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These notes are based on the course “Foundations of Quanaahalics” given by
Dr. H. Osborn in Cambridge in the Michaelmas Term 1997. Thggeset notes have
been produced mainly for my own benefit but seem to be officealpported. Recom-
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Chapter 1

The Basics of Quantum
M echanics

Quantum mechanics is viewed as the most remarkable devetipm20™ century
physics. Its point of view is completely different from ctésal physics. Its predictions
are often probabilistic.

We will develop the mathematical formalism and some appbéoa. We will em-
phasize vector spaces (to which wavefunctions belong)sdkiector spaces are some-
times finite-dimensional, but more often infinite dimensibriThe pure mathematical
basis for these is in Hilbert Spaces but (fortunately!) nowedge of this area is
required for this course.

1.1 Review of earlier work

This is abrief review of the salient points of the 1B Quantum Mechanics seuif
you anything here is unfamiliar it is as well to read up on tBeQuantum Mechanics
course. This section can be omitted by the brave.

A wavefunctiony(z): R® — C is associated with a single particle in three di-
mensions. ¢ represents the state of a physical system for a single fgartl€ ¢ is
normalised that is

ol = [ & ol =1

then we say thaf®x |1/)\2 is the probability of finding the particle in the infinitesima
regiond?z (atzx).

Superposition Principle

If ¢»y and, are two wavefunctions representing states of a partickn #o is the
linear combinatioru; 11 + agt2 (a1,a2 € C). This is obviously the statement that
wavefunctions live in a vector space.yf = a1 (with a # 0) thenty andv)’ represent
the same physical state. 4f andv’ are both normalised them = ¢**. We write
P ~ €' to show that they represent the same physical state.

For two wavefunctiong and« we can define a scalar product

(6,9) = / Pagy e C.

1
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2 CHAPTER 1. BASICS
This has various properties which you can investigate at lgisure.

I nterpretative Postulate

Given a particle in a state represented by a wavefunatiqhenceforth “in a state
") then the probability of finding the particle in stateis P = |(¢, )|* and if the
wavefunctions are normalised ther< P < 1. P =11if ¢ ~ ¢.

We wish to define (linear) operators on our vector space — dmbvious thing.
In finite dimensions we can choose a basis and replace antopeith a matrix.

For a complex vector space we can define the Hermitian cotgugshe operatoa
to be the operatoAT satisfying(¢, Av) = (AT¢, ). If A = AT thenA is Hermitian.
Note that if A is linear then so ist'.

In guantum mechanics dynamical variables (such as enemyemtum or angular
momentum) are represented by (linear) Hermitian operatioesvalues of the dynam-
ical variables being given by the eigenvalues. For wavefans(x), A is usually
a differential operator. For a single particle moving in agmial V' (x) we get the
HamiltonianH = —%VQ + V(x). Operators may have either a continuous or dis-
crete spectrum.

If A is Hermitian then the eigenfunctions corresponding toedifit eigenvalues
are orthogonal. We assume completeness — that any waviefurmetn be expanded
as a linear combination of eigenfunctions.

The expectation value fod in a state with wavefunctiog is (A),,, defined to be
S\ lail” = (1, Ap). We define the square deviatidnA? to be (A — (A)y))y
which is in general nonzero.

Time dependence

This is governed by the Sabdinger equation

oY
h— = Hv,
oy = HY
where H is the Hamiltonian. H must be Hermitian for the consistency of quantum

mechanics: 5

if H is Hermitian. Thus we can impose the conditigh ) = 1 for all time (if ¢ is
normalisable).

If we consider eigenfunctions; of H with eigenvalueg’; we can expand a general
wavefunction as

By

Y(x,t) = Zami e

If ¢ is normalised then the probability of finding the system witiergyE; is \ai|2.

1.2 TheDirac Formalism

This is where we take off into the wild blue yonder, or at lemstore abstract form of
guantum mechanics than that previously discussed. Thateds#ructure of quantum
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mechanics is based on operators acting on vectors in sona epace. A wavefunc-
tion ¢) corresponds to some abstract vedidy, aketvector.|)) represents the state of
some physical system described by the vector space.

If |101) and|vy) are ket vectors thefy)) = aq|11) + az|y2) is a possible ket vector
describing a state — this is the superposition principléraga

We define a dual space bfa vectors(¢| and a scalar producgts|)), a complex
number! For any|«) there corresponds a uniqgg| and we requiréo|) = (1|¢)*.
We require the scalar product to be linear such th&t= a1|1) + az|i2) implies
(B1) = ar(dlin) + az(dla). We see thatis|e) = ai(th1]¢) + a3(i2|¢) and so
(| = ai (1] + a3(¥al. )

We introduce linear operator$|:)) = |¢') and we define operators acting on bra
vectors to the leftg|A = (¢/| by requiring(¢’|) = (¢|Aly) for all . In general, in
<¢|A\w> A can act either to the right or the left. We define tugoint AT of A such
that |fA\1p) [y then<w|AT (1'|. Ais said to be Hermitian ifi = AT.

If A=a1A; 4 azA, thenAt = a3 Al + a3 Al, which can be seen by appealing to
the definitions. We also find the adjoint B4 as follows:

Let BA|y) = Bly') = [¢"). Then(y”| = (/|Bt = (y|ATBT and the result
follows. Also, if ()|A = (¢'| then|¢’) = AT|@).

We have eigenvectord|y) = A|«) and it can be seen in the usual manner that the
eigenvalues of a Hermitian operator are real and the eigémgecorresponding to two
different eigenvalues are orthogonal.

We assume completeness — that is &plycan be expanded in terms of the basis
ket vectors||¢) = 3=, a;lys) where Aly;) = i) anda; = (ify). If [¢) is
normalised —(1|¢)) = 1 — then the expected value dfis (A),, = (v|AJy), which
is real if A is Hermitian.

