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. Introduction

These notes are based on the course “Foundations of Quantum Mechanics” given by
Dr. H. Osborn in Cambridge in the Michælmas Term 1997. These typeset notes have
been produced mainly for my own benefit but seem to be officially supported. Recom-
mended books are discussed in the bibliography at the back.

A word or two about the philosophy of these notes seem in order. They are based in
content on the lectures given, but I have felt free to expand and contract various details,
as well as to clarify explanations and improve the narrativeflow. Errors in content are
(hopefully) mine and mine alone but I accept no responsibility for your use of these
notes.

Other sets of notes are available for different courses. At the time of typing, these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Quantum Mechanics Fluid Dynamics 1
Quadratic Mathematics Geometry
Dynamics of D.E.’s Foundations of QM
Electrodynamics Methods of Math. Phys
Fluid Dynamics 2 Waves (etc.)
Applications of QM Dynamical Systems
Statistical Physics

They may be downloaded from

http://pdm23.trin.cam.ac.uk/˜pdm23/maths/ or
http://www.damtp.cam.ac.uk/

or you can email me onpdm23@cam.ac.uk to get a copy of the sets you require.
Even if you download them please email me to let me know, so that I can keep you up
to date with the errata and new note sets. The other people whohave contributed time
and effort to these note sets are:

Richard Cameron Analysis Hugh Osborn Proofreading
Claire Gough Proofreading Malcolm Perry Accomodation
Kate Metcalfe Probability David Sanders Proofreading

Although these notes are free of charge anyone who wishes to express their thanks
could send a couple of bottles of interesting beer to Y1 Burrell’s Field, Grange Road.

Paul Metcalfe
15th December 1997
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. Chapter 1

The Basics of Quantum
Mechanics

Quantum mechanics is viewed as the most remarkable development in 20th century
physics. Its point of view is completely different from classical physics. Its predictions
are often probabilistic.

We will develop the mathematical formalism and some applications. We will em-
phasize vector spaces (to which wavefunctions belong). These vector spaces are some-
times finite-dimensional, but more often infinite dimensional. The pure mathematical
basis for these is in Hilbert Spaces but (fortunately!) no knowledge of this area is
required for this course.

1.1 Review of earlier work

This is abrief review of the salient points of the 1B Quantum Mechanics course. If
you anything here is unfamiliar it is as well to read up on the 1B Quantum Mechanics
course. This section can be omitted by the brave.

A wavefunctionψ(x) : R
3 7→ C is associated with a single particle in three di-

mensions.ψ represents the state of a physical system for a single particle. If ψ is
normalised, that is

‖ψ‖2 ≡
∫

d3x |ψ|2 = 1

then we say thatd3x |ψ|2 is the probability of finding the particle in the infinitesimal
regiond3x (atx).

Superposition Principle

If ψ1 andψ2 are two wavefunctions representing states of a particle, then so is the
linear combinationa1ψ1 + a2ψ2 (a1, a2 ∈ C). This is obviously the statement that
wavefunctions live in a vector space. Ifψ′ = aψ (with a 6= 0) thenψ andψ′ represent
the same physical state. Ifψ andψ′ are both normalised thena = eıα. We write
ψ ∼ eıαψ to show that they represent the same physical state.

For two wavefunctionsφ andψ we can define a scalar product

(φ, ψ) ≡
∫

d3x φ∗ψ ∈ C.

1
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2 CHAPTER 1. BASICS

This has various properties which you can investigate at your leisure.

Interpretative Postulate

Given a particle in a state represented by a wavefunctionψ (henceforth “in a state
ψ”) then the probability of finding the particle in stateφ is P = |(φ, ψ)|2 and if the
wavefunctions are normalised then0 ≤ P ≤ 1. P = 1 if ψ ∼ φ.

We wish to define (linear) operators on our vector space — do the obvious thing.
In finite dimensions we can choose a basis and replace an operator with a matrix.

For a complex vector space we can define the Hermitian conjugate of the operatorA
to be the operatorA† satisfying(φ,Aψ) = (A†φ, ψ). If A = A† thenA is Hermitian.
Note that ifA is linear then so isA†.

In quantum mechanics dynamical variables (such as energy, momentum or angular
momentum) are represented by (linear) Hermitian operators, the values of the dynam-
ical variables being given by the eigenvalues. For wavefunctions ψ(x), A is usually
a differential operator. For a single particle moving in a potential V (x) we get the
HamiltonianH = − ~

2

2m
∇2 + V (x). Operators may have either a continuous or dis-

crete spectrum.
If A is Hermitian then the eigenfunctions corresponding to different eigenvalues

are orthogonal. We assume completeness — that any wavefunction can be expanded
as a linear combination of eigenfunctions.

The expectation value forA in a state with wavefunctionψ is 〈A〉ψ, defined to be
∑

i λi |ai|2 = (ψ,Aψ). We define the square deviation∆A2 to be〈(A − 〈A〉ψ)
2〉ψ

which is in general nonzero.

Time dependence

This is governed by the Schrödinger equation

ı~
∂ψ

∂t
= Hψ,

whereH is the Hamiltonian.H must be Hermitian for the consistency of quantum
mechanics:

ı~
∂

∂t
(ψ,ψ) = (ψ,Hψ) − (Hψ,ψ) = 0

if H is Hermitian. Thus we can impose the condition(ψ,ψ) = 1 for all time (if ψ is
normalisable).

If we consider eigenfunctionsψi of H with eigenvaluesEi we can expand a general
wavefunction as

ψ(x, t) =
∑

i

aie
− ıEi

~
tψi(x).

If ψ is normalised then the probability of finding the system withenergyEi is |ai|2.

1.2 The Dirac Formalism

This is where we take off into the wild blue yonder, or at leasta more abstract form of
quantum mechanics than that previously discussed. The essential structure of quantum
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1.2. THE DIRAC FORMALISM 3

mechanics is based on operators acting on vectors in some vector space. A wavefunc-
tion ψ corresponds to some abstract vector|ψ〉, aketvector.|ψ〉 represents the state of
some physical system described by the vector space.

If |ψ1〉 and|ψ2〉 are ket vectors then|ψ〉 = a1|ψ1〉+a2|ψ2〉 is a possible ket vector
describing a state — this is the superposition principle again.

We define a dual space ofbra vectors〈φ| and a scalar product〈φ|ψ〉, a complex
number.1 For any|ψ〉 there corresponds a unique〈ψ| and we require〈φ|ψ〉 = 〈ψ|φ〉∗.
We require the scalar product to be linear such that|ψ〉 = a1|ψ1〉 + a2|ψ2〉 implies
〈φ|ψ〉 = a1〈φ|ψ1〉 + a2〈φ|ψ2〉. We see that〈ψ|φ〉 = a∗

1〈ψ1|φ〉 + a∗
2〈ψ2|φ〉 and so

〈ψ| = a∗
1〈ψ1| + a∗

2〈ψ2|.
We introduce linear operatorŝA|ψ〉 = |ψ′〉 and we define operators acting on bra

vectors to the left〈φ|Â = 〈φ′| by requiring〈φ′|ψ〉 = 〈φ|Â|ψ〉 for all ψ. In general, in
〈φ|Â|ψ〉, Â can act either to the right or the left. We define theadjoint Â† of Â such
that if Â|ψ〉 = |ψ′〉 then〈ψ|Â† = 〈ψ′|. Â is said to be Hermitian if̂A = Â†.

If Â = a1Â1 + a2Â2 thenÂ† = a∗
1Â

†
1 + a∗

2Â
†
2, which can be seen by appealing to

the definitions. We also find the adjoint of̂BÂ as follows:
Let B̂Â|ψ〉 = B̂|ψ′〉 = |ψ′′〉. Then〈ψ′′| = 〈ψ′|B̂† = 〈ψ|Â†B̂† and the result

follows. Also, if 〈ψ|Â = 〈φ′| then|φ′〉 = Â†|φ〉.
We have eigenvectorŝA|ψ〉 = λ|ψ〉 and it can be seen in the usual manner that the

eigenvalues of a Hermitian operator are real and the eigenvectors corresponding to two
different eigenvalues are orthogonal.

