
Lecture 3 

Equation of state: the ideal gas  

The description of stellar structure requires knowledge about properties of the matter 
in the stars. The properties of the gas are described in terms of local state variables, 

and the relations between them. For example, given the values of the temperature T, 

the density ρ and the chemical composition, it is possible to calculate all other state 

variables, including the pressure p and the internal energy per unit volume u . The 
specification of these relations constitutes the definition of the equation of state 
satisfied by the gas. 

A considerable simplification results from the high temperature in stellar interiors, 
which means that in most of the star the gas can be assumed to be fully ionized, i.e. 
decomposed into bare nuclei and free electrons. Therefore the gas consists of 
particles with no internal degrees of freedom. Also, as a first approximation one can 
neglect the interactions between the particles. Such a gas is described as being an 
ideal gas.  

3.1. The ideal gas 

The distribution of the speed v in a gas consisting of “classical” particles is given by 
the Maxwell distribution: 

 (3.1) 

where m is the mass of the particle and k is Boltzmann’s constant. This distribution 

function is defined such that f(v)dv gives the probability of finding the particle in 

the range of speed between v and v+dv. Accordingly f is normalized such that 

                                         
(3.2) 

Using the Maxwell distribution, we can calculate average value of the kinetic energy 

mv2/2 of an individual particle: 



           
(3.3) 

where we use <> to designate the average value of corresponding physical quantity. 

--------------------------------------- 

Exercise 3.1. Verify equations (3.2, 3.3). You can assume without prove that 

                           (3.4) 

 

--------------------------------------- 

Consider now the ideal gas of temperature T contained in a rectangular box of 

dimensions a, b and c as shown below:  

  

When a single particle of mass m and velocity v=(vx,vy,vz) hits the wall of the 

box labeled with area S=bc, the particle changes its momentum by an amount 

Δ(mvx)=2mvx. Momentum conservation (FΔt=Δ(mv) where F is force and Δt 
is time interval over which the force is applied) requires this momentum transfer to 

be balanced by the external force F1 applied to the wall from the outside: 

                                 
    (3.5) 
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For the time interval, we shall use Δt=2a/vx, the time interval between two 

consecutive hits. Notation <> is used here to designate the time average of the 

force F, and subscript 1 is to remind that we are dealing with just one particle. This 

force is produced by the external pressure P1; we have <F1>=P1S, and thus 

                                           (3.6) 

where V=aS=abc is the box volume. 

Let N be the total number of particles in volume V. Each of the particles contributes 

to the pressure; for the total pressure P we get 

                                   
     (3.7) 

where <> now designates averaging over the particles. 

We also have  

                 (3.8) 

i.e the kinetic energy equipartition between three degrees of freedom, and 

  (3.9) 

Equation (3.3) thus gives <mvx
2>=kT; from the equation (3.7) we get finally 



                                              (3.10) 

the equation of state of the ideal gas.   

In the stellar case we are not concerned with a given volume of gas, but rather with 
its microscopic properties, and hence it is more convenient to write equation (3.10) 
as 

                                                 (3.11) 

where n=N/V is the number of particles per unit volume. Introducing the mass 

density ρ and the (dimentionless) atomic weight μ of the particles, we have 

                                               (3.12) 

where mH is the mass of the hydrogen atom,   mH=1.67×10-27 kg, and hence 

                                                (3.13) 

The ratio k/mH is known as the universal gas constant   

           
(3.14) 

and another form of the equation of state of the ideal gas (3.14) is 

                                               (3.15) 

3.2. Mean molecular weight 

In practice, stellar matter consists of a mixture of different elements, the atoms of 
which are largely or fully ionized. Thus the description in the previous section, which 
assumed only one kind of particles, is too simple. However, it is straightforward to 
generalize it. 



If the gas consists of different types of particles each behaving like an ideal gas, with 

number densities ni, the total pressure in the gas is obtained as the sum of the 

partial pressures Pi: 

                   
               (3.16) 

Note that when having the same number densities, electrons make the same 
contribution to the pressure as nuclei, despite their smaller mass. 