The completeness relation for eigenvectorsiaan be written a$ = > i) (il
which gives (as before)

- 1W Zldjl "/’z'qp

We can also rewritel = > i) Ai(ds| and if A; # 0 Vj then we can define
=32 ) AT wil.

We now ghoose an orthonormal bagjs) } with (n|m) = ¢,.,,, and the complete-
ness relatiol = )" |n)(n|. We can thus expan@) = Y a,|n) with a,, = (n[).
We now consider a linear operatdy and thend|y)) = 3 a,Aln) = 3, al,|m),
with a/, = (m|A|p)) = 32, a,(m|A|n). Further, puttingd,,, = (m|A|n) we get
a, = 3, Amnan and therefore solvingl|y) = A1) is equivalent to solving the
matrix equatiorda = \a. A,,,, is called the matrix representationéf We also have
(| =3, ax(n|, witha,* =3 aX Al ., whereAl = = A%  gives the Hermitian

mom mn?

conjugate matrix. This is the matrix representatiomfléf

1.2.1 Continuum basis

In the above we have assumed discrete eigenvalyasd normalisable eigenvectors
|;). However, in general, in quantum mechanics operators dfeefe continuous

1pra ket Who said that mathematicians have no sense of humour?
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spectrum — for instance the position operatdn 3 dimensionsx must have eigen-
valuesx for any pointx € R3. There exist eigenvectofg) such that|x) = x|x) for
anyx € R3.

As x must be Hermitian we have|x = x(x|. We define the vector space required
in the Dirac formalism as that spanned|y.

For any statéy) we can define a wavefunctiah(x) = (x|¢).

We also need to find some normalisation criterion, which tises3 dimensional
Dirac delta function to gefx|x’) = §%(x — x’). Completeness gives

/d3x|x>(x| =1.
We can also recover the ket vector from the wavefunction by
) = 1) = [ dalxjuix).
Also (x|x|¢) = x1(x); the action of the operatsr on a wavefunction is multipli-

cation byx.
Something else reassuring is

Wl9) = (Wil = / a2 |x) ()
- / B ().

The momentum operatgy is also expected to have continuum eigenvalues. We
can similarly define statép) which satisfyp|p) = p|p). We can relat& andp using
the commutator, which for two operatadsand B is defined by

{A, B} = AB - BA.

The relationship betweehandp is [z;, p;] = ¢/1d;;. In one dimensiof, p] = </
We have a useful rule for calculating commutators, that is:

A, BC| = [A,B] ¢+ B A

This can be easily proved simply by expanding the right héshelsut. We can use this
to calculatez, p?].

It is easy to show by induction thét, p"] = nahp™ 1.
We can define an exponential by
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We can evaluat%ﬁ:, e—%ﬁ} by

and by rearranging this we get that

1ap

fe= " = (2 +a)

and it follows thate—lrﬂx) is an eigenvalue of with eigenvaluex + a. Thus we
seee 7 x) = |z + a). We can do the same to the bra vectors with the Hermi-
tian conjugate:"% to get (x4 a| = <m|e%. Then we also have the normalisation
(2’ + alx + a) = (2]z).

We now wish to considefr + a|p) = <x|e% Ip) = e"* (x|p). Settingz = 0 gives
(alp) = % N, whereN = (0|p) is independent of. We can determin&’ from the
normalisation ofp).

6W—m=wm=/wwmwm
= |N\2/daew(ph7p,)

= [N’ 2xhé(p' — p)

So, because we are free to choose the phagé, afe can setV = (ﬁ)% and
1 T .
thus(z|p) = (5:) % e . We coulddefine|p) by

m:/mwmnggf/mwﬁﬁ

but we then have to check things like completeness.

1.2.2 Action of operatorson wavefunctions

We recall the definition of the wavefunctianhasy (z) = (z|y). We wish to see what
operators (the position and momentum operators discudsed)wavefunctions.



Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

6 CHAPTER 1. BASICS

Now (z|z|) = z(x|p) = zy(x), SO the position operator acts on wavefunctions
by multiplication. As for the momentum operator,

wwwszwwmmw
:1/dppwmxmw>

1\?
<ﬁ> /dppe m(ply)

h / dp (alp) (pl2)

b (al) = —ah- ().

The commutation relatiofi, p] = «h corresponds t(ﬁx, —zh%} =k (acting on

().

1.2.3 Momentum space

|z) — (x) = (z|y) defines a particular representation of the vector spaces It i
sometimes useful to use a momentum representafigr),= (p|v). We observe that

*@z/w@mmw

1\? oy
:<%> /dxeiTw(x)

In momentum space, the operators act  differently on wawtioms. It is easy to

see thatp|ply) = po(p) and(p|2[v) = th gL (p).
We convert the Sclidinger equation |nto momentum space. We have the operator

equationd = 2’% + V(&) and we just need to calculate how the potential operates on
the wavefunction.

PV (@)[) = [ da (p|V(2)]x)(z|¥)
=(z;)é/Mm’?ww@w>
- / dedp V(@) (p)e 5"
=/HﬁV@—ﬁW@m
whereV (p) = 5L [dpe™# V(z). Thus in momentum space,
Hy{(p) = %i}(p) +/dp"7(p—p’)1ﬁ(p')-
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1.2.4 Commuting operators

Supposed and B are Hermitian an({/i, B} = 0. ThenA and B have simultaneous
eigenvectors.

Proof. Supposed|t) = A|¢) and the vector subspaég is the span of the eigenvec-
tors of A with eigenvalue\. (If dim Vy > 1 then) is said to be degenerate.)