We assume completeness — that is any|φ〉 can be expanded in terms of the basis
ket vectors,|φ〉 =

∑

i ai|ψi〉 whereÂ|ψi〉 = λi|ψi〉 and ai = 〈ψi|ψ〉. If |ψ〉 is
normalised —〈ψ|ψ〉 = 1 — then the expected value of̂A is 〈Â〉ψ = 〈ψ|Â|ψ〉, which
is real if Â is Hermitian.

The completeness relation for eigenvectors ofÂ can be written aŝ1 =
∑

i |ψi〉〈ψi|,
which gives (as before)

|ψ〉 = 1̂|ψ〉 =
∑

i

|ψi〉〈ψi|ψ〉.

We can also rewritêA =
∑

i |ψi〉λi〈ψi| and if λj 6= 0 ∀j then we can define
Â−1 =

∑

i |ψi〉λ−1
i 〈ψi|.

We now choose an orthonormal basis{|n〉} with 〈n|m〉 = δnm and the complete-
ness relation̂1 =

∑

n |n〉〈n|. We can thus expand|ψ〉 =
∑

n an|n〉 with an = 〈n|ψ〉.
We now consider a linear operator̂A, and thenÂ|ψ〉 =

∑

n anÂ|n〉 =
∑

m a′
m|m〉,

with a′
m = 〈m|Â|ψ〉 =

∑

n an〈m|Â|n〉. Further, puttingAmn = 〈m|Â|n〉 we get
a′

m =
∑

n Amnan and therefore solvinĝA|ψ〉 = λ|ψ〉 is equivalent to solving the
matrix equationAa = λa. Amn is called the matrix representation ofÂ. We also have
〈ψ| =

∑

n a∗
n〈n|, with a′

n
∗ =

∑

m a∗
mA†

mn, whereA†
mn = A∗

nm gives the Hermitian
conjugate matrix. This is the matrix representation ofÂ†.

1.2.1 Continuum basis

In the above we have assumed discrete eigenvaluesλi and normalisable eigenvectors
|ψi〉. However, in general, in quantum mechanics operators oftenhave continuous

1bra ket. Who said that mathematicians have no sense of humour?
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4 CHAPTER 1. BASICS

spectrum — for instance the position operatorx̂ in 3 dimensions.̂x must have eigen-
valuesx for any pointx ∈ R

3. There exist eigenvectors|x〉 such that̂x|x〉 = x|x〉 for
anyx ∈ R

3.
As x̂ must be Hermitian we have〈x|x̂ = x〈x|. We define the vector space required

in the Dirac formalism as that spanned by|x〉.
For any state|ψ〉 we can define a wavefunctionψ(x) = 〈x|ψ〉.
We also need to find some normalisation criterion, which usesthe 3 dimensional

Dirac delta function to get〈x|x′〉 = δ3(x − x′). Completeness gives

∫

d3x|x〉〈x| = 1.

We can also recover the ket vector from the wavefunction by

|ψ〉 = 1̂|ψ〉 =

∫

d3x|x〉ψ(x).

Also 〈x|x̂|ψ〉 = xψ(x); the action of the operator̂x on a wavefunction is multipli-
cation byx.

Something else reassuring is

〈ψ|ψ〉 = 〈ψ|1̂|ψ〉 =

∫

d3x〈ψ|x〉〈x|ψ〉

=

∫

d3x |ψ(x)|2 .

The momentum operator̂p is also expected to have continuum eigenvalues. We
can similarly define states|p〉 which satisfyp̂|p〉 = p|p〉. We can relatêx andp̂ using
the commutator, which for two operatorŝA andB̂ is defined by

[

Â, B̂
]

= ÂB̂ − B̂Â.

The relationship between̂x andp̂ is [x̂i, p̂j ] = ı~δij . In one dimension[x̂, p̂] = ı~.
We have a useful rule for calculating commutators, that is:

[

Â, B̂Ĉ
]

=
[

Â, B̂
]

Ĉ + B̂
[

Â, Ĉ
]

.

This can be easily proved simply by expanding the right hand side out. We can use this
to calculate

[

x̂, p̂2
]

.

[

x̂, p̂2
]

= [x̂, p̂] p̂ + p̂ [x̂, p̂]

= 2ı~p̂.

It is easy to show by induction that[x̂, p̂n] = nı~p̂n−1.
We can define an exponential by

e−
ıap̂

~ =

∞
∑

n=0

1

n!

(

− ıap̂

~

)n

.



C
op

yr
ig

ht
 ©

 2
00

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

1.2. THE DIRAC FORMALISM 5

We can evaluate
[

x̂, e−
ıap̂

~

]

by

[

x̂, e−
ıap̂

~

]

=

[

x̂,
∞
∑

n=0

1

n!

(

− ıap̂

~

)n
]

=

∞
∑

n=0

1

n!

[

x̂,

(

− ıap̂

~

)n]

=

∞
∑

n=0

1

n!

(

− ıa

~

)n

[x̂, p̂n]

=

∞
∑

n=1

1

(n − 1)!

(

− ıa

~

)n

ı~p̂n−1

= a
∞
∑

n=1

(

− ıa

~

)n−1

p̂n−1

= ae−
ıap̂

~

and by rearranging this we get that

x̂e−
ıap̂

~ = e−
ıap̂

~ (x̂ + a)

and it follows thate−
ıap̂

~ |x〉 is an eigenvalue of̂x with eigenvaluex + a. Thus we
seee−

ıap̂

~ |x〉 = |x + a〉. We can do the same to the bra vectors with the Hermi-
tian conjugatee

ıap̂

~ to get〈x + a| = 〈x|e ıap̂

~ . Then we also have the normalisation
〈x′ + a|x + a〉 = 〈x′|x〉.

We now wish to consider〈x+a|p〉 = 〈x|e ıap̂

~ |p〉 = e
ıap

~ 〈x|p〉. Settingx = 0 gives
〈a|p〉 = e

ıap

~ N , whereN = 〈0|p〉 is independent ofx. We can determineN from the
normalisation of|p〉.

δ(p′ − p) = 〈p′|p〉 =

∫

da 〈p′|a〉〈a|p〉

= |N |2
∫

da e
ıa(p−p′)

~

= |N |2 2π~ δ(p′ − p)

So, because we are free to choose the phase ofN , we can setN =
(

1
2π~

)
1
2 and

thus〈x|p〉 =
(

1
2π~

)
1
2 e

ıxp

~ . We coulddefine|p〉 by

|p〉 =

∫

dx |x〉〈x|p〉 =

(

1

2π~

)
1
2

∫

dx |x〉e ıxp

~ ,

but we then have to check things like completeness.

1.2.2 Action of operators on wavefunctions

We recall the definition of the wavefunctionψ asψ(x) = 〈x|ψ〉. We wish to see what
operators (the position and momentum operators discussed)do to wavefunctions.



C
op

yr
ig

ht
 ©

 2
00

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

6 CHAPTER 1. BASICS

Now 〈x|x̂|ψ〉 = x〈x|ψ〉 = xψ(x), so the position operator acts on wavefunctions
by multiplication. As for the momentum operator,

〈x|p̂|ψ〉 =

∫

dp 〈x|p̂|p〉〈p|ψ〉

=

∫

dp p〈x|p〉〈p|ψ〉

=

(

1

2π~

)
1
2

∫

dp pe
ıxp

~ 〈p|ψ〉

= −ı~
d

dx

∫

dp 〈x|p〉〈p|ψ〉

= −ı~
d

dx
〈x|ψ〉 = −ı~

d

dx
ψ(x).

The commutation relation[x̂, p̂] = ı~ corresponds to
[

x,−ı~ d
dx

]

= ı~ (acting on
ψ(x)).

1.2.3 Momentum space

|x〉 7→ ψ(x) = 〈x|ψ〉 defines a particular representation of the vector space. It is
sometimes useful to use a momentum representation,ψ̃(p) = 〈p|ψ〉. We observe that

ψ̃(p) =

∫

dx 〈p|x〉〈x|ψ〉

=

(

1

2π~

)
1
2

∫

dx e−
ıxp

~ ψ(x).

