
Basic Stuff

1.1 Trigonometry
The common trigonometric functions are familiar to you, but do you know some of the tricks to
remember (or to derive quickly) the common identities among them? Given the sine of an angle, what
is its tangent? Given its tangent, what is its cosine? All of these simple but occasionally useful relations
can be derived in about two seconds if you understand the idea behind one picture. Suppose for example
that you know the tangent of θ, what is sin θ? Draw a right triangle and designate the tangent of θ as
x, so you can draw a triangle with tan θ = x/1.

1
θ

x

The Pythagorean theorem says that the third side is
√

1 + x2. You now
read the sine from the triangle as x/

√
1 + x2, so

sin θ =
tan θ√

1 + tan2 θ

Any other such relation is done the same way. You know the cosine, so what’s the cotangent? Draw a
different triangle where the cosine is x/1.

Radians
When you take the sine or cosine of an angle, what units do you use? Degrees? Radians? Cycles? And
who invented radians? Why is this the unit you see so often in calculus texts? That there are 360◦ in
a circle is something that you can blame on the Sumerians, but where did this other unit come from?

R 2R
s

θ

2θ

It results from one figure and the relation between the radius of the circle, the angle drawn,
and the length of the arc shown. If you remember the equation s = Rθ, does that mean that for a
full circle θ = 360◦ so s = 360R? No. For some reason this equation is valid only in radians. The
reasoning comes down to a couple of observations. You can see from the drawing that s is proportional
to θ — double θ and you double s. The same observation holds about the relation between s and R,
a direct proportionality. Put these together in a single equation and you can conclude that

s = CRθ

where C is some constant of proportionality. Now what is C?
You know that the whole circumference of the circle is 2πR, so if θ = 360◦, then

2πR = CR 360◦, and C =
π

180
degree−1

It has to have these units so that the left side, s, comes out as a length when the degree units
cancel. This is an awkward equation to work with, and it becomes very awkward when you try to do
calculus. An increment of one in ∆θ is big if you’re in radians, and small if you’re in degrees, so it
should be no surprise that ∆ sin θ/∆θ is much smaller in the latter units:

d
dθ

sin θ =
π

180
cos θ in degrees

James Nearing, University of Miami 1
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This is the reason that the radian was invented. The radian is the unit designed so that the propor-
tionality constant is one.

C = 1 radian−1 then s =
(
1 radian−1

)
Rθ

In practice, no one ever writes it this way. It’s the custom simply to omit the C and to say that
s = Rθ with θ restricted to radians — it saves a lot of writing. How big is a radian? A full circle has
circumference 2πR, and this equals Rθ when you’ve taken C to be one. It says that the angle for a
full circle has 2π radians. One radian is then 360/2π degrees, a bit under 60◦. Why do you always use
radians in calculus? Only in this unit do you get simple relations for derivatives and integrals of the
trigonometric functions.

Hyperbolic Functions
The circular trigonometric functions, the sines, cosines, tangents, and their reciprocals are familiar, but
their hyperbolic counterparts are probably less so. They are related to the exponential function as

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
, tanhx =

sinhx
coshx

=
ex − e−x

ex + e−x
(1.1)

The other three functions are

sechx =
1

coshx
, cschx =

1
sinhx

, cothx =
1

tanhx

Drawing these is left to problem 1.4, with a stopover in section 1.8 of this chapter.

Just as with the circular functions there are a bunch of identities relating these functions. For
the analog of cos2 θ + sin2 θ = 1 you have

cosh2 θ − sinh2 θ = 1 (1.2)

For a proof, simply substitute the definitions of cosh and sinh in terms of exponentials and watch
the terms cancel. (See problem 4.23 for a different approach to these functions.) Similarly the other
common trig identities have their counterpart here.

1 + tan2 θ = sec2 θ has the analog 1− tanh2 θ = sech2 θ (1.3)

The reason for this close parallel lies in the complex plane, because cos(ix) = coshx and sin(ix) =
i sinhx. See chapter three.

The inverse hyperbolic functions are easier to evaluate than are the corresponding circular func-
tions. I’ll solve for the inverse hyperbolic sine as an example

y = sinhx means x = sinh−1 y, y =
ex − e−x

2
, solve for x.

Multiply by 2ex to get the quadratic equation

2exy = e2x − 1 or
(
ex
)2 − 2y

(
ex
)
− 1 = 0
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The solutions to this are ex = y±
√
y2 + 1, and because

√
y2 + 1 is always greater than |y|, you must

take the positive sign to get a positive ex. Take the logarithm of ex and

sinh

sinh−1

x = sinh−1 y = ln
(
y +

√
y2 + 1

)
(−∞ < y < +∞)

As x goes through the values −∞ to +∞, the values that sinhx takes on go over the range −∞ to
+∞. This implies that the domain of sinh−1 y is −∞ < y < +∞. The graph of an inverse function
is the mirror image of the original function in the 45◦ line y = x, so if you have sketched the graphs of
the original functions, the corresponding inverse functions are just the reflections in this diagonal line.

The other inverse functions are found similarly; see problem 1.3

sinh−1 y = ln
(
y +

√
y2 + 1

)
cosh−1 y = ln

(
y ±

√
y2 − 1

)
, y ≥ 1

tanh−1 y =
1
2

ln
1 + y
1− y

, |y| < 1 (1.4)

coth−1 y =
1
2

ln
y + 1
y − 1

, |y| > 1

The cosh−1 function is commonly written with only the + sign before the square root. What does the
other sign do? Draw a graph and find out. Also, what happens if you add the two versions of the
cosh−1?