As A and B commute we know thaxB|y) = AB|y) and soB|y) € Vy. If Xis
non-degenerate theB|y) = /i) for someu. Otherwise we have that: V — Vy
and we can therefore find eigenvectorsibivhich lie entirely insidel/y. We can label
these a$, i), and we know that

AN, ) = A, )
BIX, ) = p|A, ).
O

These may still be degenerate. However we can in principieve this degener-
acy by adding more commuting operators until each stateiguety labeled by the
eigenvalues of each common eigenvector. This set of opereaalled acomplete
commuting set

This isn’t so odd: for a single particle in 3 dimensions weéthe operators,, -
andzs. These all commute, so for a single particle with no othereleg of freedom
we can label states uniquely ly). We also note from this example that a complete
commuting set is not unique, we might just as easily haventétke momentum opera-
tors and labeled states hyy). To ram the pointin more, we could also have taken some
weird combination likez, Zo andps.

For our single particle in 3 dimensions, a natural set of comimg operators in-
volves the angular momentum operator= x A p, of L; = ;4.

We can find commutation relations betwekpand the other operators we know.
These are summarised here, proof is straightforward.

(] Li,iﬁl] = ’Lhﬁiljiﬁj

° Li,f(ﬂ =0

L4 f/zalam:| = 1N€imrDr

o

. [z

J

o [Li17]

I

~

) Ej:| = ’Lheijkfjk

0

If we have a Hamiltonia = £- +V/(|%|) then we can also see thFL, H] =0.

We choose as a commuting sét L2 and L3 and label state§, [, m), where the
eigenvalue o2 is [(I + 1) and the eigenvalue df; is m.
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1.2.5 Unitary Operators

An operatotl is said to baunitaryif U1 = 1, or equivalenthy/—! = U,

Supposd’ is unitary andU|¢)) = |¢'), U|¢) = |¢'). Then(¢'| = (¢|UT and
(¢'|Y"y = (¢|). Thus the scalar product, which is the probability ampltedfinding
the statd¢) given the statéy)), is invariant under unitary transformations of states.

For any operatorl we can defined’ = UAUT. Then(¢/|A'|) = (¢|A|) and
matrix elements are unchanged under unitary transformatidVe also note that if
C = ABthenC’ = A'B'.

The quantum mechanics for the), |¢), A, B etc. is the same as for'), |¢'), A’,
B’ and so on. A unitary transform in quantum mechanics is aoai®d¢o a canonical
transformation in dynamics.

Note that ifO is Hermitian therl/ = ¢*© is unitary, ag/T = =" = =0,

1.2.6 Timedependence
This is governed by the Sabdinger equation,

9 A
hs () = Hl(0).

H is the Hamiltonian and we require it to be Hermitian. We cahageexplicit
solution of this if H does not depend explicitly oh We set|y)(t)) = U(¢)|¢(0)),

wherelU (t) = e~ " . As U(t) is unitary, (¢(t) [0 (t)) = (¢(0)]1(0)).

If we measure the expectation dfat timet we get(v(t)|A|(t)) = a(t). This
description is called the Sabdinger picture. Alternatively we can absorb the time de-
pendence into the operatdrto get the Heisenberg picture(t) = (1|UT (t) AU (t)]4)).

We write Ag (t) = UT(t)AU(t). In this description the operators are time dependent
(as opposed to the states) (¢) is the Heisenberg picture time dependent operator.
Its evolution is governed by

9 - . .
thoe An() = |An(0). ],
which is easily proven.
For a HamiltonianH = -p(t)* + V (2(t)) we can get the Heisenberg equations
for the operators: y andp g

Sanlt) = —pu()
Sout) = —V'(in (1),

These ought to remind you of something.
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Chapter 2

The Harmonic Oscillator

In guantum mechanics there are two basic solvable systémmdarmonic oscillator
and the hydrogen atom. We will examine the quantum harmaostdlator using al-
gebraic methods. In quantum mechanics the harmonic dsciike governed by the
Hamiltonian

& 1 ~2 1

2.2

7,

with the condition thafi, p| = «i. We wish to solvefl |1)) = E|+) to find the energy
eigenvalues.

We define a new operatar

[« 3
I
/N
Sk
N—
vl
Y
=2
+
|
N——

a anda' are respectively called the annihilation and creation ajoes. We can
easily obtain the commutation relatih, a’] = 1. It is easy to show that, in terms

of the annihilation and creation operators, the Hamiltorta = 1hw (aat + ata),
which reduces tdw (afa + 1). Let N = a'a. Then {&,N} =g and {dT,N} = —af.
ThereforeNd = a (]\7 — 1) andNal = af (N + 1).

Suppose)) is an eigenvector alV with eigenvalue\. Then the commutation rela-
tions give thatVa|«) = (A — 1) ajy) and therefore unlesg:) = 0 itis an eigenvalue
of N with eigenvalue\ — 1. Similarly Naf|y) = (A + 1) af|e)).

But for any|v)), (/| N|y) > 0 and equal® iff aly)) = 0. Now suppose we have
an eigenvalue\ ¢ {0,1,2,...}. Then3n such thati"|¢) is an eigenvector ofV
with eigenvalue\ — n < 0 and so we must have € {0,1,2,...}. Returning to the
Hamiltonian we get energy eigenvaluBs = hw (n + %) the same result as using the
Schibdinger equation for wavefunctions, but with much lessreffo

We defingln) = C,,a"|0), whereC,, is such as to maké:|n) = 1. We can take
C,, € R, and evaluatéo|a™af"|0) to find C,,.

9
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1 = (n|n)
= C?(0la"a'"™|0)
= C%(0la" taatat"1|0)

2
= anl (n —1|aat|n — 1)
C? .