In momentum space, the operators act differently on wavefunctions. It is easy to
see that〈p|p̂|ψ〉 = pψ̃(p) and〈p|x̂|ψ〉 = ı~ d

dp
ψ̃(p).

We convert the Schrödinger equation into momentum space. We have the operator
equationĤ = p̂2

2m
+ V (x̂) and we just need to calculate how the potential operates on

the wavefunction.

〈p|V (x̂)|ψ〉 =

∫

dx 〈p|V (x̂)|x〉〈x|ψ〉

=

(

1

2π~

)
1
2

∫

dx e−
ıxp

~ V (x)〈x|ψ〉

=
1

2π~

∫∫

dxdp′ V (x)ψ̃(p′)e
ıx(p′−p)

~

=

∫

dp′ Ṽ (p − p′)ψ̃(p′),

whereṼ (p) = 1
2π~

∫

dp e−
ıxp

~ V (x). Thus in momentum space,

Hpψ̃(p) =
p2

2m
ψ̃(p) +

∫

dp′ Ṽ (p − p′)ψ̃(p′).



C
op

yr
ig

ht
 ©

 2
00

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

1.2. THE DIRAC FORMALISM 7

1.2.4 Commuting operators

SupposeÂ andB̂ are Hermitian and
[

Â, B̂
]

= 0. ThenÂ andB̂ have simultaneous

eigenvectors.

Proof. SupposeÂ|ψ〉 = λ|ψ〉 and the vector subspaceVλ is the span of the eigenvec-
tors ofÂ with eigenvalueλ. (If dimVλ > 1 thenλ is said to be degenerate.)

As Â andB̂ commute we know thatλB̂|ψ〉 = ÂB̂|ψ〉 and soB̂|ψ〉 ∈ Vλ. If λ is
non-degenerate then̂B|ψ〉 = µ|ψ〉 for someµ. Otherwise we have that̂B : Vλ 7→ Vλ

and we can therefore find eigenvectors ofB̂ which lie entirely insideVλ. We can label
these as|λ, µ〉, and we know that

Â|λ, µ〉 = λ|λ, µ〉
B̂|λ, µ〉 = µ|λ, µ〉.

These may still be degenerate. However we can in principle remove this degener-
acy by adding more commuting operators until each state is uniquely labeled by the
eigenvalues of each common eigenvector. This set of operators is called acomplete
commuting set.

This isn’t so odd: for a single particle in 3 dimensions we have the operatorŝx1, x̂2

andx̂3. These all commute, so for a single particle with no other degrees of freedom
we can label states uniquely by|x〉. We also note from this example that a complete
commuting set is not unique, we might just as easily have taken the momentum opera-
tors and labeled states by|p〉. To ram the point in more, we could also have taken some
weird combination likêx1, x̂2 andp̂3.

For our single particle in 3 dimensions, a natural set of commuting operators in-
volves the angular momentum operator,L̂ = x̂ ∧ p̂, or L̂i = ǫijkx̂j p̂k.

We can find commutation relations betweenL̂i and the other operators we know.
These are summarised here, proof is straightforward.

•
[

L̂i, x̂l

]

= ı~ǫilj x̂j

•
[

L̂i, x̂
2
]

= 0

•
[

L̂i, p̂m

]

= ı~ǫimkp̂k

•
[

L̂i, p̂
2
]

= 0

•
[

L̂i, L̂j

]

= ı~ǫijkL̂k

•
[

L̂i, L̂
2
]

= 0

If we have a Hamiltonian̂H = p̂2

2m
+V (|x̂|) then we can also see that

[

L̂, Ĥ
]

= 0.

We choose as a commuting setĤ, L̂2 and L̂3 and label states|E, l,m〉, where the
eigenvalue of̂L2 is l(l + 1) and the eigenvalue of̂L3 is m.
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8 CHAPTER 1. BASICS

1.2.5 Unitary Operators

An operatorÛ is said to beunitary if Û†Û = 1̂, or equivalentlyÛ−1 = Û†.
SupposeÛ is unitary andÛ |ψ〉 = |ψ′〉, Û |φ〉 = |φ′〉. Then〈φ′| = 〈φ|Û† and

〈φ′|ψ′〉 = 〈φ|ψ〉. Thus the scalar product, which is the probability amplitude of finding
the state|φ〉 given the state|ψ〉, is invariant under unitary transformations of states.

For any operator̂A we can defineÂ′ = Û ÂÛ†. Then〈φ′|Â′|ψ′〉 = 〈φ|Â|ψ〉 and
matrix elements are unchanged under unitary transformations. We also note that if
Ĉ = ÂB̂ thenĈ ′ = Â′B̂′.

The quantum mechanics for the|ψ〉, |φ〉, Â, B̂ etc. is the same as for|ψ′〉, |φ′〉, Â′,
B̂′ and so on. A unitary transform in quantum mechanics is analogous to a canonical
transformation in dynamics.

Note that ifÔ is Hermitian thenÛ = eıÔ is unitary, asÛ† = e−ıÔ†

= e−ıÔ.

1.2.6 Time dependence

This is governed by the Schrödinger equation,

ı~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉.

Ĥ is the Hamiltonian and we require it to be Hermitian. We can get an explicit
solution of this ifĤ does not depend explicitly ont. We set|ψ(t)〉 = Û(t)|ψ(0)〉,
whereÛ(t) = e−

ıĤt
~ . As Û(t) is unitary,〈φ(t)|ψ(t)〉 = 〈φ(0)|ψ(0)〉.

If we measure the expectation of̂A at timet we get〈ψ(t)|Â|ψ(t)〉 = a(t). This
description is called the Schrödinger picture. Alternatively we can absorb the time de-
pendence into the operator̂A to get the Heisenberg picture,a(t) = 〈ψ|Û†(t)ÂÛ(t)|ψ〉.
We write ÂH(t) = Û†(t)ÂÛ(t). In this description the operators are time dependent
(as opposed to the states).̂AH(t) is the Heisenberg picture time dependent operator.
Its evolution is governed by

ı~
∂

∂t
ÂH(t) =

[

ÂH(t), Ĥ
]

,

which is easily proven.
For a HamiltonianĤ = 1

2m
p̂(t)2 + V (x̂(t)) we can get the Heisenberg equations

for the operatorŝxH andp̂H

d

dt
x̂H(t) =

1

m
p̂H(t)

d

dt
p̂H(t) = −V ′(x̂H(t)).

These ought to remind you of something.
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. Chapter 2

The Harmonic Oscillator

In quantum mechanics there are two basic solvable systems, the harmonic oscillator
and the hydrogen atom. We will examine the quantum harmonic oscillator using al-
gebraic methods. In quantum mechanics the harmonic oscillator is governed by the
Hamiltonian

Ĥ =
1

2m
p̂2 + 1

2mω2x̂2,

with the condition that[x̂, p̂] = ı~. We wish to solveĤ|ψ〉 = E|ψ〉 to find the energy
eigenvalues.

We define a new operatorâ.

â =
(mω

2~

)
1
2

(

x̂ +
ıp̂

mω

)

â† =
(mω

2~

)
1
2

(

x̂ − ıp̂

mω

)

.

â and â† are respectively called the annihilation and creation operators. We can
easily obtain the commutation relation

[

â, â†] = 1̂. It is easy to show that, in terms

of the annihilation and creation operators, the Hamiltonian Ĥ = 1
2~ω

(

ââ† + â†â
)

,

which reduces to~ω
(

â†â + 1
2

)

. Let N̂ = â†â. Then
[

â, N̂
]

= â and
[

â†, N̂
]

= −â†.

ThereforeN̂ â = â
(

N̂ − 1
)

andN̂ â† = â†
(

N̂ + 1
)

.