The calculus of these functions parallels that of the circular functions.

d
dx

sinhx =
d
dx
ex − e−x

2
=
ex + e−x

2
= coshx

Similarly the derivative of coshx is sinhx. Note the plus sign here, not minus.
Where do hyperbolic functions occur? If you have a mass in equilibrium, the total force on it is

zero. If it’s in stable equilibrium then if you push it a little to one side and release it, the force will push
it back to the center. If it is unstable then when it’s a bit to one side it will be pushed farther away
from the equilibrium point. In the first case, it will oscillate about the equilibrium position and for small
oscillations the function of time will be a circular trigonometric function — the common sines or cosines
of time, A cosωt. If the point is unstable, the motion will will be described by hyperbolic functions of
time, sinhωt instead of sinωt. An ordinary ruler held at one end will swing back and forth, but if you
try to balance it at the other end it will fall over. That’s the difference between cos and cosh. For a
deeper understanding of the relation between the circular and the hyperbolic functions, see section 3.3

1.2 Parametric Differentiation
The integration techniques that appear in introductory calculus courses include a variety of methods of
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varying usefulness. There’s one however that is for some reason not commonly done in calculus courses:
parametric differentiation. It’s best introduced by an example.∫ ∞

0
xne−x dx

You could integrate by parts n times and that will work. For example, n = 2:

= −x2e−x
∣∣∣∣∞
0

+
∫ ∞

0
2xe−x dx = 0− 2xe−x

∣∣∣∣∞
0

+
∫ ∞

0
2e−x dx = 0− 2e−x

∣∣∣∣∞
0

= 2

Instead of this method, do something completely different. Consider the integral∫ ∞
0

e−αx dx (1.5)

It has the parameter α in it. The reason for this will be clear in a few lines. It is easy to evaluate, and is∫ ∞
0

e−αx dx =
1
−α

e−αx
∣∣∣∣∞
0

=
1
α

Now differentiate this integral with respect to α,

d
dα

∫ ∞
0

e−αx dx =
d
dα

1
α

or −
∫ ∞

0
xe−αx dx =

−1
α2

And again and again: +
∫ ∞

0
x2e−αx dx =

+2
α3
, −

∫ ∞
0

x3e−αx dx =
−2 . 3
α4

The nth derivative is

±
∫ ∞

0
xne−αx dx =

±n!
αn+1

(1.6)

Set α = 1 and you see that the original integral is n!. This result is compatible with the standard
definition for 0!. From the equation n! = n .(n− 1)!, you take the case n = 1, and it requires 0! = 1
in order to make any sense. This integral gives the same answer for n = 0.

The idea of this method is to change the original problem into another by introducing a parameter.
Then differentiate with respect to that parameter in order to recover the problem that you really want
to solve. With a little practice you’ll find this easier than partial integration. Also see problem 1.47 for
a variation on this theme.

Notice that I did this using definite integrals. If you try to use it for an integral without limits
you can sometimes get into trouble. See for example problem 1.42.

1.3 Gaussian Integrals
Gaussian integrals are an important class of integrals that show up in kinetic theory, statistical mechan-
ics, quantum mechanics, and any other place with a remotely statistical aspect.∫

dxxne−αx
2

The simplest and most common case is the definite integral from −∞ to +∞ or maybe from 0 to ∞.
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If n is a positive odd integer, these are elementary,

n = 1

∫ ∞
−∞

dxxne−αx
2

= 0 (n odd) (1.7)

To see why this is true, sketch graphs of the integrand for a few more odd n.
For the integral over positive x and still for odd n, do the substitution t = αx2.∫ ∞

0
dxxne−αx

2
=

1
2α(n+1)/2

∫ ∞
0

dt t(n−1)/2e−t =
1

2α(n+1)/2

(
(n− 1)/2

)
! (1.8)

Because n is odd, (n− 1)/2 is an integer and its factorial makes sense.
If n is even then doing this integral requires a special preliminary trick. Evaluate the special case

n = 0 and α = 1. Denote the integral by I , then

I =
∫ ∞
−∞

dx e−x
2
, and I2 =

(∫ ∞
−∞

dx e−x
2

)(∫ ∞
−∞

dy e−y
2

)
In squaring the integral you must use a different label for the integration variable in the second factor
or it will get confused with the variable in the first factor. Rearrange this and you have a conventional
double integral.

I2 =
∫ ∞
−∞

dx
∫ ∞
−∞

dy e−(x2+y2)

This is something that you can recognize as an integral over the entire x-y plane. Now the trick is
to switch to polar coordinates*. The element of area dxdy now becomes r dr dφ, and the respective
limits on these coordinates are 0 to ∞ and 0 to 2π. The exponent is just r2 = x2 + y2.

I2 =
∫ ∞

0
r dr

∫ 2π

0
dφ e−r

2

The φ integral simply gives 2π. For the r integral substitute r2 = z and the result is 1/2. [Or use
Eq. (1.8).] The two integrals together give you π.

I2 = π, so

∫ ∞
−∞

dx e−x
2

=
√
π (1.9)

Now do the rest of these integrals by parametric differentiation, introducing a parameter with
which to carry out the derivatives. Change e−x

2
to e−αx

2
, then in the resulting integral change variables

to reduce it to Eq. (1.9). You get∫ ∞
−∞

dx e−αx
2

=
√
π
α
, so

∫ ∞
−∞

dxx2e−αx
2

= − d
dα

√
π
α

=
1
2

( √
π

α3/2

)
(1.10)

You can now get the results for all the higher even powers of x by further differentiation with respect
to α.

* See section 1.7 in this chapter
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1.4 erf and Gamma
What about the same integral, but with other limits? The odd-n case is easy to do in just the same
way as when the limits are zero and infinity; just do the same substitution that led to Eq. (1.8). The
even-n case is different because it can’t be done in terms of elementary functions. It is used to define
an entirely new function.

erf(x) =
2√
π

∫ x

0
dt e−t

2
(1.11)

x 0. 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
erf 0. 0.276 0.520 0.711 0.843 0.923 0.967 0.987 0.995

This is called the error function. It’s well studied and tabulated and even shows up as a button
on some* pocket calculators, right along with the sine and cosine. (Is erf odd or even or neither?)
(What is erf(±∞)?)

A related integral worthy of its own name is the Gamma function.

Γ(x) =
∫ ∞

0
dt tx−1e−t (1.12)

The special case in which x is a positive integer is the one that I did as an example of parametric
differentiation to get Eq. (1.6). It is

Γ(n) = (n− 1)!
The factorial is not defined if its argument isn’t an integer, but the Gamma function is perfectly

well defined for any argument as long as the integral converges. One special case is notable: x = 1/2.

Γ(1/2) =
∫ ∞

0
dt t−1/2e−t =

∫ ∞
0

2uduu−1e−u
2

= 2
∫ ∞

0
du e−u

2
=
√
π (1.13)

I used t = u2 and then the result for the Gaussian integral, Eq. (1.9). You can use parametric
differentiation to derive a simple and useful recursion relation. (See problem 1.14 or 1.47.)

xΓ(x) = Γ(x+ 1) (1.14)

From this you can get the value of Γ(11/2), Γ(21/2), etc. In fact, if you know the value of the function
in the interval between one and two, you can use this relationship to get it anywhere else on the axis.
You already know that Γ(1) = 1 = Γ(2). (You do? How?) As x approaches zero, use the relation
Γ(x) = Γ(x + 1)/x and because the numerator for small x is approximately 1, you immediately have
that

Γ(x) ∼ 1/x for small x (1.15)

The integral definition, Eq. (1.12), for the Gamma function is defined only for the case that
x > 0. [The behavior of the integrand near t = 0 is approximately tx−1. Integrate this from zero to
something and see how it depends on x.] Even though the original definition of the Gamma function
fails for negative x, you can extend the definition by using Eq. (1.14) to define Γ for negative arguments.
What is Γ(−1/2) for example? Put x = −1/2 in Eq. (1.14).

