 
other, until the resulting electric field within the conductor (due to the combination of the applied 
field and the displaced charge) is zero.  (This condition is known as electrostatic equilibrium.)  We 
can now show that the net electric charge can reside only on the surface of a conductor.  Consider 
an arbitrary Gaussian surface drawn entirely within the body of the conductor.  Within the 
conductor there is no field, so the net flux through the surface must be zero.  Therefore, by Gauss’s 
law, the net charge within the Gaussian surface must be zero.  Net charge cannot reside within the 
conductor.  (Charge can reside on the surface of the conductor, because here a surrounding 
Gaussian surface would be partly within the conductor and partly outside.  The electric field outside 
the conductor will not be zero.)  In summary: 

1) The electric field is zero everywhere inside a conductor. 

2) When an isolated conductor carries a charge, it resides on the surface of the conductor. 

3) The electric field just outside a charged conductor is always perpendicular to its surface, and has 
a magnitude σ/ε0 where σ is the surface charge density at that point. 

4) On an irregularly shaped conductor, the surface charge density is greatest in regions where the 
radius of curvature of the surface is smallest. 

 
 
Putting What You Have Learnt Into Practice 
 
Question 1 
What is the electric flux through a sphere of radius 1.0 m containing a charge of +1 µC at its centre? 

Solution by Coulomb’s Law 
The electric field at a distance of 1 m is radially outwards and, as determined by Coulomb’s law, its 
magnitude is 
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The area of the sphere is 2 2 24 4 1.0 12.6mA r= π = π = . 

So since the field and surface are everywhere perpendicular, the flux is 

3 5 2 18.99 10 12.6 1.13 10 N m CEA −Φ = = × × = × .  

Solution by Gauss’s Law 
For any surface, the flux is 
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Question 2 
Find the electric field due to a point charge q using Gauss’s law 

Solution  
For a point charge, the electric field must be spherically symmetric.  Consider therefore a Gaussian 
surface which is a sphere centred on the charge.  The electric field at the surface of the sphere must 
therefore be constant in magnitude and radial.  By Gauss’s law 

2

0
d d 4 qE A E rΦ = ⋅ = = × π = ε∫ ∫E A�  
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Question 3 
What is the electric field due to an infinitely long wire carrying a linear 
charge density λ C m–1?  

Solution  
In this case, the electric field must be spread radially in two 
dimensions.  A suitable Gaussian surface is therefore a cylinder, as 
shown.  Once again, the electric field will be perpendicular to the 
curved surface of the cylinder.  By Gauss’s law, the electric field 
multiplied by the surface area must equal the charge enclosed divided 
by ε0.  (Since the ends of the cylinder are parallel to the field, they 
provide no contribution to the flux.)  If we consider a length h of the 
wire and cylinder, we therefore have 
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Contrast the 1/r dependence of E here with 1/r2 for the point charge. 

 
Question 4 
What is the electric field due to a large uniform sheet of charge with a 
surface charge density of σ C m–2?  

Solution  
Once again, we can use symmetry to see that the electric field must be 
uniform and everywhere perpendicular to the sheet of charge.  For a 
Gaussian surface, we can take a cylinder with bases of area A on either 
side of the sheet, as shown.  In this case, there are no lines of flux 
cutting the curved surface of the cylinder, and we only need to consider 
the field passing through the two ends.  These leads to: 
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(This is the result already obtained in Question 5 of Topic 2.)  
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Question 5 
A charge Q is distributed uniformly throughout a sphere of radius R.  Calculate the electric field   
(a) at a point outside the sphere; (b) at a point within the sphere. 

Solution  
As in questions 1 & 2, we have spherical symmetry and so can consider a spherical Gaussian 
surface, of radius r, centred on the centre of the charge distribution.  Since the electric field will 
everywhere be perpendicular to the surface, Gauss’s law tells us that  
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where Qwithin is the charge contained inside the surface. 

(a) If r R> , then withinQ Q=  as all the charge Q is contained inside the Gaussian surface.  Hence
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identical to the field when Q is concentrated at a point at the centre of the sphere. 

(b) The charge density inside the sphere is  
34
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π
.  For r R< , the charge contained inside the 

Gaussian surface is therefore 
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In other words, the field rises linearly from 0 at the centre to 
2
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 at the surface.  This is 

identical to the value calculated in part (a) immediately outside the surface. 