Suppose|ψ〉 is an eigenvector of̂N with eigenvalueλ. Then the commutation rela-
tions give thatN̂ â|ψ〉 = (λ − 1) â|ψ〉 and therefore unlesŝa|ψ〉 = 0 it is an eigenvalue
of N̂ with eigenvalueλ − 1. Similarly N̂ â†|ψ〉 = (λ + 1) â†|ψ〉.

But for any|ψ〉, 〈ψ|N̂ |ψ〉 ≥ 0 and equals0 iff â|ψ〉 = 0. Now suppose we have
an eigenvalueλ /∈ {0, 1, 2, . . . }. Then∃n such that̂an|ψ〉 is an eigenvector of̂N
with eigenvalueλ − n < 0 and so we must haveλ ∈ {0, 1, 2, . . . }. Returning to the
Hamiltonian we get energy eigenvaluesEn = ~ω

(

n + 1
2

)

, the same result as using the
Schr̈odinger equation for wavefunctions, but with much less effort.

We define|n〉 = Cnâ†n|0〉, whereCn is such as to make〈n|n〉 = 1. We can take
Cn ∈ R, and evaluate〈0|ânâ†n|0〉 to findCn.

9
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10 CHAPTER 2. THE HARMONIC OSCILLATOR

1 = 〈n|n〉
= C2

n〈0|ânâ†n|0〉
= C2

n〈0|ân−1ââ†â†n−1|0〉

=
C2

n

C2
n−1

〈n − 1|ââ†|n − 1〉

=
C2

n

C2
n−1

〈n − 1|N̂ + 1|n − 1〉

=
C2

n

C2
n−1

(n − 1 + 1)〈n − 1|n − 1〉

= n
C2

n

C2
n−1

.

We thus requireCn = Cn−1/
√

n and asC0 = 1 we getCn = (n!)
− 1

2 and so we
have the normalised eigenstate (ofN̂ ) |n〉 = 1√

n!
â†|0〉 (with eigenvaluen). |n〉 is also

an eigenvector of̂H with eigenvalue~ω
(

n + 1
2

)

. The space of states for the harmonic
oscillator is spanned by{|n〉}.

We also need to ask if there exists a non-zero state|ψ〉 such that̂a†|ψ〉 = 0. Then

0 = 〈ψ|ââ†|ψ〉 = 〈ψ|ψ〉 + 〈ψ|â†â|ψ〉 ≥ 〈ψ|ψ〉 > 0.

So there exist no non-zero states|ψ〉 such that̂a†|ψ〉 = 0.

2.1 Relation to wavefunctions

We evaluate

0 = 〈x|â|0〉 =
(mω

2~

)
1
2

(

x +
~

mω

d

dx

)

〈x|0〉

and we see thatψ0(x) = 〈x|0〉 satisfies the differential equation

(

d

dx
+

mω

~
x

)

ψ0(x) = 0.

This (obviously) has solutionψ0(x) = Ne−
1
2

mω
~

x2

for some normalisation constant
N . This is the ground state wavefunction which has energy1

2~ω.
Forψ1(x) = 〈x|1〉 = 〈x|â†|0〉 we find

ψ1(x) =
(mω

2~

)
1
2 〈x|

(

x̂ − ı

mω
p̂
)

|0〉

=
(mω

2~

)
1
2

(

x − ~

mω

d

dx

)

ψ0(x)

=

(

2mω

~

)
1
2

xψ0(x).
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2.2. MORE COMMENTS 11

2.2 More comments

Many harmonic oscillator problems are simplified using the creation and annihilation
operators.1 For example

〈m|x̂|n〉 =

(

~

2mω

)
1
2

〈m|â + â†|n〉

=

(

~

2mω

)
1
2

(√
n 〈m|n − 1〉 +

√
n + 1 〈m|n + 1〉

)

=

(

~

2mω

)
1
2

(√
n δm,n−1 +

√
n + 1 δm,n+1

)

.

This is non-zero only ifm = n±1. We note that̂xr contains termŝasâ†r−s, where
0 ≤ s ≤ r and so〈m|x̂r|n〉 can be non-zero only ifn − r ≤ m ≤ n + r.

It is easy to see that in the Heisenberg pictureâH(t) = eı Ĥt
~ âe−ı Ĥt

~ = e−ıωtâ.
Then using the equations forx̂H(t) andp̂H(t), we see that

x̂H(t) = x̂ cos ωt + 1
mω

p̂ sinωt.

Also, Ĥâ†
H(t) = â†

H(t)(Ĥ +~ω), so if |ψ〉 is an energy eigenstate with eigenvalue
E thenâ†

H(t)|ψ〉 is an energy eigenstate with eigenvalueE + ~ω.

1And such problemsalwaysoccur in Tripos papers. You have been warned.



Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

12
C

H
A

P
T

E
R

2.
T

H
E

H
A

R
M

O
N

IC
O

S
C

ILLAT
O

R



C
op

yr
ig

ht
 ©

 2
00

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

. Chapter 3

Multiparticle Systems

3.1 Combination of physical systems

In quantum mechanics each physical system has its own vectorspace of physical states
and operators, which if Hermitian represent observed quantities.

If we consider two vector spacesV1 and V2 with bases{|r〉1} and {|s〉2} with
r = 1 . . . dimV1 ands = 1 . . . dimV2. We define the tensor productV1 ⊗ V2 as the
vector space spanned by pairs of vectors

{|r〉1|s〉2 : r = 1 . . . dimV1, s = 1 . . . dim V2}.

We see thatdim(V1 ⊗ V2) = dim V1 dimV2. We also write the basis vectors of
V1⊗V2 as|r, s〉. We can define a scalar product onV1⊗V2 in terms of the basis vectors:
〈r′, s′|r, s〉 = 〈r′|r〉1〈s′|s〉2. We can see that if{|r〉1} and{|s〉2} are orthonormal
bases for their respective vector spaces then{|r, s〉} is an orthonormal basis forV1⊗V2.

SupposeÂ1 is an operator onV1 and B̂2 is an operator onV2 we can define an
operatorÂ1 × B̂2 onV1 ⊗ V2 by its operation on the basis vectors:

(

Â1 × B̂2

)

|r〉1|s〉2 =
(

Â1|r〉1
)(

B̂2|s〉2
)

.

We writeÂ1 × B̂2 asÂ1B̂2.

Two harmonic oscillators

We illustrate these comments by example. Suppose

Ĥi =
p̂2

i

2m
+ 1

2mωx̂2
i i = 1, 2.

We have two independent vector spacesVi with bases|n〉i wheren = 0, 1, . . . and
âi andâ†

i are creation and annihilation operators onVi, and

Ĥi|n〉i = ~ω
(

n + 1
2

)

|n〉i.

For the combined system we form the tensor productV1 ⊗ V2 with basis|n1, n2〉
and HamiltonianĤ =

∑

i Ĥi, soĤ|n1, n2〉 = ~ω (n1 + n2 + 1) |n1, n2〉. There are
N + 1 ket vectors in theN th excited state.

13
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14 CHAPTER 3. MULTIPARTICLE SYSTEMS

The three dimensional harmonic oscillator follows similarly. In general ifĤ1 and
Ĥ2 are two independent Hamiltonians which act onV1 andV2 respectively then the
Hamiltonian for the combined system iŝH = Ĥ1 + Ĥ2 acting onV1 ⊗ V2. If {|ψr〉}
and {|ψs〉} are eigenbases forV1 and V2 with energy eigenvalues{E1

r} and {E2
s}

respectively then the basis vectors{|Ψ〉r,s} for V1⊗V2 have energiesEr,s = E1
r +E2

s .

3.2 Multiparticle Systems

We have considered single particle systems with states|ψ〉 and wavefunctionsψ(x) =
〈x|ψ〉. The states belong to a spaceH.

Consider anN particle system. We say the states belong toHn = H1 ⊗ · · · ⊗HN

and define a basis of states|ψr1
〉1|ψr2

〉2 . . . |ψrN
〉N where{|ψri

〉i} is a basis forHi.
A general state|Ψ〉 is a linear combination of basis vectors and we can define the

N particle wavefunction asΨ(x1,x2, . . . ,xN ) = 〈x1,x2, . . . ,xN |Ψ〉.
The normalisation condition is

〈Ψ|Ψ〉 =

∫

d3x1 . . . d3xN |Ψ(x1,x2, . . . ,xN )|2 = 1 if normalised.