= ez n—1N+1n-1)
2

= anl(n— 1+1)(n—1n—-1)

cx
= ’]’LC2

n—1

We thus require”,, = C,,_1/+/n and asCy = 1 we getC,, = (n!)_% and so we

have the normalised eigenstate {6 |n) = T%dﬂO) (with eigenvaluen). |n) is also

an eigenvector off with eigenvalugiw (n + 1). The space of states for the harmonic
oscillator is spanned b{jn)}.
We also need to ask if there exists a non-zero s$tatsuch thatf|y)) = 0. Then

0= (vlaa’|y) = (Ply) + (YlaTaly) > (Y[v) > 0.

So there exist no non-zero state$ such thatf|y) = 0.

2.1 Reation to wavefunctions

We evaluate
R mw\ 3 h d
0= {elal0) = (%) (” md—) (10)

and we see that,(z) = («|0) satisfies the differential equation

1m

This (obviously) has solutiogh(z) = Ne™2 & * for some normalisation constant
N. This is the ground state wavefunction which has ené@y.
Fori (x) = (x|1) = (x|a|0) we find
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2.2 Morecomments

Many harmonic oscillator problems are simplified using treation and annihilation
operators. For example

mlel) = (5 ) (mla + a'n)

_h
_ (%) Vi (mln —1) + v+ 1 (mfn + 1))

_(_) (VA St + Vi Lomntn) -

2mw

This is non-zero only ifn, = n41. We note that” contains termé*a™—*, where
0 < s <rand so(m|z"|n) can be non-zeroonly it —r < m < n +r.

It is easy to see that in the Heisenberg pictiifg(t) = e HaemH = emwty,
Then using the equations fét; (¢t) andpy (¢), we see that

Zpg(t) =& coswt + —psinwt.

Also, ﬁdH( t) = aH( )(H + hw), so if 1) is an energy eigenstate with eigenvalue
E thena w(®)|y) is an energy eigenstate with eigenvale- 7uw.

1And such problemalwaysoccur in Tripos papers. You have been warned.
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Chapter 3

Multiparticle Systems

3.1 Combination of physical systems

In quantum mechanics each physical system has its own vaguaoe of physical states
and operators, which if Hermitian represent observed dtiest

If we consider two vector spacég and V; with bases{|r);} and {|s)2} with
r=1...dimV; ands = 1...dim V,. We define the tensor produtt ® V; as the
vector space spanned by pairs of vectors

{Ir)1ls)e :r=1...dimV;,s =1...dimVa}.

We see thatlim(V; ® V) = dim V4 dim V5. We also write the basis vectors of
Vi@V, as|r, s). We can define a scalar product@n® V in terms of the basis vectors:
(r';s'|r,s) = (r'|r)1(s’|s)2. We can see that if|r); } and{|s)2} are orthonormal
bases for their respective vector spaces I{be,n; }is an orthonormal basis féf; @ V5.

SupposeA1 is an operator ofV; and B5 is an operator oV, we can define an
operatord; x B, onV; @ V5 by its operation on the basis vectors:

(,211 x Bz) I7)1] ) = (A1|r>1) (BQ\S>2) .

We write A; x By asA; Bs.

Two harmonic oscillators

We illustrate these comments by example. Suppose

. ﬁz

H; = P2
2m

+ mwx 1=1,2.

We have two independent vector spabesiith basegn); wheren =0, 1, ... and
a; anddz are creation and annihilation operatorsignand

For the combined system we form the tensor prodgck V, with basis|n, ns)

and Hamiltonian = 3", H;, S0 H|ny,n) = hw (n; + na + 1) |n1,n2). There are
N + 1 ket vectors in theéVt" excited state.

13
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The three dimensional harmonic oscillator follows sinjiain general iff; and
H, are two independent Hamiltonians which act%lnandvg respectively then the
Hamiltonian for the combined systemﬂﬁ H, + H, acting onV; ® Va. If {|¢,)}
and {|¢s)} are eigenbases fdr; and V, with energy eigenvalue$E}!} and {E2}
respectively then the basis vectdt®),. ;} for V; ® V» have energie&, s = E! + E2.

3.2 Multiparticle Systems

We have considered single particle systems with stateand wavefunctiong (z) =
(z]1). The states belong to a spake

Consider anV particle system. We say the states belongito="H; ® - - - @ Hn
and define a basis of states., )1|¢r, )2 - . . |¥ry ) v Where{ |, ); } is a basis fofH;.

A general stat¢V) is a linear combination of basis vectors and we can define the
N particle wavefunction a¥ (x1,x2, ..., Xy) = (X1,X2,...,Xn|P).

The normalisation condition is

(U|W) = /d%l By |[U(x1, %, xn)[P =1 if normalised.

We can interpreti®z; ... d3zy |¥(xy,xo, . ..,xy)|* as the probability density
that particles is in the volume elemenf®z; at x;. We can obtain the probability
density for one particle by integrating out all the otleis.

For time evolution we get the equat@h ;) = H|W), whereH is an operator
onHN.

If the particles do not interact then

whereH,; acts orfH; but leavedH; alone forj # i. We have energy eigenstates in each
H; such thatH;|¢,.); = E-|t,); and so|¥) = |1y )1|try )2 - - . [ry ) N IS @N energy
eigenstate with energly,, +--- + E, .

3.2.1 Identical particles

There are many such cases, for instance multielectron atéfaswill concentrate on
two identical particles.

“Identical” means that physical quantities are be invariamder interchange of
particles. For instance if we haé = H (%1, P1,%2,D2) then this must equal the
permuted Hamiltoniat (x4, P2, X1, P1) if we have identical particles. We introduce
U such that

We should also have HU~! = H and more generally ifl; is an operator on
particle 1 thenJ A,U~! is the corresponding operator on particle 2 (and vice versa)
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Note that if| ') is an energy eigenstate &F then so is/|¥). ClearlyU? = 1 and we
requirel/ to be unitary, which implies thdf is Hermitian.