−1
2

Γ(−1/2) = Γ(−(1/2) + 1) = Γ(1/2) =
√
π, so Γ(−1/2) = −2

√
π (1.16)

* See for example rpncalculator (v1.96 the latest). It is the best desktop calculator that I’ve found
(Mac and Windows). This main site seems (2008) to have disappeared, but I did find other sources
by searching the web for the pair “rpncalculator” and baker. The latter is the author’s name. I found
mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/

http://mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/
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The same procedure works for other negative x, though it can take several integer steps to get to a
positive value of x for which you can use the integral definition Eq. (1.12).

The reason for introducing these two functions now is not that they are so much more important
than a hundred other functions that I could use, though they are among the more common ones.
The point is that the world doesn’t end with polynomials, sines, cosines, and exponentials. There are
an infinite number of other functions out there waiting for you and some of them are useful. These
functions can’t be expressed in terms of the elementary functions that you’ve grown to know and love.
They’re different and have their distinctive behaviors.

erf
2−2

1

−1

4−4

5

−5
Γ

4−4

5

−5
1/Γ

There are zeta functions and Fresnel integrals and Legendre functions and Exponential integrals
and Mathieu functions and Confluent Hypergeometric functions and . . . you get the idea. When one of
these shows up, you learn to look up its properties and to use them. If you’re interested you may even try
to understand how some of these properties are derived, but probably not the first time that you confront
them. That’s why there are tables, and the “Handbook of Mathematical Functions” by Abramowitz
and Stegun is a premier example of such a tabulation, and it’s reprinted by Dover Publications. There’s
also a copy on the internet* www.math.sfu.ca/˜cbm/aands/ as a set of scanned page images.

Why erf?
What can you do with this function? The most likely application is probably to probability. If you flip
a coin 1000 times, you expect it to come up heads about 500 times. But just how close to 500 will
it be? If you flip it twice, you wouldn’t be surprised to see two heads or two tails, in fact the equally
likely possibilities are

TT HT TH HH

This says that in 1 out of 22 = 4 such experiments you expect to see two heads and in 1 out of 4 you
expect two tails. For just 2 out of 4 times you do the double flip do you expect exactly one head. All
this is an average. You have to try the experiment many times to see your expectation verified, and then
only by averaging many experiments.

It’s easier to visualize the counting if you flip N coins at once and see how they come up. The
number of coins that come up heads won’t always be N/2, but it should be close. If you repeat the
process, flipping N coins again and again, you get a distribution of numbers of heads that will vary
around N/2 in a characteristic pattern. The result is that the fraction of the time it will come up with
k heads and N − k tails is, to a good approximation√

2
πN

e−2δ2/N , where δ = k − N
2

(1.17)

The derivation of this can wait until section 2.6, Eq. (2.26). It is an accurate result if the number of
coins that you flip in each trial is large, but try it anyway for the preceding example where N = 2. This
formula says that the fraction of times predicted for k heads is

k = 0 :
√

1/π e−1 = 0.208 k = 1 = N/2 : 0.564 k = 2 : 0.208

* online books at University of Pennsylvania, onlinebooks.library.upenn.edu

http://store.doverpublications.com
http://www.math.sfu.ca/~cbm/aands/
http://onlinebooks.library.upenn.edu/
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The exact answers are 1/4, 2/4, 1/4, but as two is not all that big a number, the fairly large error
shouldn’t be distressing.

If you flip three coins, the equally likely possibilities are

TTT TTH THT HTT THH HTH HHT HHH

There are 8 possibilities here, 23, so you expect (on average) one run out of 8 to give you 3 heads.
Probability 1/8.

To see how accurate this claim is for modest values, take N = 10. The possible outcomes are
anywhere from zero heads to ten. The exact fraction of the time that you get k heads as compared to
this approximation is

k = 0 1 2 3 4 5
exact: .000977 .00977 .0439 .117 .205 .246

approximate: .0017 .0103 .0417 .113 .206 .252

For the more interesting case of big N , the exponent, e−2δ2/N , varies slowly and smoothly as
δ changes in integer steps away from zero. This is a key point; it allows you to approximate a sum
by an integral. If N = 1000 and δ = 10, the exponent is 0.819. It has dropped only gradually from
one. For the same N = 1000, the fraction of the time to get exactly 500 heads is 0.025225, and this
approximation is

√
2/1000π =0.025231.

Flip N coins, then do it again and again. In what fraction of the trials will the result be between
N/2−∆ and N/2 + ∆ heads? This is the sum of the fractions corresponding to δ = 0, δ = ±1, . . . ,
δ = ±∆. Because the approximate function is smooth, I can replace this sum with an integral. This
substitution becomes more accurate the larger N is.∫ ∆

−∆
dδ

√
2
πN

e−2δ2/N

Make the substitution 2δ2/N = x2 and you have√
2
πN

∫ ∆
√

2/N

−∆
√

2/N

√
N
2
dx e−x

2
=

1√
π

∫ ∆
√

2/N

−∆
√

2/N
dx e−x

2
= erf

(
∆
√

2/N
)

(1.18)

The error function of one is 0.84, so if ∆ =
√
N/2 then in 84% of the trials heads will come up between

N/2−
√
N/2 and N/2 +

√
N/2 times. For N = 1000, this is between 478 and 522 heads.

1.5 Differentiating
When you differentiate a function in which the independent variable shows up in several places, how do
you carry out the derivative? For example, what is the derivative with respect to x of xx? The answer
is that you treat each instance of x one at a time, ignoring the others; differentiate with respect to
that x and add the results. For a proof, use the definition of a derivative and differentiate the function
f(x, x). Start with the finite difference quotient:

f(x+ ∆x, x+ ∆x)− f(x, x)
∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x) + f(x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x)

∆x
+
f(x, x+ ∆x)− f(x, x)

∆x
(1.19)

The first quotient in the last equation is, in the limit that ∆x→ 0, the derivative of f with respect to
its first argument. The second quotient becomes the derivative with respect to the second argument.
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The prescription is clear, but to remember it you may prefer a mathematical formula. A notation more
common in mathematics than in physics is just what’s needed:

d
dt
f(t, t) = D1f(t, t) +D2f(t, t) (1.20)

where D1 means “differentiate with respect to the first argument.” The standard “product rule” for
differentiation is a special case of this.