We can interpretd3x1 . . . d3xN |Ψ(x1,x2, . . . ,xN )|2 as the probability density
that particlei is in the volume elementd3xi at xi. We can obtain the probability
density for one particle by integrating out all the otherxj ’s.

For time evolution we get the equationı~ ∂
∂t
|Ψ〉 = Ĥ|Ψ〉, whereĤ is an operator

onHN .
If the particles do not interact then

Ĥ =
N

∑

i=1

Ĥi

whereĤi acts onHi but leavesHj alone forj 6= i. We have energy eigenstates in each
Hi such thatĤi|ψr〉i = Er|ψr〉i and so|Ψ〉 = |ψr1

〉1|ψr2
〉2 . . . |ψrN

〉N is an energy
eigenstate with energyEr1

+ · · · + ErN
.

3.2.1 Identical particles

There are many such cases, for instance multielectron atoms. We will concentrate on
two identical particles.

“Identical” means that physical quantities are be invariant under interchange of
particles. For instance if we havêH = H(x̂1, p̂1, x̂2, p̂2) then this must equal the
permuted HamiltonianH(x̂2, p̂2, x̂1, p̂1) if we have identical particles. We introduce
Û such that

Û x̂1Û
−1 = x̂2 Û x̂2Û

−1 = x̂1

Û p̂1Û
−1 = p̂2 Û p̂2Û

−1 = p̂1.

We should also havêUĤÛ−1 = Ĥ and more generally if̂A1 is an operator on
particle 1 thenÛ Â1Û

−1 is the corresponding operator on particle 2 (and vice versa).
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3.2. MULTIPARTICLE SYSTEMS 15

Note that if|Ψ〉 is an energy eigenstate of̂H then so isÛ |Ψ〉. ClearlyÛ2 = 1̂ and we
requireÛ to be unitary, which implies that̂U is Hermitian.

In quantum mechanics we require|Ψ〉 andÛ |Ψ〉 to be the same states (for identical
particles). This implies that̂U |Ψ〉 = λ|Ψ〉 and the requirement̂U2 = 1̂ gives that
λ = ±1. In terms of wavefunctions this means thatΨ(x̂1, x̂2) = ±Ψ(x̂2, x̂1). If we
have a plus sign then the particles are bosons (which have integral spin) and if a minus
sign then the particles are fermions (which have spin1

2 , 3
2 , . . . ).1

The generalisation toN identical particles is reasonably obvious. LetÛij inter-
change particlesi andj. ThenÛijĤÛ−1

ij = Ĥ for all pairs(i, j).

The same physical requirement as before gives us thatÛij |Ψ〉 = ±|Ψ〉 for all pairs
(i, j).

If we have bosons (plus sign) then in terms of wavefunctions we must have

Ψ(x̂1, . . . , x̂N ) = Ψ(x̂p1
, . . . , x̂pN

),

where(p1, . . . , pN ) is a permutation of(1, . . . , N). If we have fermions then

Ψ(x̂1, . . . , x̂N ) = λΨ(x̂p1
, . . . , x̂pN

),

whereλ = +1 if we have an even permutation of(1, . . . , N) and−1 if we have an odd
permutation.

Remark for pure mathematicians.1 and{±1} are the two possible one dimensional
representations of the permutation group.

3.2.2 Spinless bosons

(Which means that the only variables for a single particle arex̂ and p̂.) Suppose
we have two identical non-interacting bosons. ThenĤ = Ĥi + Ĥ2 and we have
Ĥ1|ψr〉i = Er|ψr〉i. The general space with two particles isH1 ⊗ H2 which has
a basis{|ψr〉1|ψs〉2}, but as the particles are identical the two particle state space is
(H1 ⊗ H2)S where we restrict to symmetric combinations of the basis vectors. That
is, a basis for this in terms of the bases ofH1 andH2 is

{

|ψr〉1|ψr〉2; 1√
2

(|ψr〉1|ψs〉2 + |ψs〉1|ψr〉2) , r 6= s
}

.

The corresponding wavefunctions are

ψr(x1)ψr(x2) and 1√
2

(ψr(x1)ψs(x2) + ψs(x1)ψr(x2))

and the corresponding eigenvalues are2Er andEr+Es. The factor of2−
1
2 just ensures

normalisation and

1√
2

(1〈ψr′ |2〈ψs′ | + 1〈ψs′ |2〈ψr′ |) 1√
2

(|ψr〉1|ψs〉2 + |ψs〉1|ψr〉2)

evaluates toδrr′δss′ + δrs′δr′s.
For N spinless bosons witĥH =

∑

Ĥi the appropriate completely symmetric
states are

1√
N !

(

|ψr1
〉1 . . . |ψrN

〉N + permutations thereof
)

if ri 6= rj

1Spin will be studied later in the course.
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16 CHAPTER 3. MULTIPARTICLE SYSTEMS

3.2.3 Spin 1

2
fermions

In this case (which covers electrons, for example) a single particle state (or wavefunc-
tion) depends on an additional discrete variables. The wavefunctions areψ(x, s) or
ψs(x). The space of states for a single electronH = L2(R3) ⊗ C

2 has a basis of the
form |x〉|s〉 ≡ |x, s〉 and the wavefunctions can be writtenψs(x) = 〈x, s|ψ〉. A basis
of wavefunctions is{ψrλ(x, s) = ψr(x)χλ(s)}, wherer andλ are labels for the basis.
λ takes two values and it will later be seen to be natural to takeλ = ± 1

2 .

We can also think of the vectorχλ =

(

χλ(1)
χλ(2)

)

, in which case two possible basis

vectors are

(

1
0

)

and

(

0
1

)

. Note thatχ†
λ′χλ = δλλ′ .

The scalar product is defined in the obvious way:〈φr′λ′ |φrλ〉 = 〈ψr′ |ψr〉〈χλ′ |χλ〉,
which equalsδrr′δλλ′ if the initial basis states are orthonormal.

Thetwoelectron wavefunction isΨ(x1, s1;x2, s2) and under the particle exchange
operatorÛ we must haveΨ(x1, s1;x2, s2) 7→ −Ψ(x2, s2;x1, s1). The two particle
states belong to the antisymmetric combination(H1 ⊗H2)A.

ForN electrons the obvious thing can be done.

Basis for symmetric or antisymmetric 2 particle spin states

There is only one antisymmetric basis state

χA(s1, s2) =
1√
2

(

χ 1
2
(s1)χ− 1

2
(s2) − χ− 1

2
(s1)χ 1

2
(s2)

)

,

and three symmetric possibilities:

χS(s1, s2) =















χ 1
2

(s1)χ 1
2

(s2)

1√
2

(

χ 1
2

(s1)χ− 1
2

(s2) + χ− 1
2

(s1)χ 1
2

(s2)
)

s1 6= s2

χ− 1
2

(s1)χ− 1
2

(s2).

We can now examine two non-interacting electrons, withĤ = Ĥ1 + Ĥ2 and take
Hi independent of spin. The single particle states are|ψi〉|χs〉.

The two electron states live in(H1 ⊗H2)A, which has a basis

|ψr〉1|ψr〉2|χA〉;
1√
2

(|ψr〉1|ψs〉2 + |ψs〉1|ψr〉2) |χA〉; r 6= s

1√
2

(|ψr〉1|ψs〉2 − |ψs〉1|ψr〉2) |χS〉; r 6= s,

with energy levels2Er (one spin state) andEr + Es (one antisymmetric spin state and
three symmetric spin states).

We thus obtain the Pauli exclusion principle: no two electrons can occupy the same
state (taking account of spin).