In quantum mechanics we requife) and/|¥) to be the same states (for identical
particles). This implies thal/|¥) = X\|¥) and the requiremerit?> = 1 gives that
A = +1. In terms of wavefunctions this means thatx;,x2) = £ U (X2, %). If we
have a plus sign then the particles are bosons (which haagraitspin) and if a minus
sign then the particles are fermions (which have %)ié, L)l

The generalisation t&V identical particles is reasonably obvious. ll.fey inter-
change particlesand;. ThenlU;; HU;;' = H for all pairs(i, ).

The same physical requirement as before gives us[?tmw) = +|T) for all pairs
(i, 5)-

If we have bosons (plus sign) then in terms of wavefunctioagwst have
U(Xy,...,xn) = VU (Xp,, ..., Xpy)s
where(py,...,pn) is a permutation ofl, ..., N). If we have fermions then
U(x1,...,%Xn) = AV (Xp,, ..., Kpy ),

wherel = +1 if we have an even permutation @f, . .., N') and—1 if we have an odd
permutation.

Remark for pure mathematiciansand{+1} are the two possible one dimensional
representations of the permutation group.

3.22 Spinlessbosons

(Which means that the only variables for a single particlesarnd p.) Suppose
we have two identical non-interacting bosons. THén= H; + H, and we have
I§[1|¢T>i = E.|¢,);. The general space with two particlest§ ® H. which has
a basis{|vy)1]¥s)2}, but as the particles are identical the two particle statesps
(H1 ® H2)s where we restrict to symmetric combinations of the basisorec That
is, a basis for this in terms of the basegHdf andH, is

{lwohalvr)as J5 (W) 1lea)z + il o) 7 # 5}

The corresponding wavefunctions are
Ur(x1)tr(x2)  and s (P (x1)1s (x2) + Vs (x1) 27 (x2))

and the corresponding eigenvaluesafe andE,.+ E. The factor o~z just ensures
normalisation and

% (1<1/Jw|2<¢s'\ + 1<w8"2<7/)7’") % (|¢r>1|7/}5>2 + ‘¢8>1‘¢r>2)

evaluates td,,dss' + 0ps/0prs. R
For N spinless bosons witlif = Y H; the appropriate completely symmetric
states are

\/Lm (|¢T1>1 ... |¥ry ) N + permutations thereéf if r; #r;

1Spin will be studied later in the course.
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3.2.3 Spin 1 fermions

In this case (which covers electrons, for example) a singttigbe state (or wavefunc-
tion) depends on an additional discrete variableThe wavefunctions ar¢(x, s) or
14(x). The space of states for a single electton= L?(R?) @ C? has a basis of the
form |x)|s) = |x, s) and the wavefunctions can be writtgn(x) = (x, s[1)). A basis
of wavefunctions ify,x (x, s) = ¥, (x)x,(s)}, wherer and\ are labels for the basis.
) takes two values and it will later be seen to be natural to bai@ei%.

xa(1)
xA(2)

vectors are<é> and <(1)) Note that;&xA = -

We can also think of the vectoy, = ( ) in which case two possible basis

The scalar product is defined in the obvious Wéd v/ |2 ) = (Dpr [10r) (X2 XA ),
which equals),..» 0 if the initial basis states are orthonormal.

Thetwo electron wavefunction i¥ (x4, s1; X2, s2) and under the particle exchange
operatorﬁ we must havel (x1, s1;X2, s2) — —¥(x2, $2;X1,81). The two particle
states belong to the antisymmetric combinatidh ® Hs) ,.

For N electrons the obvious thing can be done.

Basisfor symmetric or antisymmetric 2 particle spin states

There is only one antisymmetric basis state

Xalors2) = 5 (s (a0x_y (52) = Xy )y ()

1 _1 1
2 2 2
and three symmetric possibilities:

X%(SI)X%(@)
xs(s1,82) = & 5 (xy (s1x_y (52) +x_, (s1)x

X_1 (s1)x_y(s2)-

(52)) 51 # 89

1
2

We can now examine two non-interacting electrons, iite= H, + H, and take
H; independent of spin. The single particle statesargxs).
The two electron states live ifH; ® H2) 4, which has a basis

|¢7’>1 |wr>2|XA>;

% (ohalbedz + [Gahilin)z) [xad; T # s
1

7

with energy level2E,. (one spin state) and,. + F, (one antisymmetric spin state and
three symmetric spin states).

We thus obtain the Pauli exclusion principle: no two eleatroan occupy the same
state (taking account of spin).

As an example we can take the helium atom with Hamiltonian

(1) 1ls)2 = [sh1ln)2) IXs);s T # s,

~ p? P2 2¢? 2¢? e
jz g U R — - — + S
2m  2m  A4weg|X1|  4meg |Xa|  4mep [X1 — %o

2
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If we neglect the interaction term we can analyse this as tydodgen atoms and glue
the results back together as above. The hydrogen atom (witiclaar charg@e) has
E, = —8735712, so we get a ground state for the helium atom with enedy with
no degeneracy and a first excited state with enéfgy- E5 with a degeneracy of four.
Hopefully these bear some relation to the results obtaigedking the interaction into

account.

3.3 Two particle states and centre of mass

Suppose we have a Hamiltoni&h = bi + b3 + V(%1 — %2) defined or2. We can

2m 2m

separate out the centre of mass motion by letting

(P1 — P2)

1 — X2.

+ P2 p=

1
(X1 + X2)

o>
7
Il
Yo =

P:
X:

N [=

Then {X’i, Pj} = 1hdij, [#4,pj] = 1hd;; andX, P andx, p commute respectively.
We can rewrite the Hamiltonian d& = 2‘% +h,h= %2 +V(x), whereM = 2m and
we can decomposK? into Hem ® Hint. Hew is acted on byX andP and has wave-
functions¢(X). Hint is acted on by, p and any spin operators. It has wavefunctions
¥(x, 51, 82). We take wavefunction® (x1, s1; Xa, s2) = ®(X)1h(x, 51, s2) in H2.

