
Lecture 2 Basic observational data  

We cannot perform experiments on stars, or take surface samples from them. Thus 
we are restricted to studying them  through the electromagnetic radiation they emit, 
or possibly through the effect of their gravitational field. A further restriction is that 
almost all stars can be observed only as points of light. The most obvious exception is 
the Sun, where very detailed observations are possible. However, the Sun is the only 
star, caught at a particular moment of its evolution. It has been possible to measure 
the diameter directly for some stars, and in few cases also to observe very large-scale 
features on the stellar surface, although the interpretation of these observations is 
somewhat questionable. In all other cases we have determinations only of the 
position of the star in the sky, and of the properties of the emitted radiation, 
integrated over the surface of the star. As we shall see, even these limited data allow 
us to learn a great deal about the stars, and hence to test computations of stellar 
evolution. 

2.1. Stellar positions and distances 

Stellar positions have been measured since antiquity. The most basic quantity is the 
angular distance between two stars, i.e. the angle between the lines-of-sight to the 
stars. 

 

Figure 2.1. Stars in Ursa Major are located very far from each other, and do not 
constitute any connected system. Brightest star in a constellation is usually 

designated as α, then β and so on. 

The angular distances are traditionally measured in degrees (°) or its subdivisions 
arcminutes (′) or acrseconds (′′), 

defined by 

             
                   (2.1) 

Note also that 1 radian = 206265′′. Under the best conditions an optical telescope on 
the surface of the Earth can separate two stars that are at distance of about 0.3′′. 



From the point of view of investigating stellar structure and evolution, the apparent 
positions of stars are in themselves of little interest. However, measurements of the 
change in apparent position as the Earth moves in its orbit around the Sun provide 
our only direct determinations of distances to stars other than the Sun. 

 

Figure 2.2. Parallax p of a star at a distance d from the Earth. 

The change in direction to the star, as measured relative to very distant stars, as the 

Earth moves from a point at its orbit to the opposite point, is defined to be 2p, where 

p is the parallax of the star. Hence p is the angle subtended by the radius of the 
Earth’s orbit (1 astronomical unit, or A.U.) as seen from the star, so that 

                                   
     (2.2) 

where d is the distance to the star, and 1A.U.=1.496×1011 m is the radius of the 
Earth orbit. Since p is a very small angle, equation (2.2) gives 

                  (2.3) 

where p′′ is the parallax measured in arcsec, and we have introduced the distance 
measure parsec (or pc), where 1 pc = 206265 A.U. = 3.086×1016 m. 

The closest star other than the Sun has a parallax of 0.76′′, and hence a distance of 
1.32 pc. The best terrestrial observations yield parallaxes with a precision of about 
0.01′′. This allows determination of distances of a few thousand stars in the solar 
neighbourhood. Much better measurements where provided by the satellite 
HIPPARCOS, which was launched by the European Space Agency (ESA) in 1989. 



2.2. Stellar brightness 

In early star catalogues stars were classified according to their magnitude, the 
brightest stars having magnitude 0 and the faintest stars visible to the naked eye 
having magnitude 6. This scheme for describing the brightness of stars has 
essentially been maintained, but has been made precise. 

What is measured on the Earth is the apparent luminosity l of a star, i.e. the energy 
from the star that passes through a unit area (orthogonal to the direction to the star) 

in unit time. Hence the unit for l is J m-2 s-1. It was found that this precisely defined 
quantity could be related to the loosely defined magnitude scale by defining the 

apparent magnitude map of a star as 

 

                      (2.4) 

where K1 is a constant which is determined by specifying the magnitude of a given 

star, say. The reason for the “-“ in the definition of map is evidently that the 
magnitude of stars, according to the old definition, increases as the stars get fainter. 
Since the magnitude is defined only to within a constant, a more convenient form of 
equation (2.4) is 

  
     (2.5) 

where l1 and l2 are the apparent luminosities of two stars, and mapp 1 and mapp 2 
are the corresponding magnitudes. 