For example,
d
dx

∫ x

0
dt e−xt

2
= e−x

3 −
∫ x

0
dt t2e−xt

2
(1.21)

The resulting integral in this example is related to an error function, see problem 1.13, so it’s not as
bad as it looks.

Another example,

d
dx
xx = xxx−1 +

d
dx
kx at k = x

= xxx−1 +
d
dx
ex lnk = xxx−1 + ln k ex lnk

= xx + xx lnx

1.6 Integrals
What is an integral? You’ve been using them for some time. I’ve been using the concept in this
introductory chapter as if it’s something that everyone knows. But what is it?

If your answer is something like “the function whose derivative is the given function” or “the
area under a curve” then No. Both of these answers express an aspect of the subject but neither is
a complete answer. The first actually refers to the fundamental theorem of calculus, and I’ll describe
that shortly. The second is a good picture that applies to some special cases, but it won’t tell you how
to compute it and it won’t allow you to generalize the idea to the many other subjects in which it is
needed. There are several different definitions of the integral, and every one of them requires more than
a few lines to explain. I’ll use the most common definition, the Riemann Integral.

An integral is a sum, obeying all the usual rules of addition and multiplication, such as 1 + 2 +
3 + 4 = (1 + 2) + (3 + 4) or 5 .(6 + 7) = (5 . 6) + (5 . 7). When you’ve read this section, come back and
translate these bits of arithmetic into statements about integrals.

A standard way to picture the definition is to try to find the area under a curve. You can get
successively better and better approximations to the answer by dividing the area into smaller and smaller
rectangles — ideally, taking the limit as the number of rectangles goes to infinity.

To codify this idea takes a sequence of steps:

1. Pick an integer N > 0. This is the number of subintervals into which the whole interval between
a and b is to be divided.

x1 x2

ξ1 ξ2 ξN

a b

2. Pick N − 1 points between a and b. Call them x1, x2, etc.

a = x0 < x1 < x2 < · · · < xN−1 < xN = b
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and for convenience label the endpoints as x0 and xN . For the sketch , N = 8.

3. Let ∆xk = xk − xk−1. That is,

∆x1 = x1 − x0, ∆x2 = x2 − x1, · · ·

4. In each of the N subintervals, pick one point at which the function will be evaluated. I’ll label
these points by the Greek letter ξ. (That’s the Greek version of “x.”)

xk−1 ≤ ξk ≤ xk
x0 ≤ ξ1 ≤ x1, x1 ≤ ξ2 ≤ x2, · · ·

5. Form the sum that is an approximation to the final answer.

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + · · ·

6. Finally, take the limit as all the ∆xk → 0 and necessarily then, as N →∞. These six steps form
the definition

lim
∆xk→0

N∑
k=1

f(ξk)∆xk =
∫ b

a
f(x) dx (1.22)

1 2

x

1/x

To demonstrate this numerically, pick a function and do the first five steps explicitly. Pick
f(x) = 1/x and integrate it from 1 to 2. The exact answer is the natural log of 2: ln 2 = 0.69315 . . .
(1) Take N = 4 for the number of intervals
(2) Choose to divide the distance from 1 to 2 evenly, at x1 = 1.25, x2 = 1.5, x3 = 1.75

a = x0 = 1. < 1.25 < 1.5 < 1.75 < 2. = x4 = b

(3) All the ∆x’s are equal to 0.25.
(4) Choose the midpoint of each subinterval. This is the best choice when you use a finite number of
divisions without taking the limit.

ξ1 = 1.125 ξ2 = 1.375 ξ3 = 1.625 ξ4 = 1.875

(5) The sum approximating the integral is then

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + f(ξ4)∆x4 =

1
1.125

× .25 +
1

1.375
× .25 +

1
1.625

× .25 +
1

1.875
× .25 = .69122

For such a small number of divisions, this is a very good approximation — about 0.3% error.
(What do you get if you take N = 1 or N = 2 or N = 10 divisions?)
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Fundamental Thm. of Calculus
If the function that you’re integrating is complicated or if the function is itself not known to perfect
accuracy then a numerical approximation just like this one for

∫ 2
1 dx/x is often the best way to go.

How can a function not be known completely? If it is experimental data. When you have to resort to
this arithmetic way to do integrals, are there more efficient ways to do it than simply using the definition
of the integral? Yes. That’s part of the subject of numerical analysis, and there’s a short introduction
to the subject in chapter 11, section 11.4.

The fundamental theorem of calculus unites the subjects of differentiation and integration. The
integral is defined as the limit of a sum, and the derivative is defined as the limit of a quotient of two
differences. The relation between them is

IF f has an integral from a to b, that is, if
∫ b
a f(x) dx exists,

AND IF f has an anti-derivative, that is, there is a function F such that dF/dx = f ,
THEN ∫ b

a
f(x) dx = F (b)− F (a) (1.23)

Are there cases where one of these exists without the other? Yes, though I’ll admit that you are
not likely to come across such functions without hunting through some advanced math books. Check
out www.wikipedia.org for Volterra’s function to see what it involves.

Notice an important result that follows from Eq. (1.23). Differentiate both sides with respect
to b

d
db

∫ b

a
f(x) dx =

d
db
F (b) = f(b) (1.24)

and with respect to a
d
da

∫ b

a
f(x) dx = − d

da
F (a) = −f(a) (1.25)

Differentiating an integral with respect to one or the other of its limits results in plus or minus the
integrand. Combine this with the chain rule and you can do such calculations as

d
dx

∫ sinx

x2

ext
2
dt = ex sin2 x cosx− ex5

2x+
∫ sinx

x2

t2ext
2
dt (1.26)

All this requires is that you differentiate every x that is present and add the results, just as

d
dx
x2 =

d
dx
x .x =

dx
dx
x+ x

dx
dx

= 1 .x+ x . 1 = 2x

You may well ask why anyone would want to do such a thing as Eq. (1.26), but there are more reasonable
examples that show up in real situations.