This simplifies the Sclidinger equation, we can just haweX) = "7 and then
E = % + Eint. We thus need only to sPIve the one particle equaﬁ};zm: Eintt.

Under the particle exchange operatdwe have

P(x, 51, 82) — Y(—X, $2,51) = £Y(X, 51, $2),
with a plus sign for bosons and a minus sign for fermions. ngpinless case then

P(x) = P(=x).

If we have a potential’ (|x|) then we may separate variables to get
X
wlxs1s2) = i ) RO 00

with Y, (—%) = (-1)y (ﬁ) For spinless bosons we therefore requiiebe even.

|x

3.4 Observation

Consider the tensor product of two systefisandH,. A general statel) in H; @ Hs
can be written as
©) = aijli)1lé;)s
i.J

with |¢;)1 € Hy and|¢;)2 € Ho assumed orthonormal bases for their respective vector
spaces.

Suppose we make a measurement on the first system leavingdbrdssystem
unchanged, and find the first system in a stétg,. Then(y;|¥) = Zj aii|®j)e,
which we write asA;|¢)2, where|¢), is a normalised state of the second system. We
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interpret|A;|* as the probability of finding system 1 in statg), . After measurement
systen? is in a statgo)s.

If a;; = A;d0;; (N0 summation) thed, = A\; and measurement of system 1|ag),
determines system 2 to be in stéte)s.
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Chapter 4

Perturbation Expansions

4.1 Introduction

Most problems in quantum mechanics are not exactly solvabdkit it necessary to
find approximate answers to them. The simplest method istarpation expansion.
We write H = Hy+ H’ whereH, describes a solvable system with known eigenvalues
and eigenvectors, and’ is in some sense small.

We write ISI()\) = H, + MH' and expand the eigenvalues and eigenvectors in
powers of\. Finally we set\ = 1 to get the result. Note that we do not necessarily
have to introduce\; the problem may have some small parameter which we can use.
This theory can be applied to the time dependent problemdretiue will only discuss
the time independent Sdidinger equation.

4.2 Non-degenerate perturbation theory

Suppose thaH|n) = €,|n) forn = 0,1,.... We thus assume discrete energy levels
and we assume further that the energy levels are non-dedenéie also requirél’
to be sufficiently non-singular to make a power series exparmssible.

We have the equatiofl (\)[t,(\)) = En(A)|¢n(X)). We suppose thak,, (\)
tends toe,, as\ — 0 and|¢,(A)) — |n) asA — 0. We pose the power series
expansions

En(\) =en + AEWM + XN2E@
[¥n(N) = Nln) + Aw?) + ..,
substitute into the Schdinger equation and require it to be satisfied at each power
of \. The normalisation constant is easily seen to be+ O(\?). TheO(1) equation
is automatically satisfied and tli&(\) equation is

Hol) + H'|n) = EP|n) + eal V).

Note that we can always replahﬁzﬁ”) with |w,(11)> + a|n) and leave this equation
unchanged. We can therefore impose the condi([mm;ﬁl)> = 0. If we apply (n| to

19
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this equation we geEff) = (n|H’|n) — the first order perturbation in energy. If we
apply (r| wherer # n we see that

(r|H'|n)

€. — €n

(rfpl) = -

and therefore
|r r|H’|n
B
r#n €r — €n

Note that we are justified in these divisions as we have ass$uina the eigenvalues
are non-degenerate. On doing the same thing t@the') equation we see that

B2 = (nlH'[))

[l )|

r#n

€r — €p

This procedure is valid i, — e, is not very small wherr| A’ |n) # 0.
Using these results we can see that, () = (b (V)| H'|1hn (X)) and

o 1 .
5|¢n()\)> = ; mwr()\»wr()\)u{ [Pn(N))-

Also 28 = I’ and so

82

., 0
oz En (V) = 20 (VA 5o [n(V).

Example: har monic oscillator

ConsiderH = + 1mw?3? + Amw?2?, which can be viewed aH, + H', where
Hy is the plain vamlla guantum harmonic oscillator Hamilimi

Calculating the matrix elements|22|n) required is an extended exercise in ma-
nipulations of the annihilation and creation operatorsiaramitted. The results are

B = o (n + )
B = o (n+3).
We thus get the perturbation expansion fjy
E,=hw(n+3) (1+A=- 33 +00\)).

This system can also be solved exactly to gii/e = hw (n + 3) v/1 + 2X which
agrees with the perturbation expansion.
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4.3 Degeneracy

The method given here breaks down.,if= ¢, for » # n. Perturbation theory can be
extended to the degenerate case, but we will consider oglfirgt order shift ine,..
We suppose that the statps s), s = 1...N,, have the same energy,. N; is the
degeneracy of this energy level.

As before we pose a Hamiltonidd = H, + AH’ such thatHo|n, s) = e,|n, s)
and look for stateg)(\)) with energyE(\) — €, asA — 0.

The difference with the previous method is that we expard)) as a power series
in X in the basis of eigenvectors &,. That is

[B(A) = In, s)as + Alp™M).

S

As thea, are arbitrary we can impose the conditignss|y(M)) = 0 for eachs and
n. We thus have to solvE |1)()\)) = E(\)|w()\)) with E(\) = €, + AED. If we take
the O(\) equation and applyn, | to it we get

Z as(n,r|H'|n,s) = a, BEY

which is a matrix eigenvalue problem. Thus the first ordetysbations ine,, are
the eigenvalues of the matri, 7| H’|n, s). If all the eigenvalues are distinct then
the perturbation “lifts the degeneracy”. It is convenienmt the purpose of calculation
to choose a basis for the space spanned by the degenerateegiges in which this
matrix is “as diagonal as possiblé”.