For the purpose of comparing with stellar evolution calculations, a much more 

interesting quantity is the absolute luminosity L , i.e. the total amount of energy 
radiated by the star per unit time. If we assume that the radiation is emitted 
isotropically (equally in all directions), and that there is no absorption between the 
star and us, then 

                                               (2.6) 

where d is the distance to the star. Corresponding to the apparent magnitude mapp, 

we introduce the absolute magnitude Mabs, by 



                       (2.7) 

where K2 is another constant. From equations (2.4), (2.6) and (2.7) then follows a 

relation between mapp  and Mabs. It is conventional to  choose the constant K2 such 
that this relation has the form 

                   (2.8) 

where d is measured in parsec. Thus Mabs corresponds to the apparent magnitude 
the star would have had if it had been at a distance of 10 pc. The Sun has an absolute 
magnitude of 4.62. 

--------------------------------------------------------- 

Exercise 2.1. Show that one can obtain a relation of the form (2.8) by suitable 

choice of K2. If you need help, press   

--------------------------------------------------------- 

It is obvious that the description of star’s brightness in terms of its magnitude is 
entirely conventional, and for the uninitiated somewhat awkward. However, it does 
reflect one important feature of observations of stellar brightness, namely that it is 
quite difficult to determine the amount of energy received from a given star, since it 
requires an absolute calibration of the measuring device. It is far easier to measure 
the ratio between the luminosities of two stars, and hence their magnitude difference. 
Once the zero-point of the magnitude scale has been established by arbitrarily 
assigning a given magnitude to a given star, one can then determine the magnitudes 
of other stars. 

2.3. Colour indices and surface temperature 

Different stars on the sky have different colours, which depend on their temperature; 
blue stars are hotter than red. We are thus interested in measuring not only the total 
amount of energy coming from the star in electromagnetic waves, but also the 
distribution of this energy with the wavelength.  

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution2_1.htm�


 

Figure 2.3. Scale of electromagnetic waves. 

Some indication of the distribution of the stellar luminosity with wavelength can be 
obtained by observing the star through differently coloured filters. To enable 
comparisons between results obtained at different observatories, standard sets of 
filters are used. A commonly used system is the so-called UBV system. It uses three 
filters, which sensitivity ranges are roughly 

  

In this system, U , B and V are used to denote the apparent magnitudes mapp 
measured with corresponding filters. Corresponding apparent luminosities are usually 

denoted as lU, lB, lV and absolute magnitudes -- as MU, MB, MV. 

To characterize the distribution of energy with wavelength, one introduces the colour 

indices U-B and B-V , so that, for example, 

           (2.9) 



where KU and KB are the constants in the definition of the U and B magnitudes. In 

the UBV system the constants are chosen such that U  B = B  V = 0 for a 
particular type of a star (the so-called A0 dwarf stars). For the Sun, the UBV apparent 
magnitudes and the colour indices are 

     

Since the filters defining the UBV magnitudes let through light over fairly broad 
wavelength ranges, the magnitudes and colour indices can be measured even for a 
very faint stars. Furthermore, in the absence of interstellar absorption the colour 
indices are independent of the distance to the star, which is most often not known. 
Hence they can be used to characterize the intrinsic properties of a star. 

----------------------------------------------------------- 

Exercise 2.2. Show that the colour indices are independent on distance.  

------------------------------------------------------------ 

The colour index is predominantly determined by the surface temperature of the star. 

Hotter stars radiate more of the energy at short wavelengths; hence their U 
magnitude tends to be low (recall that the magnitude decreases as the luminosity 

increases), relative to their B magnitude, and so they have a low colour index U 
 B , relative to cooler stars; the same is true for the index B  V . To describe 

the relation between temperature and colour indices more precisely we assume, as a 

first rough approximation, that the star radiates as black body with a temperature T . 
Then the emission from the stellar surface is given by the Planck function, which 
specifies the spectral density of the apparent luminosity (i.e. the apparent luminosity 

per unit interval of the wavelength λ ) as 
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(2.10) 

here h is Planck’s constant, k is Boltzmann’s constant, c is speed of light, and R is 
the radius of the star.  

Equation (2.10) predicts that the wavelength λmax at which stellar luminosity has its 
maximum value is inversely proportional to the surface temperature, 

                      (2.11) 

where λ is measured in nanometers (1nm=10-9m) and T is in Kelvins (K). 