Riemann-Stieltjes Integrals
Are there other useful definitions of the word integral? Yes, there are many, named after various people
who developed them, with Lebesgue being the most famous. His definition* is most useful in much
more advanced mathematical contexts, and I won’t go into it here, except to say that very roughly
where Riemann divided the x-axis into intervals ∆xi, Lebesgue divided the y-axis into intervals ∆yi.
Doesn’t sound like much of a change does it? It is. There is another definition that is worth knowing
about, not because it helps you to do integrals, but because it unites a couple of different types of
computation into one. This is the Riemann-Stieltjes integral. You won’t need it for any of the later

* One of the more notable PhD theses in history

http://www.wikipedia.org
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work in this book, but it is a fairly simple extension of the Riemann integral and I’m introducing it
mostly for its cultural value — to show you that there are other ways to define an integral. If you take
the time to understand it, you will be able to look back at some subjects that you already know and to
realize that they can be manipulated in a more compact form (e.g. center of mass).

When you try to evaluate the moment of inertia you are doing the integral∫
r2 dm

When you evaluate the position of the center of mass even in one dimension the integral is

1
M

∫
xdm

and even though you may not yet have encountered this, the electric dipole moment is∫
~r dq

How do you integrate x with respect to m? What exactly are you doing? A possible answer is that
you can express this integral in terms of the linear density function and then dm = λ(x)dx. But if the
masses are a mixture of continuous densities and point masses, this starts to become awkward. Is there
a better way?

Yes
On the interval a ≤ x ≤ b assume there are two functions, f and α. Don’t assume that either of them
must be continuous, though they can’t be too badly behaved or nothing will converge. This starts the
same way the Riemann integral does: partition the interval into a finite number (N) of sub-intervals
at the points

a = x0 < x1 < x2 < . . . < xN = b (1.27)

Form the sum

N∑
k=1

f(x′k)∆αk, where xk−1 ≤ x′k ≤ xk and ∆αk = α(xk)− α(xk−1) (1.28)

To improve the sum, keep adding more and more points to the partition so that in the limit all the
intervals xk − xk−1 → 0. This limit is called the Riemann-Stieltjes integral,∫

f dα (1.29)

What’s the big deal? Doesn’t dα = α′dx? Use that and you have just the ordinary integral∫
f(x)α′(x) dx?

Sometimes you can, but what if α isn’t differentiable? Suppose that it has a step or several steps? The
derivative isn’t defined, but this Riemann-Stieltjes integral still makes perfectly good sense.
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An example. A very thin rod of length L is placed on the x-axis with one end at the origin. It
has a uniform linear mass density λ and an added point mass m0 at x = 3L/4. (a piece of chewing
gum?) Let m(x) be the function defined as

m(x) =
(
the amount of mass at coordinates ≤ x

)
=
{
λx (0 ≤ x < 3L/4)
λx+m0 (3L/4 ≤ x ≤ L)

This is of course discontinuous.
m(x)

x

The coordinate of the center of mass is
∫
xdm

/ ∫
dm. The total mass in the denominator is

m0 + λL, and I’ll go through the details to evaluate the numerator, attempting to solidify the ideas
that form this integral. Suppose you divide the length L into 10 equal pieces, then

xk = kL/10, (k = 0, 1, . . . , 10) and ∆mk =
{
λL/10 (k 6= 8)
λL/10 +m0 (k = 8)

∆m8 = m(x8)−m(x7) = (λx8 +m0)− λx7 = λL/10 +m0.
Choose the positions x′k anywhere in the interval; for no particular reason I’ll take the right-hand

endpoint, x′k = kL/10. The approximation to the integral is now

10∑
k=1

x′k∆mk =
7∑
k=1

x′kλL/10 + x′8(λL/10 +m0) +
10∑
k=9

x′kλL/10

=
10∑
k=1

x′kλL/10 + x′8m0

As you add division points (more intervals) to the whole length this sum obviously separates into two
parts. One is the ordinary integral and the other is the discrete term from the point mass.

∫ L

0
xλdx+m03L/4 = λL2/2 +m03L/4

The center of mass is then at

xcm =
λL2/2 +m03L/4

m0 + λL

If m0 � λL, this is approximately L/2. In the reverse case is is approximately 3L/4. Both are just
what you should expect.

The discontinuity in m(x) simply gives you a discrete added term in the overall result.
Did you need the Stieltjes integral to do this? Probably not. You would likely have simply added

the two terms from the two parts of the mass and gotten the same result as with this more complicated
method. The point of this is not that it provides an easier way to do computations. It doesn’t. It is
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however a unifying notation and language that lets you avoid writing down a lot of special cases. (Is it
discrete? Is it continuous?) You can even write sums as integrals: Let α be a set of steps:

α(x) =


0 x < 1
1 1 ≤ x < 2
2 2 ≤ x < 3
etc.

= [x] for x ≥ 0

Where that last bracketed symbol means “greatest integer less than or equal to x.” It’s a notation more
common in mathematics than in physics. Now in this notation the sum can be written as a Stieltjes
integral. ∫

f dα =
∫ ∞
x=0

f d[x] =
∞∑
k=1

f(k) (1.30)

At every integer, where [x] makes a jump by one, there is a contribution to the Riemann-Stieltjes sum,
Eq. (1.28). That makes this integral just another way to write the sum over integers. This won’t help
you to sum the series, but it is another way to look at the subject.

The method of integration by parts works perfectly well here, though as with all the rest of this
material I’ll leave the proof to advanced calculus texts. If

∫
f dα exists then so does

∫
αdf and∫

f dα = fα−
∫
αdf (1.31)

This relates one Stieltjes integral to another one, and because you can express summation as an integral
now, you can even do summation by parts on the equation (1.30). That’s something that you are not
likely to think of if you restrict yourself to the more elementary notation, and it’s even occasionally
useful.

1.7 Polar Coordinates
When you compute an integral in the plane, you need the element of area appropriate to the coordinate
system that you’re using. In the most common case, that of rectangular coordinates, you find the
element of area by drawing the two lines at constant coordinates x and x + dx. Then you draw the
two lines at constant coordinates y and y+ dy. The little rectangle that they circumscribe has an area
dA = dxdy.

x x+ dx

y
y + dy

r r + dr

φ
φ+ dφ

In polar coordinates you do exactly the same thing! The coordinates are r and φ, and the line at
constant radius r and at constant r+ dr define two neighboring circles. The lines at constant angle φ
and at constant angle φ+dφ form two closely spaced rays from the origin. These four lines circumscribe
a tiny area that is, for small enough dr and dφ, a rectangle. You then know its area is the product of
its two sides*: dA = (dr)(r dφ). This is the basic element of area for polar coordinates.