As an example we can take the helium atom with Hamiltonian

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
− 2e2

4πǫ0 |x̂1|
− 2e2

4πǫ0 |x̂2|
+

e2

4πǫ0 |x̂1 − x̂2|
.
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3.3. TWO PARTICLE STATES AND CENTRE OF MASS 17

If we neglect the interaction term we can analyse this as two hydrogen atoms and glue
the results back together as above. The hydrogen atom (with anuclear charge2e) has
En = − 2e2

8πǫ0n2 , so we get a ground state for the helium atom with energy2E1 with
no degeneracy and a first excited state with energyE1 + E2 with a degeneracy of four.
Hopefully these bear some relation to the results obtained by taking the interaction into
account.

3.3 Two particle states and centre of mass

Suppose we have a Hamiltonian̂H =
p̂2

1

2m
+

p̂2
2

2m
+ V (x̂1 − x̂2) defined onH2. We can

separate out the centre of mass motion by letting

P̂ = p̂1 + p̂2 p̂ = 1
2 (p̂1 − p̂2)

X̂ = 1
2 (x̂1 + x̂2) x̂ = x̂1 − x̂2.

Then
[

X̂i, P̂j

]

= ı~δij , [x̂i, p̂j ] = ı~δij andX̂, P̂ andx̂, p̂ commute respectively.

We can rewrite the Hamiltonian aŝH = P̂2

2M
+ ĥ, ĥ = p̂2

m
+V (x̂), whereM = 2m and

we can decomposeH2 into HCM ⊗Hint. HCM is acted on bŷX andP̂ and has wave-
functionsφ(X). Hint is acted on bŷx, p̂ and any spin operators. It has wavefunctions
ψ(x, s1, s2). We take wavefunctionsΨ(x1, s1;x2, s2) = Φ(X)ψ(x, s1, s2) in H2.

This simplifies the Schrödinger equation, we can just haveφ(X) = eıP.X
~ and then

E = P2

2M
+ Eint. We thus need only to solve the one particle equationĥψ = Eintψ.

Under the particle exchange operatorÛ we have

ψ(x, s1, s2) 7→ ψ(−x, s2, s1) = ±ψ(x, s1, s2),

with a plus sign for bosons and a minus sign for fermions. In the spinless case then
ψ(x) = ψ(−x).

If we have a potentialV (|x̂|) then we may separate variables to get

ψ(x, s1, s2) = Yl

(

x

|x|

)

R(|x|)χ(s1, s2)

with Yl

(

− x
|x|

)

= (−1)lYl

(

x
|x|

)

. For spinless bosons we therefore requirel to be even.

3.4 Observation

Consider the tensor product of two systemsH1 andH2. A general state|Ψ〉 in H1⊗H2

can be written as
|Ψ〉 =

∑

i,j

aij |ψi〉1|φj〉2

with |ψi〉1 ∈ H1 and|φj〉2 ∈ H2 assumed orthonormal bases for their respective vector
spaces.

Suppose we make a measurement on the first system leaving the second system
unchanged, and find the first system in a state|ψi〉1. Then1〈ψi|Ψ〉 =

∑

j aij |φj〉2,
which we write asAi|φ〉2, where|φ〉2 is a normalised state of the second system. We
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18 CHAPTER 3. MULTIPARTICLE SYSTEMS

interpret|Ai|2 as the probability of finding system 1 in state|ψi〉1. After measurement
system2 is in a state|φ〉2.

If aij = λiδij (no summation) thenAi = λi and measurement of system 1 as|ψi〉1
determines system 2 to be in state|φi〉2.
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Perturbation Expansions

4.1 Introduction

Most problems in quantum mechanics are not exactly solvableand it it necessary to
find approximate answers to them. The simplest method is a perturbation expansion.
We writeĤ = Ĥ0+Ĥ ′ whereĤ0 describes a solvable system with known eigenvalues
and eigenvectors, and̂H ′ is in some sense small.

We write Ĥ(λ) = Ĥ0 + λĤ ′ and expand the eigenvalues and eigenvectors in
powers ofλ. Finally we setλ = 1 to get the result. Note that we do not necessarily
have to introduceλ; the problem may have some small parameter which we can use.
This theory can be applied to the time dependent problem but here we will only discuss
the time independent Schrödinger equation.

4.2 Non-degenerate perturbation theory

Suppose that̂H0|n〉 = ǫn|n〉 for n = 0, 1, . . . . We thus assume discrete energy levels
and we assume further that the energy levels are non-degenerate. We also requirêH ′

to be sufficiently non-singular to make a power series expansion possible.
We have the equation̂H(λ)|ψn(λ)〉 = En(λ)|ψn(λ)〉. We suppose thatEn(λ)

tends toǫn as λ → 0 and |ψn(λ)〉 → |n〉 as λ → 0. We pose the power series
expansions

En(λ) = ǫn + λE(1)
n + λ2E(2)

n + . . .

|ψn(λ)〉 = N |n〉 + λ|ψ(1)
n 〉 + . . . ,

substitute into the Schrödinger equation and require it to be satisfied at each power
of λ. The normalisation constantN is easily seen to be1 +O(λ2). TheO(1) equation
is automatically satisfied and theO(λ) equation is

Ĥ0|ψ(1)
n 〉 + Ĥ ′|n〉 = E(1)

n |n〉 + ǫn|ψ(1)
n 〉.

Note that we can always replace|ψ(1)
n 〉 with |ψ(1)

n 〉 + α|n〉 and leave this equation
unchanged. We can therefore impose the condition〈n|ψ(1)

n 〉 = 0. If we apply〈n| to

19
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20 CHAPTER 4. PERTURBATION EXPANSIONS

this equation we getE(1)
n = 〈n|Ĥ ′|n〉 — the first order perturbation in energy. If we

apply〈r| wherer 6= n we see that

〈r|ψ(1)
n 〉 = −〈r|Ĥ ′|n〉

ǫr − ǫn

and therefore

|ψ(1)
n 〉 = −

∑

r 6=n

|r〉〈r|Ĥ ′|n〉
ǫr − ǫn

.

Note that we are justified in these divisions as we have assumed that the eigenvalues
are non-degenerate. On doing the same thing to theO(λ2) equation we see that

E(2)
n = 〈n|Ĥ ′|ψ(1)

n 〉

= −
∑

r 6=n

∣

∣

∣〈r|Ĥ ′|n〉
∣

∣

∣

2

ǫr − ǫn

.

This procedure is valid ifǫr − ǫn is not very small when〈r|Ĥ ′|n〉 6= 0.
Using these results we can see thatd

dλ
En(λ) = 〈ψn(λ)|Ĥ ′|ψn(λ)〉 and

∂

∂λ
|ψn(λ)〉 = −

∑

r 6=n

1

Er(λ) − En(λ)
|ψr(λ)〉〈ψr(λ)|Ĥ ′|ψn(λ)〉.

Also ∂Ĥ
∂λ

= Ĥ ′ and so

∂2

∂λ2
En(λ) = 2〈ψn(λ)|Ĥ ′ ∂

∂λ
|ψn(λ)〉.

Example: harmonic oscillator

ConsiderĤ = p̂2

2m
+ 1

2mω2x̂2 + λmω2x̂2, which can be viewed aŝH0 + Ĥ ′, where
Ĥ0 is the plain vanilla quantum harmonic oscillator Hamiltonian.

Calculating the matrix elements〈r|x̂2|n〉 required is an extended exercise in ma-
nipulations of the annihilation and creation operators andis omitted. The results are

E(1)
n = ~ω

(

n + 1
2

)

E(2)
n = − 1

2~ω
(

n + 1
2

)

.

We thus get the perturbation expansion forE′
n

E′
n = ~ω

(

n + 1
2

) (

1 + λ − 1
2λ2 + O(λ3)

)

.

This system can also be solved exactly to giveE′
n = ~ω

(

n + 1
2

)√
1 + 2λ which

agrees with the perturbation expansion.
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4.3. DEGENERACY 21

4.3 Degeneracy

The method given here breaks down ifǫr = ǫn for r 6= n. Perturbation theory can be
extended to the degenerate case, but we will consider only the first order shift inǫr.
We suppose that the states|n, s〉, s = 1 . . . Nn have the same energyǫn. Ns is the
degeneracy of this energy level.

