
newton's derivation of kepler's laws       

All three of Kepler's laws follow from Newton's laws of motion when the law of universal
gravitation is used to express the forces between the Sun and the planets.

kepler I     Newton's derivation of Kepler's first law is embodied in his statement and
solution of the so-called two-body problem.

Given at any time the positions and velocities of two massive particles moving
under their mutual gravitational force, the masses also being known, provide a
means of calculating their positions and velocities for any other time, past or
future.

The solution of the two-body problem is an equation of motion. Its derivation is
outside the scope of this course, as it requires the use of vector calculus in
conjunction with Newton's second law and his law of gravitation. The solution
for two masses m1 and m2 can be written in polar coordinates r,  (see
Figure 31) as follows:

r = h2 / G(m1+m2) (1 + e cos ),

where h is a constant which is twice the rate of description of area by the radius
vector and e is the eccentricity of the orbit. This equation looks similar to the
polar equation of an ellipse that we derived earlier. In fact, it is the polar
equation of a conic section.

The ellipse is just one example of a class of curves called conic sections, which
are formed when a cone is cut with a plane, as shown in Figure 35. When the
plane is perpendicular to the cone's axis, the result is a circle (ellipticity, e = 0);
when it is parallel to one side, the result is a parabola (e = 1); intermediate
angles result in ellipses (0 < e < 1). A hyperbola results when the angle the
plane makes with the cone's side is greater than the opening angle of the cone
(e > 1).

 
figure 35: Conic sections.
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In obtaining his solution to the two-body problem, Newton generalized Kepler's
first law. He deduced that when one body moves under the gravitational
influence of another, the orbit of the moving body must be a conic section.
Planets, satellites and asteroids have elliptical orbits. Many comets have
eccentricities so close to unity that they follow essentially parabolic orbits. A few
comets have hyperbolic orbits - after one perihelion passage, such comets leave
the solar system forever. Space probes have been launched into hyperbolic
orbits with respect to the Earth, but they are nearly always captured into
elliptical orbits about the Sun. Pioneer 10 was the first spacecraft that, when
perturbed by Jupiter, escaped from the solar system.

kepler II     There are two ways in which it is possible to derive Kepler's second law from
Newton's laws. The first, presented by Newton in 1684, is a geometrical
method and is shown in Figure 36.

 
figure 36: Newton's proof of Kepler's second law.
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Newton visualized the motion of an object acted on by a gravitational force as
a succession of small kicks or impulses which in the limit become a
continuously applied influence. Newton imagined an object travelling along part
of an orbit AB which then receives an impulse directed towards the point S. As
a result, it then travels along the line BC instead of Bc. Similar impulses carry
it to D, E and F. Newton visalized the displacement BC as being, in effect, the
combination of the displacement Bc, equal to AB, that the object would have
undergone if it had continued for an equal length of time with its original
velocity, together with the displacement cC parallel to the line BS along which
the impulse was applied. This at once yields Kepler's second law by a simple
argument: The triangles SAB and SBc are equal, having equal bases (AB and
Bc) and the same altitude. The triangles SBc and SBC are equal, having a
common base (SB) and lying between the same parallels. Hence triangle SAB
= triangle SBC.

A modern Newtonian derivation of Kepler's second law requires the concept of
an orbiting body's angular momentum

L = r X p = m (r X v)

where m is the body's mass, r is its position vector and p its linear momentum
(= mv, where v is its velocity). Note that for the first time in this course we
distinguish between vector quantities and scalar quantities by writing vector
quantities in a bold face. The vector cross product (denoted by X) is an
operation that yields the product of the perpendicular components of two
vectors; hence if r and p are parallel, then r X p = 0. Angular momentum is a
vector quantity L with the units kgm2s-1. Differentiating L, we have

dL/dt = d(r X p)/dt = v X p + r X (dp/dt) = r X F



since v is parallel to p and dp/dt is the definition of force according to
Newton's second law. We call dL/dt the torque (with units kgm2s-2) and see
that when F and r are co-linear, due to a central force such as gravitation, the
torque vanishes. Hence L is constant in time and so angular momentum is
conserved for all central forces. The conservation of angular momentum is a
very powerful tool in celestial mechanics and can be used to derive Kepler's
second law as follows.

 
figure 37: The velocity components of a body in an elliptical orbit. 

A body is moving in an elliptical orbit with a velocity v at a distance r from the
focus F (Figure 37). During a short time interval t, the body moves from P to
Q and the radius vector sweeps through the angle . This small angle is
approximately given by  = vt t / r, where vt is the component of v
perpendicular to r. During this time, the radius vector has swept out the
triangle FPQ, the area of which is approximately given by A = rvt t / 2.
Therefore, in the limit given by t approaching zero, we have

dA/dt = rvt/2 = ½r2(d /dt).

Now, the angular momentum of the body in Figure 37 is given by the vector
perpendicular to the plane defined by r and v, i.e. it is out of the plane of the
paper. The scalar magnitude of L is given by

L = mvtr= mr2 d /dt.

This means that the rate of sweeping out area is given by



dA/dt = ½r2(d /dt) = L / 2m.

As L and m are constants, then dA/dt must be a constant, i.e. the rate of
sweeping out area is a constant. Hence we have verified Kepler's second law.

kepler III     Newton's form of Kepler's third law can be derived by considering two bodies
of masses m1 and m2, orbiting their (stationary) centre of mass at distances
r1 and r2 (Figure 38).

 
figure 38: Two bodies in orbit about their common centre of mass.

Because the gravitational force acts only along the line joining the centres of
the bodies, both bodies must complete one orbit in the same period P (though
they move at different speeds v1 and v2). The forces on each body due to
their centripetal accelerations are therefore

F1 = m1v1
2 / r1 = 4 2 m1r1 / P2

F2 = m2v2
2 / r2 = 4 2 m2r2 / P2.

Newton's third law tells us that F1 = F2, and so we obtain

r1 / r2 = m2 / m1.

This tells us that the more massive body orbits closer to the centre of mass
than the less massive body. The total separation of the two bodies is given by

a = r  + r
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which gives

r1 = m2a / (m1 + m2).

Combining this equation with the equation for F1 derived above and Newton's

law of gravitation (Fgrav = F1 = F2 = Gm1m2 / a2) gives Newton's form of
Kepler's third law:

P2 = 4 2 a3 / G(m1 + m2).

If body 1 is the Sun and body 2 any planet, then m1 >> m2. Hence the

constant of proportionality in Kepler's third law becomes 4 2 / GMSun.
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