
Chapter 6

Central Forces

6.1 Central Forces in Two Dimensions

A central force is one which is always directed towards or away from a fixed point,

which we may take as our origin. In two dimensions, it is convenient to use plane polar

coordinates (r, θ): then a central force F must be of the form F = f(r, θ)êr. Using N II

and the results for acceleration in plane polar coordinates from §2.1, we see that

f(r, θ) = m(r̈ − rθ̇2),

0 = m(2ṙθ̇ + rθ̈).

Note that

d

dt
(r2θ̇) = 2rṙθ̇ + r2θ̈ = r(2ṙθ̇ + rθ̈);

so

0 =
m

r

d

dt
(r2θ̇) =⇒ r2θ̇ = const. ≡ h.

h is related to the angular momentum: in fact it is the magnitude of the angular mo-

mentum vector per unit mass, as we shall see in the next section. It is conserved because

there is no torque (i.e., no force perpendicular to the particle’s position vector).

Suppose that f is actually a function of r alone, not of θ, and let V (r) be the corre-

sponding potential, i.e., f(r) = −V ′(r). Then

f = m(r̈ − rθ̇2) = m

(
r̈ − h2

r3

)
(6.1)

=⇒ −ṙV ′ = m

(
ṙr̈ − ṙ

h2

r3

)
41



=⇒ −V = m

(
1
2
ṙ2 +

h2

2r2

)
+ const.,

by integrating with respect to time. Rearranging,

1
2
m

(
ṙ2 +

h2

r2

)
+ V = const. ≡ E.

This is the energy equation: 1
2
mṙ2 is the “radial part” of the kinetic energy and 1

2
mh2/r2 =

1
2
mr2θ̇2 is the “tangential part”.

Note that we have reduced the problem to a system with one degree of freedom (because we can rewrite
(6.1) as mr̈ = F ∗(r) where F ∗(r) = f(r) + mh2/r3), so we can apply the methods of Chapter 4.

6.2 Central Forces in Three Dimensions

In 3D, define the angular momentum to be

h = r× p = mr× ṙ.

Note that

ḣ = mṙ× ṙ + mr× r̈ = r× F.

The rhs is known as the couple or torque,

G = r× F.

A central force in 3D is still defined to be one where F ‖ r. So under a central force,

there is no torque and hence ḣ = 0, i.e., h is a fixed vector. But

r . h = mr . (r× ṙ) = 0;

this is the equation of a plane through the origin. The particle

is therefore confined to this plane, and the motion is in fact two-

dimensional. So we can use polar coordinates in the plane and the

results of the previous section apply.

Now r = rêr and ṙ = ṙêr + rθ̇êθ, so

h = mrêr × (ṙêr + rθ̇êθ)

= mr2θ̇êr × êθ

= mr2θ̇êz

where êz is the unit normal to the plane (since êr and êθ are perpendicular, of unit length

and both lie in the plane).

This agrees with the result in the previous section that r2θ̇ is constant: it is equal to

|h|/m.
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6.3 Stability of Circular Orbits

Consider motion under a central force F = f(r)êr: from (6.1) we have

f(r) = m

(
r̈ − h2

r3

)
where h = r2θ̇ is constant. Suppose that the particle is moving in a circular orbit of

radius a: then the angular velocity θ̇ = h/a2 is also constant, and

f(a) = −mh2

a3
. (6.2)

Is this orbit stable? Suppose that the particle is given a small disturbance. Let r = a+ε;

then

f(a + ε) = m

(
ε̈− h2

(a + ε)3

)

=⇒ f(a) + εf ′(a) + O(ε2) = m

(
ε̈− h2

a3

(
1 +

ε

a

)−3
)

= mε̈ + f(a)

(
1− 3ε

a
+ O(ε2)

)
,

using (6.2) and Taylor expansions on both sides. To first order we obtain

ε̈ =
1

m

(
f ′(a) +

3f(a)

a

)
ε.

So the orbit is stable iff

f ′(a) +
3f(a)

a
< 0,

in which case r executes shm about r = a.

We could have obtained the same result by writing mr̈ = F ∗(r) as in §6.1 and applying the results of
§4.2: r = a is a stable equilibrium iff F ∗(a) = 0 and F ∗′(a) < 0.

A small disturbance would in fact usually also change the value of h, say to h + η where η is small. This
leads to the equation

ε̈ =
1
m

(
f ′(a) +

3f(a)
a

)
ε +

2hη

a2

to first order (ignoring small terms such as εη). This is still shm, but plus a particular integral which is
just the constant −2mhη

/(
a2f ′(a)+3af(a)

)
. So the stability criterion is unchanged; the particle simply

oscillates about a nearby value of r, i.e., its mean radius is slightly different from the original radius.

Example: f(r) ∝ −1/rN−1 where N is a positive integer. The stability criterion is then

N − 1

aN
− 3

aN
< 0,

i.e., N < 4 (or N 6 3, since N is an integer).

In N dimensions, gravity would obey an inverse (N − 1)th power law. It is therefore fortunate for us
that circular orbits are stable for N = 3; if the Universe had higher dimension then we would not exist!
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