As before we pose a Hamiltonian̂H = Ĥ0 + λĤ ′ such thatĤ0|n, s〉 = ǫn|n, s〉
and look for states|ψ(λ)〉 with energyE(λ) → ǫn asλ → 0.

The difference with the previous method is that we expand|ψ(λ)〉 as a power series
in λ in the basis of eigenvectors of̂H0. That is

|ψ(λ)〉 =
∑

s

|n, s〉as + λ|ψ(1)〉.

As theas are arbitrary we can impose the conditions〈n, s|ψ(1)〉 = 0 for eachs and
n. We thus have to solvêH|ψ(λ)〉 = E(λ)|ψ(λ)〉 with E(λ) = ǫn +λE(1). If we take
theO(λ) equation and apply〈n, r| to it we get

∑

s

as〈n, r|Ĥ ′|n, s〉 = arE
(1)
r

which is a matrix eigenvalue problem. Thus the first order perturbations inǫn are
the eigenvalues of the matrix〈n, r|Ĥ ′|n, s〉. If all the eigenvalues are distinct then
the perturbation “lifts the degeneracy”. It is convenient for the purpose of calculation
to choose a basis for the space spanned by the degenerate eigenvectors in which this
matrix is “as diagonal as possible”.1

1Don’t ask...
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. Chapter 5

General theory of angular
momentum

For a particle with position and momentum operatorsx̂ andp̂ with the commutation
relations[x̂i, p̂j ] = ı~δij we defineL̂ = x̂ ∧ p̂. It can be seen that̂L is Hermitian and

it is easy to show
[

L̂i, L̂j

]

= ı~ǫijkL̂k.

5.1 Introduction

More generally we define Hermitian angular momentum operatorsJ with the commu-
tation relation[Ji, Jj ] = ı~ǫijkJk.1 We ask on what space of states can this algebra of
operators be realised, or alternatively, what are the representations?

We choose one component ofJ whose eigenvalues label the states; in accordance
with convention we chooseJ3. Then we haveJ3|m〉 = m~|m〉 for m ∈ R (discrete)
and we also have〈m′|m〉 = δm′m.

By applying the commutation relation we get (easily) that
[

J3,J
2
]

= 0, so asJ2

is Hermitian we can choose a simultaneous eigenbasis. That is,J2|m〉 = λ~
2|m〉. We

know thatλ ≥ 0 sinceJ2 is the sum of the squares of Hermitian operators.
At this stage we choose an alternate basis; that is we splitJ into J+, J− andJ3,

with J± = J1 ± ıJ2. Note thatJ†
± = J∓. The commutation relations forJi give that

[J3, J±] = ±ı~J± and[J+, J−] = 2~J3. It will be useful later to note that

J2 = 1
2 (J+J− + J−J+) + J2

3 =

{

J−J+ + J2
3 + ~J3

J+J− + J2
3 − ~J3

.

Proof of this is immediate. We can now rewrite the[J3, J±] commutation rela-
tion asJ3J± = J± (J3 ± ~) and so we see thatJ±|m〉 is an eigenvector ofJ3 with
eigenvalue(m + 1)~ and soJ±|m〉 = ~N±

m|m ± 1〉, with some normalisation con-
stantN±

m. By evaluating the norm ofJ±|m〉, and noting that〈m|m〉 = 1 we see that
(N±

m)
2

= λ − m2 ∓ m.
We can now define states|m±n〉 for n = 0, 1, 2, . . . . We can pin them down more

by noting that(N±
m)

2 ≥ 0 for positive norms. However the formulae we have are,

1Because we are now grown up we will omit the hats if they do not add to clarity.

23
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24 CHAPTER 5. GENERAL THEORY OF ANGULAR MOMENTUM

givenλ, negative for sufficiently large|m| and so to avoid this we must havemmax = j

such thatJ+|j〉 = 0 and so
(

N+
j

)2
= λ − j2 − j = 0 and soλ = j(j + 1).

We can perform a similar trick withJ−; there must existmmin = −j′ such that
J−| − j′〉 = 0; thusλ = j′(j′ + 1). Soj′ = j and as−j′ = −j = j − n for some
n ∈ {0, 1, 2, . . . } we havej = 0, 1

2 , 1, 3
2 , . . . .

In summary the states can be labelled by|j m〉 such that

J2|j m〉 = ~
2j(j + 1)|j m〉

J3|j m〉 = ~m|j m〉
J±|j m〉 = ~ ((j ∓ m) (j ± m + 1))

1
2 |j m + 1〉

with m ∈ {−j,−j + 1, . . . , j − 1, j} andj ∈ {0, 1
2 , 1, 3

2 , . . . }. There are2j + 1 states
with differentm for the samej. |j m〉 is the standard basis of the angular momentum
states.

We have obtained a representation of the algebra labelled byj. If J = L = x̂ ∧ p̂

we must havej an integer.
Recall that if we haveÂ we can define a matrixAλ′λ by Â|λ〉 =

∑

λ′ |λ′〉Aλ′λ.
Note that(BA)λ′λ =

∑

µ Bλ′µAµλ. Given j, we have(J3)m′m = ~mδm′m and

(J±)m′m = ~
√

(j ∓ m) (j ± m + 1) δm′,m±1, giving us(2j + 1)×(2j + 1) matrices
satisfying the three commutation relations[J3, J±] = ±~J± and[J+, J−] = 2~J3.

If J are angular momentum operators which act on a vector spaceV and we have
|ψ〉 ∈ V such thatJ3|ψ〉 = ~k|ψ〉 andJ+|ψ〉 = 0 thenψ is a state with angular
momentumj = k. The other states are given byJn

−|ψ〉, 1 ≤ n ≤ 2k. The conditions
also giveJ2|ψ〉 = ~

2k (k + 1) |ψ〉

5.1.1 Spin 1

2
particles

This is the simplest non-trivial case. We havej = 1
2 and a two dimensional state space

with a basis|12 1
2 〉 and| 12 − 1

2 〉. We have the relationsJ3|12 ± 1
2 〉 = ± 1

2~| 12 ± 1
2 〉 and

J+| 12 1
2 〉 = 0 J−| 12 1

2 〉 = ~|12 − 1
2 〉

J−| 12 − 1
2 〉 = 0 J+| 12 − 1

2 〉 = ~|12 1
2 〉.

It is convenient to introduce explicit matricesσ such that

J| 12 m〉 =
∑

m′

| 12 m′〉 1
2~ (σ)m′m .

The matricesσ are2 × 2 matrices (called the Pauli spin matrices). Explicitly, they
are

σ+ =

(

0 2
0 0

)

σ− =

(

0 0
2 0

)

σ3 =

(

1 0
0 −1

)

σ1 =
1

2
(σ+ + σ−) =

(

0 1
1 0

)

σ2 = − ı

2
(σ+ − σ−) =

(

0 −ı
ı 0

)

.

Note thatσ2
1 = σ2

2 = σ2
3 = 1 andσ† = σ. These satisfy the commutation relations

[σi, σj ] = 2ıǫijkσk (a slightly modified angular momentum commutation relation)
and we also haveσ2σ3 = ıσ1 (and the relations obtained by cyclic permutation), so
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5.2. ADDITION OF ANGULAR MOMENTUM 25

σiσj + σjσi = 2δij1. Thus if n̂ is a unit vector we have(σ.n̂)
2

= 1 and we see that
σ.n̂ has eigenvalues±1.

We define the angular momentum matricess = 1
2~σ and sos2 = 3

4~
21.

The basis states areχ 1
2

=

(

1
0

)

andχ− 1
2

=

(

0
1

)

.

5.1.2 Spin 1 particles

We apply the theory as above to get

S3 =





1 0 0
0 0 0
0 0 −1



 S+ =





0
√

2 0

0 0
√

2
0 0 0





andS− = S+
†.

5.1.3 Electrons

Electrons are particles with intrinsic spin12 . The angular momentumJ = x̂ ∧ p̂ + s,
wheres are the spin operators for spin12 .

The basic operators for an electron arex̂, p̂ ands. We can represent these operators
by their action on two component wavefunctions:

ψ(x) =
∑

λ=± 1
2

ψλ(x)χλ.