Let us consider a mixture of atoms of different elements, all of which are assumed to 

be fully ionized. We denote the atomic number of element i as Zi, its atomic weight 

as Ai, and its mass fraction as Xi. When fully ionized, each atom contributes Zi+1 

particles (Zi electrons and one nucleous). 

The number of atoms of element i per  unit volume is ρXi/(AimH), and hence the 

total number of particles per unit volume for element i is ρXi(Zi+1 )/(AimH). 
Thus, from the equation (3.16) it follows that the pressure is 

                  (3.17) 

where we introduced the mean molecular weight μ by 

                    
               (3.18) 

Therefore, with this definition of μ we recover equation (3.13) for P. 

It is conventional to denote the mass fraction of H and He by X and Y, respectively, 

and the mass fraction of the remaining, so-called heavy, elements by Z. This 
separation is useful because Z<<X,Y in most stellar compositions. Note that the 

normalization X+Y+Z=1 must hold. To obtain an approximate expression for 

μ we take A1=1 for hydrogen, A2=4 for helium, and approximate (Zi+1)/Ai by 

 for heavy elements. Then 



                          (3.19) 

or 

                          
          (3.20) 

3.3. Specific heats and adiabatic change 

The internal energy of the monoatomic ideal gas is just the kinetic energy of the 

thermal motion of its particles. The mean internal energy per particle is 3/2kT, as 
given by equation (3.3). Thus the internal energy per unit volume is 

                   (3.21) 

The energetics of the gas as the star evolves, or the gas moves, plays a very 
important role for stellar evolution. The basic equation describing the changes in the 
properties of the gas is the first law of thermodynamics, 

                             
        (3.22) 

valid for a fixed amount of matter, where U is the internal energy of the matter, and 

V is the volume it occupies. Here dQ is an amount of heat added to the matter, 
which, as expressed in the right-hand side, goes partially into changing the internal 
energy, and partially into work done against the external pressure, to change the 

volume of the gas. We let V to be the volume corresponding to unit mass, so that 

                                                     (3.23) 

Then U=u/ρ is the specific internal energy, i.e. the internal energy per unit mass; 
from equation (3.21) it follows that 



                                            (3.24) 

We now consider a process where the volume does not change. We introduce the 

specific heat per unit volume, cV, as an amount of heat that has to be added, per unit 
mass, to raise the temperature one degree. It follows from equations (3.22) and 
(3.24) that 

                         
         (3.25) 

and hence 

                                        
(3.26) 

It is also of interest to consider a process where the pressure is constant. To do so, 

we use the ideal gas law of the form PV=NkT (equation 3.10), where in the present 

case (unit mass) we have N=1/(μmH). For the changes we then obtain 

                        (3.27) 

and hence from equation (3.22) 



                  (3.28) 

by using equation (3.24). From this equation it follows that the specific heat at 
constant pressure is 

                                         
(3.29) 

A particularly important type of process are the adiabatic processes, which occur 

without any exchange of heat, i.e. with dQ=0. For such a process, from equations 
(3.22), (3.24) and (3.26) we obtain 

                               
         (3.30) 

To obtain a relation between the changes in P and V (or ρ) for an adiabatic process, 
we use the ideal gas law in the form (3.27), which is equivalent to 

                                
    (3.31) 

to write the equation (3.30) as 



          (3.32) 

and hence 

          
(3.33) 

where we introduced γ≡cP/cV and used equation (3.23). For the ideal gas which we 

are considering it follows from the explicit expressions (3.26, 3.29) for cV and cP that 

γ=5/3. We may also write equation (3.33) as 

                                       
(3.34) 

where the subscript S indicates that the partial derivative is taken at constant specific 

entropy, i.e. without any heat exchange.  

Further exercises 

Exercise 3.2. Show from first principles that for a star consisting of ionized hydrogen 

and ionized helium only, the mean molecular weight is μ=4/(3+5X). Show that 

this is also obtained by putting Z=0 in the general expression.  
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Exercise 3.3. An evolved star consists of equal amounts of ionized helium and an 
element of atomic mass 14 with 6 electrons. Both elements are fully ionized. Obtain 

the exact value of the mean molecular weight μ.  
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