* If you’re tempted to say that the area is dA = dr dφ, look at the dimensions. This expression is
a length, not an area.
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The area of a circle is the sum of all the pieces of area within it

∫
dA =

∫ R

0
r dr

∫ 2π

0
dφ

I find it more useful to write double integrals in this way, so that the limits of integration are next to
the differential. The other notation can put the differential a long distance from where you show the
limits of integration. I get less confused my way. In either case, and to no one’s surprise, you get

∫ R

0
r dr

∫ 2π

0
dφ =

∫ R

0
r dr 2π = 2πR2/2 = πR2

For the preceding example you can do the double integral in either order with no special care. If
the area over which you’re integrating is more complicated you will have to look more closely at the
limits of integration. I’ll illustrate with an example of this in rectangular coordinates: the area of a
triangle. Take the triangle to have vertices (0, 0), (a, 0), and (0, b). The area is

a

b
∫
dA =

∫ a

0
dx
∫ b(a−x)/a

0
dy or

∫ b

0
dy
∫ a(b−y)/b

0
dx (1.32)

They should both yield ab/2. See problem 1.25.

1.8 Sketching Graphs
How do you sketch the graph of a function? This is one of the most important tools you can use
to understand the behavior of functions, and unless you practice it you will find yourself at a loss in
anticipating the outcome of many calculations. There are a handful of rules that you can follow to do
this and you will find that it’s not as painful as you may think.

You are confronted with a function and have to sketch its graph.

1. What is the domain? That is, what is the set of values of the independent variable that you
need to be concerned with? Is it −∞ to +∞ or is it 0 < x < L or is it −π < φ < π or what?

2. Plot any obvious points. If you can immediately see the value of the function at one or more
points, do them right away.

3. Is the function even or odd? If the behavior of the function is the same on the left as it is on
the right (or perhaps inverted on the left) then you have half as much work to do. Concentrate on one
side and you can then make a mirror image on the left if it is even or an upside-down mirror image if
it’s odd.

4. Is the function singular anywhere? Does it go to infinity at some point where the denominator
vanishes? Note these points on the axis for future examination.

5. What is the behavior of the function near any of the obvious points that you plotted? Does
it behave like x? Like x2? If you concluded that it is even, then the slope is either zero or there’s a
kink in the curve, such as with the absolute value function, |x|.

6. At one of the singular points that you found, how does it behave as you approach the point
from the right? From the left? Does the function go toward +∞ or toward −∞ in each case?

7. How does the function behave as you approach the ends of the domain? If the domain extends
from −∞ to +∞, how does the function behave as you approach these regions?
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8. Is the function the sum or difference of two other much simpler functions? If so, you may
find it easier to sketch the two functions and then graphically add or subtract them. Similarly if it is a
product.

9. Is the function related to another by translation? The function f(x) = (x− 2)2 is related to
x2 by translation of 2 units. Note that it is translated to the right from x2. You can see why because
(x− 2)2 vanishes at x = +2.

10. After all this, you will have a good idea of the shape of the function, so you can interpolate
the behavior between the points that you’ve found.

Example: sketch f(x) = x/(a2 − x2).

−a a

1. The domain for independent variable wasn’t given, so take it to be −∞ < x <∞
2. The point x = 0 obviously gives the value f(0) = 0.
4. The denominator becomes zero at the two points x = ±a.
3. If you replace x by −x, the denominator is unchanged, and the numerator changes sign. The

function is odd about zero.

−a a

7. When x becomes very large (|x| � a), the denominator is mostly −x2, so f(x) behaves
like x/(−x2) = −1/x for large x. It approaches zero for large x. Moreover, when x is positive, it
approaches zero through negative values and when x is negative, it goes to zero through positive values.

−a a

5. Near the point x = 0, the x2 in the denominator is much smaller than the constant a2

(x2 � a2). That means that near this point, the function f behaves like x/a2

−a a
−a a

6. Go back to the places that it blows up, and ask what happens near there. If x is a little
greater than a, the x2 in the denominator is a little larger than the a2 in the denominator. This means
that the denominator is negative. When x is a little less than a, the reverse is true. Near x = a, The
numerator is close to a. Combine these, and you see that the function approaches −∞ as x→ a from
the right. It approaches +∞ on the left side of a. I’ve already noted that the function is odd, so don’t
repeat the analysis near x = −a, just turn this behavior upside down.

With all of these pieces of the graph, you can now interpolate to see the whole picture.
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OR, if you’re clever with partial fractions, you might realize that you can rearrange f as

x
a2 − x2

=
−1/2
x− a

+
−1/2
x+ a

,

and then follow the ideas of techniques 8 and 9 to sketch the graph. It’s not obvious that this is any
easier; it’s just different.

Exercises

1 Express ex in terms of hyperbolic functions.

2 If sinhx = 4/3, what is coshx? What is tanhx?

3 If tanhx = 5/13, what is sinhx? What is coshx?

4 Let n and m be positive integers. Let a = n2 −m2, b = 2nm, c = n2 + m2. Show that a-b-c
form the integer sides of a right triangle. What are the first three independent “Pythagorean triples?”
By that I mean ones that aren’t just a multiple of one of the others.

5 Evaluate the integral
∫ a

0 dxx
2 cosx. Use parametric differentiation starting with cosαx.

6 Evaluate
∫ a

0 dxx sinhx by parametric differentiation.

7 Differentiate xex sinx coshx with respect to x.

8 Differentiate
∫ x2

0 dt sin(xt) with respect to x.

9 Differentiate
∫ +x
−x dt e

−xt4 with respect to x.

10 Differentiate
∫ +x
−x dt sin(xt3) with respect to x.

11 Differentiate
∫ 3
√

sin(kx)
0 dt e−αt

3
J0(βt) with respect to x. J0 is a Bessel function.

12 Sketch the function y = v0t−gt2/2. (First step: set all constants to one. v0 = g = 2 = 1. Except
exponents)

13 Sketch the function U = −mgy + ky2/2. (Again: set the constant factors to one.)

14 Sketch U = mg`(1− cos θ).

15 Sketch V = −V0e−x
2/a2

.

16 Sketch x = x0e−αt sinωt.

17 Is it all right in Eq. (1.22) to replace “∆xk → 0” with “N →∞?” [No.]

18 Draw a graph of the curve parametrized as x = cos θ, y = sin θ.
Draw a graph of the curve parametrized as x = cosh θ, y = sinh θ.