In this basiŝx 7→ x, p̂ 7→ −ı~∇ ands 7→ 1
2~σ. All other operators are constructed

in terms of these, for instance we may have a Hamiltonian

H =
p̂2

2m
+ V (x) + U(x)σ.L

whereL = x̂ ∧ p̂.
If V andU depend only on|x| then[J,H] = 0.

5.2 Addition of angular momentum

Consider two independent angular momentum operatorsJ(1) andJ(2) with J(r) acting
on some spaceV (r) andV (r) having spinjr for r = 1, 2.

We now define an angular momentumJ acting onV (1) ⊗V (2) by J = J(1) +J(2).
Using the commutation relations forJ(r) we can get[Ji, Jj ] = ı~ǫijkJk.

We want to construct states|J M〉 forming a standard angular momentum basis,
that is such that:

J3|J M〉 = ~M |J M〉
J±|J M〉 = ~N±

J,M |J M±1〉

with N±
J,M =

√

(J ∓ M) (J ± M + 1). We look first for states inV which satisfy
J+|J J〉 = 0 andJ3|J J〉 = ~J |J J〉. The maximum value ofJ we can get isj1 + j2;
and|j1+j2 j1+j2〉 = |j1 j1〉1|j2 j2〉2. ThenJ+|j1+j2 j1+j2〉 = 0. Similarly this is
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26 CHAPTER 5. GENERAL THEORY OF ANGULAR MOMENTUM

an eigenvector ofJ3 with eigenvalue~ (j1 + j2). We can now applyJ− repeatedly to
form all the|J M〉 states. ApplyingJ− we get

|J M−1〉 = α|j1 j1−1〉1|j2 j2〉2 + β|j1 j1〉1|j2 j2−1〉2.

The coefficentsα andβ can be determined from the coefficentsN−
a,b, and we must

haveα2 + β2 = 1. If we choose|ψ〉 a state orthogonal to this

|ψ〉 = −β|j1 j1−1〉1|j2 j2〉2 + α|j2 j2〉1|j2 j2−1〉2.

J3|ψ〉 can be computed and it shows that|ψ〉 is an eigenvector ofJ3 with eigenvalue
~ (j1 + j2 − 1). Now

0 = 〈ψ|j1+j2 j1+j2−1〉 ∝ 〈ψ|J−|j1+j2 j1+j2〉

and so〈ψ|J−|φ〉 = 0 for all states|φ〉 in V . ThusJ+|ψ〉 = 0 and hence we have|ψ〉 =
|j1+j2−1 j1+j2−1〉. We can then construct the states|j1+j2−1 M〉 by repeatedly
applyingJ−.

For eachJ such that|j1 − j2| ≤ J ≤ j1 + j2 we can construct a state|J J〉. We
define the Clebsch-Gordan coefficients〈j1 m1 j2 m2|J M〉, and so

|J M〉 =
∑

m1,m2

〈j1 m1 j2 m2|J M〉|j1 m1〉|j2 m2〉.

The Clebsch-Gordan coefficients are nonzero only whenM = m1 + m2.
We can check the number of states;

j1+j2
∑

J=|j1−j2|
(2J + 1) =

j1+j2
∑

J=|j1−j2|

{

(J + 1)
2 − J2

}

= (2j1 + 1) (2j2 + 1) .

Electrons

Electrons have spin12 and we can represent their spin states withχ± 1
2
(s). Using this

notation we see that two electrons can form a symmetric spin 1triplet

χm(s1, s2) =















χ 1
2
(s1)χ 1

2
(s2)

1√
2

(

χ 1
2
(s1)χ− 1

2
(s2) + χ− 1

2
(s1)χ 1

2
(s2)

)

χ− 1
2
(s1)χ− 1

2
(s2)

and an antisymmetric spin 0 singlet;

χ0(s1, s2) =
1√
2

(

χ 1
2
(s1)χ− 1

2
(s2) − χ− 1

2
(s1)χ 1

2
(s2)

)

.

5.3 The meaning of quantum mechanics

Quantum mechanics deals in probabilities, whereas classical mechanics is determin-
istic if we have complete information. If we have incomplete information classical
mechanics is also probabilistic.

Inspired by this we ask if there can be “hidden variables” in quantum mechanics
such that the theory is deterministic. Assuming that local effects have local causes, this
is not possible.
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5.3. THE MEANING OF QUANTUM MECHANICS 27

We will take a spin example to show this. Consider a spin1
2 particle, with two

spin states|↑〉 and|↓〉 which are eigenvectors ofS3 = 1
2~σ3. If we choose to use two

component vectors we have

χ↑ =

(

1
0

)

χ↓ =

(

0
1

)

.

Supposen = (sin θ, 0, cos θ) (a unit vector) and let us find the eigenvectors of

σ.n =

(

cos θ sin θ
sin θ − cos θ

)

.

As (σ.n)
2

= 1 we must have eigenvalues±1 and an inspired guess givesχ↑,n and
χ↓,n as

χ↑,n = cos θ
2χ↑ + sin θ

2χ↓ and χ↓,n = − sin θ
2χ↑ + cos θ

2χ↓.

Thus (reverting to ket vector notation) if an electron is in astate|↑〉 then the prob-
ability of finding it in a state|↑,n〉 is cos2 θ

2 and the probability of finding it in a state
|↓,n〉 is sin2 θ

2 .
Now, suppose we have two electrons in a spin0 singlet state;

|Φ〉 =
1√
2
{|↑〉1|↓〉2 − |↓〉1|↑〉2} .

Then the probability of finding electron 1 with spin up is1
2 , and after making this

measurement electron 2 must be spin down. Similarly, if we find electron 1 with spin
down (probability1

2 again) then electron 2 must have spin up. More generally, suppose
we measure electron 1’s spin along directionn. Then we see that the probability for
electron 1 to have spin up in directionn (aligned) is1

2 and then electron 2 must be in
the state|↓,n〉2.

If we have two electrons (say electron 1 and electron 2) in a spin 0 state we may
physically separate them and consider independent experiments on them.

We will consider three directions as sketched. For electron1 there are three vari-
ables which we may measure (in separate experiments);S

(1)
z = ±1, S

(1)
n = ±1 and

S
(1)
m = ±1. We can also do this for electron 2.

We see that if we find electron 1 hasS
(1)
z = 1 then electron 2 hasS(2)

z = −1 (etc.).
If there exists an underlying deterministic theory then we could expect some prob-

ability distributionp for this set of experiments;

0 ≤ p
(

S(1)
z , S(1)

n , S(1)
m , S(2)

z , S(2)
n , S(2)

m

)

≤ 1

which is nonzero only ifS(1)
dirn = −S

(2)
dirn and

∑

{s}
p({s}) = 1.

Bell inequality

Suppose we have a probability distributionp(a, b, c) with a, b, c = ±1. We define
partial probabilitiespbc(b, c) =

∑

a p(a, b, c) and similarly forpac(a, c) andpab(a, b).
Then
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pbc(1,−1) = p(1, 1,−1) + p(−1, 1,−1)

≤ p(1, 1,−1) + p(1, 1, 1) + p(−1, 1,−1) + p(−1,−1,−1)

≤ pab(1, 1) + pac(−1,−1).

Applying this to the two electron system we get

P
(

S(1)
n = 1, S(2)

m = 1
)

≤ P
(

S(1)
z = 1, S(2)

n = −1
)

+ P
(

S(1)
z = −1, S(2)

m = 1
)

.

We can calculate these probabilities from quantum mechanics

P
(

S(1)
z = 1, S(2)

n = −1
)

= P
(

S(1)
z = 1, S(1)

n = 1
)

= cos2 θ
2

P
(

S(1)
z = −1, S(2)

m = 1
)

= cos2 θ+φ
2 and

P
(

S(1)
n = 1, S(2)

m = 1
)

= sin2 θ
2 .

The Bell inequality givessin2 φ
2 ≤ cos2 θ

2 + cos2 θ+φ
2 which is not in general true.
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