1Don't ask...
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Chapter 5

General theory of angular
momentum

For a particle with position and momentum operatorandp with the commutation
relations|z;, p;] = 1hd;; we defineLl = x A p. It can be seen thdt is Hermitian and

it is easy to shom{ﬁi, ﬁj} = sheijn L.

5.1 Introduction

More generally we define Hermitian angular momentum opesdtavith the commu-
tation relation[J;, J;] = zheijkjk.l We ask on what space of states can this algebra of
operators be realised, or alternatively, what are the sgotations?

We choose one component bfwhose eigenvalues label the states; in accordance
with convention we choosés;. Then we havel;|m) = mh|m) for m € R (discrete)
and we also haven’|m) = 0,,/m.

By applying the commutation relation we get (easily) thas, J?| = 0, so asJ?
is Hermitian we can choose a simultaneous eigenbasis. Jl¥&tin) = A\h?|m). We
know that\ > 0 sinceJ? is the sum of the squares of Hermitian operators.

At this stage we choose an alternate basis; that is we Bphito J,., J_ and Js,
with J4 = J; £1.J>. Note thatJjE = J+. The commutation relations fof; give that
[J3, J+] = £ehJy and[J4, J_| = 2kJ5. It will be useful later to note that

s 5 J_Jy + J3 + hJs

J =5+ J T )+ J5 = {J+J_ P2 by

Proof of this is immediate. We can now rewrite thg, J.] commutation rela-
tion asJsJ. = Ji (J3 =+ k) and so we see thaty |m) is an eigenvector of’; with
eigenvalug(m + 1)k and soJ.|m) = AN:|m + 1), with some normalisation con-
stantN;:. By evaluating the norm af |m), and noting thatm|m) = 1 we see that
(Nﬁji)2 =A—m?Fm.

We can now define statés +n) forn = 0,1,2,.... We can pin them down more
by noting that(Nf,;)2 > 0 for positive norms. However the formulae we have are,

1Because we are now grown up we will omit the hats if they do ndttadtlarity.

23



Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

24 CHAPTER 5. GENERAL THEORY OF ANGULAR MOMENTUM

given\, negative for sufficiently largpn| and so to avoid this we must hawgnax = j
such that/, |j) = 0 and so(NjJr)2 =A—j2—j=0andso\=j(j+1).

We can perform a similar trick with/_; there must existnm,in = —j’ such that
J_| =4y =0;thusA = j/( + 1). Soj’ = jandas—j' = —j = j — n for some
ne€{0,1,2,...} wehavej =0, 3,1,3,....

In summary the states can be labelled py:) such that

J2im) = h2j(j +1)|j m)
Jalj m) = hmlj m)
Jeljm)=h(GFm)(G£m+1)?[jm+1)

withm e {—j,—j+1,...,j—1,j}andj € {0,3,1,3,...}. There are; + 1 states
with differentm for the samegj. |j m) is the standard basis of the angular momentum
states.

We have obtained a representation of the algebra labellgdfy] = L = x A p
we must have an integer.

Recall that if we haved we can define a matrixiyy by A|\) = 37, [N)Ayx.
Note that(BA),,, = >, BxuAus. Givenj, we have(Js), .., = hmdym and
(L) = B/ (GFm) (j £m + 1) 8 ma1, giVINg US(2; + 1) x (2 + 1) matrices
satisfying the three commutation relatidds, Ji.| = +hJy and[Jy, J_| = 2hJs.

If J are angular momentum operators which act on a vector Spaed we have
|) € V such that/s|y)) = hkly) and Jy|y) = 0 then is a state with angular
momentumj = k. The other states are given B%|¢)), 1 < n < 2k. The conditions
also giveJ?|y) = A%k (k + 1) |¢)

5.1.1 Spin ; particles

This is the simplest non-trivial case. We hgve: % and a two dimensional state space
with a basig$ 1) and|3 —1). We have the relationgs|1 +1) = +1h| +1) and

) )="hlz -3)
) ) =1l3 3)-

It is convenient to introduce explicit matricessuch that

Jim) = Z|% m )5 (0) -

AT

J|L -

0 J-15
0

1
2
Tilz - 3

[T
D= N

SIS

The matricesr are2 x 2 matrices (called the Pauli spin matrices). Explicitly,ythe

are
/(0 2 /(00 (1 0
+=\o o 7-=\2 0 7=\0 -1
1 0 1 7 0 —2
"125(‘””):(1 0) ”2:_§(U+_U):(z o)'

Note thatr? = 02 = 02 = 1 ando’ = o. These satisfy the commutation relations
[0i,04] = 2ie;5,0% (a slightly modified angular momentum commutation relgtion
and we also have,o3 = 107 (and the relations obtained by cyclic permutation), so



Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

5.2. ADDITION OF ANGULAR MOMENTUM 25

00 + o0, = 20;;1. Thus ifi1 is a unit vector we hav(azf.ﬁ)2 = 1 and we see that
o .1 has eigenvalues1.
We define the angular momentum matrises %ha and sos? = §h21.

The basis states age, = (é) andy_; = (?)

5.1.2 Spin1 particles
We apply the theory as above to get

10 0 0 V2 0
Ss=10 0 0 Se=(0 0 V2
0 0 —1 0 0 0

andS_ = S,

5.1.3 Electrons

Electrons are particles with intrinsic spjn The angular momentudh = x A p + s,
wheres are the spin operators for sp&n

The basic operators for an electron &g ands. We can represent these operators
by their action on two component wavefunctions:

P(x) = Y Oa(x)xa-

A=+1

In this basis — x, p — —thV ands — %ha. All other operators are constructed
in terms of these, for instance we may have a Hamiltonian
f)2
H= 3 +V(x)+U(x)o.L
whereLL = X A p.
If V andU depend only onx| then[J, H] = 0.