19 What is the integral
∫ b
a dx e

−x2
?
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20 Given that
∫∞
−∞ dx/(1+x2) = π, i.e. you don’t have to derive this, what then is

∫∞
−∞ dx/(α+x2)?

Now differentiate the result and find the two integrals
∫∞
−∞ dx/(1 + x2)2 and

∫∞
−∞ dx/(1 + x2)3.

21 Derive the product rule as a special case of Eq. (1.20).

22 The third paragraph of section 1.6 has two simple equations in arithmetic. What common identities
about the integral do these correspond to?

23 Plot a graph of y = ex with y and x in meters (x horizontal and y vertical). Start at the origin
and walk along the x-axis at one meter per second. When you are at the 20-meter point, where is the
y coordinate and how fast is it rising? Not just numbers: compare both to real things.



1—Basic Stuff 19

Problems

1.1 What is the tangent of an angle in terms of its sine? Draw a triangle and do this in one line.

1.2 Derive the identities for cosh2 θ − sinh2 θ and for 1− tanh2 θ, Equation (1.3).

1.3 Derive the expressions in Eq. (1.4) for cosh−1 y, tanh−1 y, and coth−1 y. Pay particular attention
to the domains and explain why these are valid for the set of y that you claim. What is sinh−1(y) +
sinh−1(−y)?

1.4 The inverse function has a graph that is the mirror image of the original function in the 45◦ line
y = x. Draw the graphs of all six of the hyperbolic functions and all six of the inverse hyperbolic
functions, comparing the graphs you should get to the functions derived in the preceding problem.

1.5 Evaluate the derivatives of coshx, tanhx, and cothx.

1.6 What are the derivatives, d sinh−1 y
/
dy and d cosh−1 y

/
dy?

1.7 Find formulas for sinh 2y and cosh 2y in terms of hyperbolic functions of y. The first one of these
should take only a couple of lines. Maybe the second one too, so if you find yourself filling a page, start
over.

1.8 Do a substitution to evaluate the integral (a) simply. Now do the same for (b)

(a)
∫

dt√
a2 − t2

(b)
∫

dt√
a2 + t2

1.9 Sketch the two integrands in the preceding problem. For the second integral, if the limits are 0
and z with z � a, then before having done the integral, estimate approximately what the value of this
integral should be. (Say z = 106a or z = 1060a.) Compare your estimate to the exact answer that you
just found to see if they match in any way.

1.10 Fill in the steps in the derivation of the Gaussian integrals, Eqs. (1.7), (1.8), and (1.10). In
particular, draw graphs of the integrands to show why Eq. (1.7) is so.

1.11 What is the integral
∫∞
−∞ dt t

ne−t
2

if n = −1 or n = −2? [Careful!, no conclusion-jumping
allowed.] Did you draw a graph? No? Then that’s why you’re having trouble with this.

1.12 Sketch a graph of the error function. In particular, what is its behavior for small x and for large
x, both positive and negative? Note: “small” doesn’t mean zero. First draw a sketch of the integrand
e−t

2
and from that you can (graphically) estimate erf(x) for small x. Compare this to the short table

in Eq. (1.11).

1.13 Put a parameter α into the defining integral for the error function, Eq. (1.11), so it has∫ x
0 dt e

−αt2 . Differentiate this integral with respect to α. Next, change variables in this same integral
from t to u: u2 = αt2, and differentiate that integral (which of course has the same value as before)
with respect to alpha to show ∫ x

0
dt t2e−t

2
=
√
π

4
erf(x)− 1

2
xe−x

2
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As a check, does this agree with the previous result for x =∞, Eq. (1.10)?

1.14 Use parametric differentiation to derive the recursion relation xΓ(x) = Γ(x+ 1). Do it once by
inserting a parameter in the integral for Γ, e−t → e−αt, and differentiating. Then change variables
before differentiating and equate the results.

1.15 What is the Gamma function of x = −1/2, −3/2, −5/2? Explain why the original definition of
Γ in terms of the integral won’t work here. Demonstrate why Eq. (1.12) converges for all x > 0 but
does not converge for x ≤ 0. Ans: Γ(−5/2) = −8

√
π/15

1.16 What is the Gamma function for x near 1? near 0? near −1? −2? −3? Now sketch a graph of
the Gamma function from −3 through positive values. Try using the recursion relation of problem 1.14.
Ans: Near −3, Γ(x) ≈ −1/

(
6(x+ 3)

)
1.17 Show how to express the integral for arbitrary positive x∫ ∞

0
dt txe−t

2

in terms of the Gamma function. Is positive x the best constraint here or can you do a touch better?
Ans: 1

2Γ
(
(x+ 1)/2

)
1.18 The derivative of the Gamma function at x = 1 is Γ′(1) = −0.5772 = −γ. The number γ is
called Euler’s constant, and like π or e it’s another number that simply shows up regularly. What is
Γ′(2)? What is Γ′(3)? Ans: Γ′(3) = 3− 2γ

1.19 Show that

Γ(n+ 1/2) =
√
π

2n
(2n− 1)!!

The “double factorial” symbol mean the product of every other integer up to the given one. E.g. 5!! =
15. The double factorial of an even integer can be expressed in terms of the single factorial. Do so.
What about odd integers?

1.20 Evaluate this integral. Just find the right substitution.

∫ ∞
0

dt e−t
a

(a > 0)

1.21 A triangle has sides a, b, c, and the angle opposite c is γ. Express the area of the triangle in
terms of a, b, and γ. Write the law of cosines for this triangle and then use sin2 γ + cos2 γ = 1 to
express the area of a triangle solely in terms of the lengths of its three sides. The resulting formula is
not especially pretty or even clearly symmetrical in the sides, but if you introduce the semiperimeter,
s = (a+ b+ c)/2, you can rearrange the answer into a neat, symmetrical form. Check its validity in a

couple of special cases. Ans:
√
s(s− a)(s− b)(s− c) (Hero’s formula)

1.22 An arbitrary linear combination of the sine and cosine, A sin θ+B cos θ, is a phase-shifted cosine:
C cos(θ + δ). Solve for C and δ in terms of A and B, deriving an identity in θ.

1.23 Solve the two simultaneous linear equations

ax+ by = e, cx+ dy = f

and do it solely by elementary manipulation (+, −, ×, ÷), not by any special formulas. Analyze all the
qualitatively different cases and draw graphs to describe each. In every case, how many if any solutions
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are there? Because of its special importance later, look at the case e = f = 0 and analyze it as if
it’s a separate problem. You should be able to discern and to classify the circumstances under which
there is one solution, no solution, or many solutions. Ans: Sometimes a unique solution. Sometimes
no solution. Sometimes many solutions. Draw two lines in the plane; how many qualitatively different
pictures are there?