Equation (10) also allows to evaluate total apparent luminosity of the star (the so-
called bolometric luminosity). 

----------------------------------------------------- 

Exercise 2.3. Show that total apparent luminosity of the star, integrated over 
wavelength, may be written as 

                  (2.12) 

where σ is some constant, which you are not expected to explicitly specify (this 

constant σ is the so-called Stefan-Boltzman constant).  
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--------------------------------------------------------- 

Even though real stars do not radiate as black bodies, it is convenient to describe 
their total energy emission by means of equation (2.12), by defining the effective 

temperature Teff of the star such that  

                      
          (2.13) 

and 

                 
              (2.14) 

are exactly satisfied. 

Equation (2.10) can also be used to relate the colour indices with stellar temperature. 
With known spectral properties of the UBV filters, equation (2.10) allows to calculate 

theoretical values of the U  B and B  V colour indices for any “trial” 

temperature T. Matching the theoretical colour indices with their observational values 
allows one to obtain an estimate of the surface temperature of the star, the so-called 
colour temperature. Since stars do not radiate like black bodies, the colour 
temperature is in general different from the effective temperature, although they are 
normally quite similar. 

2.4. Colour-magnitude diagrams 

Given measurements of the brightness and surface temperature of a group of stars, 
as determined by their magnitudes and colour indices, it is natural to plot these 
quantities against each other, to look for systematic correlations. This was first done 
independently by E. Hertzsprung and H. N. Russell, and these diagrams are 
collectively known as Hertzsprung-Russell, or HR, diagrams; the term colour-
magnitude diagrams is also commonly used. An example of such a plot, for stars that 
are near enough to make possible a determination of their distance, and hence their 
absolute magnitude and luminosity, is illustrated by Figure 2.4. 



 

Figure 2.4. Colour-magnitude diagram. 

It is obvious that the distribution of stars is far from random. Most of the stars are 
concentrated in the main sequence, a fairly narrow band of stars with steeply 
increasing luminosities with increasing temperature (it is an unfortunate historical 
accident that such diagrams are always plotted with the temperature increasing to 
the left). The red giant stars are located in the upper-right corner of the diagram. 
Below the main sequence, there is a small number of very faint and relatively hot 
stars, the white dwarfs. The appropriateness of this name follows immediately from 
equation (2.13): if hot stars are very faint, compared with main sequence stars of the 
same temperature, their radii must be very small. The understanding of distribution 
of stars in this diagram, and its relation to stellar evolution, is a major goal of these 
lectures. 

Further exercises 

Exercise 2.4.  A star is at a distance of 1.2×1017 m, calculate its parallax. A second 
star has a parallax of 0.5, calculate its distance. This star appears 10 times as bright 

as the first star, what is the true ratio of brightness?  

Exercise 2.5.  A star has apparent magnitude 7.62 and is at a distance of 100 
parsecs from us. 

  a) What is its absolute magnitude? 
  b) What is its luminosity? 
  c) Its effective temperature is 5780K, what is its radius? 
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A second star has the same effective temperature but its radius is 100 times greater. 
Its apparent magnitude is 13.12. What is its distance from the observer in parsecs? 

What would its parallax be?  

Exercise 2.6.  A stellar field was observed using a CCD detector twice, once in a red 
(R) filter and once through a blue (B) filter. The exposure time for the R filter was 20s 
and for the B filter 60s. One star was of Solar Type and known to have an apparent R 
magnitude of 12.1. 

A second star was also measured in the same field. The total proton counts from each 
star through each filter were as follows: 

                        Solar-type star                Other star 
R filter 20s             23456                           58919 
B filter 60s             20954                           49405 

Obtain the B and R magnitudes of the other star (B-R for the Sun is 1.17). Is this star 

redder or bluer than the Sun?  

Exercise 2.7.  The stars Rigel and β Canis Majoris have the same effective 
temperature, 12 000K. Their absolute magnitudes are respectively 6.77 and 

1.33. 

  a) Calculate their luminosities in solar units 

  b) Calculate the ratio of their radii.  

Exercise 2.8. For yellow stars, the main sequence has a slope of 6  (i.e. log 
L=6log T + const). Show that their effective temperature is proportional to their 

radius.  
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