5.2 Addition of angular momentum

Consider two independent angular momentum operdtdtsandJ (®) with J(") acting
on some spack (") andV (") having spinj, for r = 1, 2.

We now define an angular momentdnacting onV () @ V(2 by J = J1) 4 3@,
Using the commutation relations faf”) we can getJ;, J;] = the;jp .

We want to construct statég M) forming a standard angular momentum basis,
that is such that:

Ja|J M) = hM|J M)
Ji|J M) = hN7 | J M+1)

with NfM = /(JFM)(J £ M +1). We look first for states i which satisfy
Ji|J Jy =0andJ;|J Jy = hJ|J J). The maximum value of we can getigy + ja;
and|ji+j2 ji+j2) = |j1 j1)1l2 je)2. ThenJ|ji+j2 ji+j2) = 0. Similarly this is
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an eigenvector of’; with eigenvaluéi (j; + j2). We can now apply/_ repeatedly to
form all the|J M) states. Applying/_ we get

|J M—1) = alji j1—1)1lj2 j2)2 + Bli1 ji)1l2 j2—1)2-
The coefficentsr and3 can be determined from the coeffices,, and we must
havea? + 3% = 1. If we choosd)) a state orthogonal to this
) = =Bljr i—1)1lj2 J2)2 + aljz j2)1lj2 j2—1)e.
Js|1) can be computed and it shows the} is an eigenvector of; with eigenvalue
h(jl + jo — 1). Now
0= (Yljrt+iz jitje—1) o< (P|J-|jitj2 jit+]2)

and so(y|J_|¢) = 0 for all stateg¢) in V. ThusJ |¢)) = 0 and hence we haje) =
l71+72—1 j1+j2—1). We can then construct the statgs+jo—1 M) by repeatedly
applyingJ_.

For eachJ such thatj; — jo| < J < j1 + j2 we can construct a staté J). We
define the Clebsch-Gordan coefficiefijs m, j» ms|J M), and so

[T M) =" (j1ma jamal M)|jyma)|ja ma).
miy,m2

The Clebsch-Gordan coefficients are nonzero only whea m, + mso.
We can check the number of states;

J1+7J2 J1+7J2
Yo o@rin= Y {(JH)%J?}:(2j1+1)(2j2+1).
J=|j1—7J2| J=|j1—J2|
Electrons

Electrons have spié and we can represent their spin states \M'lp% (s). Using this
notation we see that two electrons can form a symmetric spiplét

X1 (51)x (s2)
Xon(1,52) = T (x5 (1% 3 (52) + X3 (s1)x3(52))

X-1(s1)x_1(s2)

2

and an antisymmetric spin 0 singlet;

Xolst, 52) = % (33 (510X (52) — X (53 (2))

5.3 Themeaning of quantum mechanics

Quantum mechanics deals in probabilities, whereas chissiechanics is determin-
istic if we have complete informationlf we have incomplete information classical
mechanics is also probabilistic.

Inspired by this we ask if there can be “hidden variables” irargtum mechanics
such that the theory is deterministic. Assuming that loffebts have local causes, this
is not possible.
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We will take a spin example to show this. Consider a spiparticle, with two
spin state$) and||) which are eigenvectors ¢f; = 1705. If we choose to use two
component vectors we have

) )

Supposen = (sin 6, 0, cos #) (a unit vector) and let us find the eigenvectors of
o [©°8 f sinf
TR=\ging —cosh)"

As (cr.n)2 = 1 we must have eigenvaluesl and an inspired guess givgs ,, and
Xl,n as

X1n = COS ng + singxl and X|n = —sin gXT + cos gxl.

Thus (reverting to ket vector notation) if an electron is istate|1) then the prob-
ability of finding it in a statgT, n) is cos? g and the probability of finding it in a state
||, n) issin® £.

Now, suppose we have two electrons in a gpginglet state;

) i)z = (D12}

1
7 {I

Then the probability of finding electron 1 with spin upéisand after making this
measurement electron 2 must be spin down. Similarly, if we électron 1 with spin
down (probability% again) then electron 2 must have spin up. More generallycag
we measure electron 1's spin along directionThen we see that the probability for
electron 1 to have spin up in directien(aligned) is% and then electron 2 must be in
the statd|, n)s.

If we have two electrons (say electron 1 and electron 2) inim @state we may
physically separate them and consider independent expeetinon them.

We will consider three directions as sketched. For electréimere are three vari-
ables which we may measure (in separate experimeﬁﬂ?);: +1, s = 41 and
Sfﬁ) = +1. We can also do this for electron 2.

We see that if we find electron 1 h&§" = 1 then electron 2 has'” = —1 (etc.).

If there exists an underlying deterministic theory then weld expect some prob-
ability distributionp for this set of experiments;

0 < (S0, S0, S0, 52,52, 5@) <1

which is nonzero only i5{t) = —5$2) and

> op({sh =1.
)

Bell inequality

Suppose we have a probability distributiptu, b, ¢) with a,b,c = +1. We define
partial probabilitiegy,. (b, c) = > p(a, b, ¢) and similarly forp,.(a, ¢) andpa(a, b).
Then
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pbc(17 _1) =D 17 17 _1) +p(_1a 17 _1)
p ]-a ]-7 71) +p(]-a ]-a 1) +p(71a 17 71) +p(717 717 71)

<
< pab(la 1) +pac(_1a _1)~

Applying this to the two electron system we get

P8V =1,82 =1) < P(S0) = 1,82 = —1) +P(5() = —1,5@ = 1).
We can calculate these probabilities from quantum meckanic
P50 = 1,8 = =1) =PV = 1,80 = 1) = cos? §

?(Sél) =-1,52 = 1) = cos? HT‘b and

N[

P(S,Ef) =1,59 = 1) — sin?

The Bell inequality givesin® ¢ < cos? ¢ + cos? “£2 which is not in general true.
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