1.24 Use parametric differentiation to evaluate the integral
∫
x2 sinxdx. Find a table of integrals if

you want to verify your work.

1.25 Derive all the limits on the integrals in Eq. (1.32) and then do the integrals.

1.26 Compute the area of a circle using rectangular coordinates,

1.27 (a) Compute the area of a triangle using rectangular coordinates, so dA = dxdy. Make it a right
triangle with vertices at (0, 0), (a, 0), and (a, b). (b) Do it again, but reversing the order of integration.
(c) Now compute the area of this triangle using polar coordinates. Examine this carefully to see which
order of integration makes the problem easier.

1.28 Start from the definition of a derivative, lim
(
f(x+ ∆x)− f(x)

)
/∆x, and derive the chain rule.

f(x) = g
(
h(x)

)
=⇒ df

dx
=
dg
dh
dh
dx

Now pick special, fairly simple cases for g and h to test whether your result really works. That is,
choose functions so that you can do the differentiation explicitly and compare the results, but also
functions with enough structure that they aren’t trivial.

1.29 Starting from the definitions, derive how to do the derivative,

d
dx

∫ f(x)

0
g(t) dt

Now pick special, fairly simple cases for f and g to test whether your result really works. That is,
choose functions so that you can do the integration and differentiation explicitly, but ones such the
result isn’t trivial.

1.30 Sketch these graphs, working by hand only, no computers:

x
a2 + x2

,
x2

a2 − x2
,

x
a3 + x3

,
x− a

a2 − (x− a)2
,

x
L2 − x2

+
x
L

1.31 Sketch by hand only, graphs of

sinx (−3π < x < +4π),
1

sinx
(−3π < x < +4π), sin(x− π/2) (−3π < x < +4π)

1.32 Sketch by hand only, graphs of

f(φ) = 1 +
1
2

sin2 φ (0 ≤ φ ≤ 2π), f (φ) =
{
φ (0 < φ < π)
φ− 2π (π < φ < 2π)
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f(x) =
{
x2 (0 ≤ x < a)
(x− 2a)2 (a ≤ x ≤ 2a)

, f(r) =
{
Kr/R3 (0 ≤ r ≤ R)
K/r2 (R < r <∞)

1.33 From the definition of the Riemann integral make a numerical calculation of the integral∫ 1

0
dx

4
1 + x2

Use 1 interval, then 2 intervals, then 4 intervals. If you choose to write your own computer program
for an arbitrary number of intervals, by all means do so. As with the example in the text, choose the
midpoints of the intervals to evaluate the function. To check your answer, do a trig substitution and
evaluate the integral exactly. What is the % error from the exact answer in each case? [100×(wrong
− right)/right] Ans: π

1.34 Evaluate erf(1) numerically. Use 4 intervals. Ans: 0.842700792949715 (more or less)

1.35 Evaluate
∫ π

0 dx sinx/x numerically. Ans: 1.85193705198247 or so.

1.36 x and y are related by the equation x3−4xy+3y3 = 0. You can easily check that (x, y) = (1, 1)
satisfies it, now what is dy/dx at that point? Unless you choose to look up and plug in to the cubic
formula, I suggest that you differentiate the whole equation with respect to x and solve for dy/dx.
Generalize this to finding dy/dx if f(x, y) = 0. Ans: 1/5

1.37 When flipping a coin N times, what fraction of the time will the number of heads in the run lie
between

(
N/2−2

√
N/2

)
and

(
N/2+2

√
N/2

)
? What are these numbers for N = 1000? Ans: 99.5%

1.38 For N = 4 flips of a coin, count the number of times you get 0, 1, 2, etc. heads out of 24 = 16
cases. Compare these results to the exponential approximation of Eq. (1.17).
Ans: 2→ 0.375 and 0.399

1.39 Is the integral of Eq. (1.17) over all δ equal to one?

1.40 If there are 100 molecules of a gas bouncing around in a room, about how long will you have to
wait to find that all of them are in the left half of the room? Assume that you make a new observation
every microsecond and that the observations are independent of each other. Ans: A million times the
age of the universe. [Care to try 1023 molecules?]

1.41 If you flip 1000 coins 1000 times, about how many times will you get exactly 500 heads and 500
tails? What if it’s 100 coins and 100 trials, getting 50 heads? Ans: 25, 8

1.42 (a) Use parametric differentiation to evaluate
∫
xdx. Start with

∫
eαxdx. Differentiate and then

let α→ 0.
(b) Now that the problem has blown up in your face, change the integral from an indefinite to a definite

integral such as
∫ b
a and do it again. There are easier ways to do this integral, but the point is that this

method is really designed for definite integrals. It may not work on indefinite ones.

1.43 The Gamma function satisfies the identity

Γ(x)Γ(1− x) = π/ sinπx

What does this tell you about the Gamma function of 1/2? What does it tell you about its behavior
near the negative integers? Compare this result to that of problem 1.16.
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1.44 Start from the definition of a derivative, manipulate some terms: (a) derive the rule for differen-
tiating the function h, where h(x) = f(x)g(x) is the product of two other functions.
(b) Integrate the resulting equation with respect to x and derive the formula for integration by parts.

1.45 Show that in polar coordinates the equation r = 2a cosφ is a circle. Now compute its area in
this coordinate system.

1.46 The cycloid* has the parametric equations x = aθ − a sin θ, and y = a− a cos θ. Compute the
area,

∫
y dx between one arc of this curve and the x-axis. Ans: 3πa2

1.47 An alternate approach to the problem 1.13: Change variables in the integral definition of erf to
t = αu. Now differentiate with respect to α and of course the derivative must be zero and there’s your
answer. Do the same thing for problem 1.14 and the Gamma function.

1.48 Recall section 1.5 and compute this second derivative to show

d2

dt2

∫ t

0
dt′ (t− t′)F (t′) = F (t)

1.49 From the definition of a derivative show that

If x = f(θ) and t = g(θ) then
dx
dt

=
df/dθ

dg/dθ

Make up a couple of functions that let you test this explicitly.

1.50 Redo problem 1.6 another way: x = sinh−1 y ↔ y = sinhx. Differentiate the second of these
with respect to y and solve for dx/dy. Ans: d sinh−1 y/dy = 1/

√
1 + y2.

* www-groups.dcs.st-and.ac.uk/˜history/Curves/Cycloid.html

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html
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