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Problem 1

The total luminosity Lν of the disc at frequency ν can be calculated by integrating
the flux Fν at each point on the surface of the disc over the entire surface area.
The luminosity at frequency ν from a thin ring of radius R and thickness dR on one
face of the disc is 2πRdR Fν . Integrating this over radius, the total luminosity per
unit frequency interval from one face is
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Substituting for R dR and d ln R/d ln T , the luminosity per unit frequency of one
side of the disc becomes
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where xin = hν/kT (Rin), xc = hν/kT (Rc) and xout = hν/kT (Rout).
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A1 and A2 are weak functions of frequency ν through the limits of the integrals (be-
cause xin = hν/kT (Rin), etc, are functions of ν). However, we can use A1 ' constant
and A2 ' constant to a first approximation.
The ν−1 term is contributed by the hot inner part of the disc (Rin < R ≤ Rc)
which emits predominantly at high frequencies. The ν1/3 term is contributed by the
cooler outer part of the disc (Rc < R ≤ Rout) which emits predominantly at low
frequencies.



In the cataclysmic variable system, the temperature behaviour for radial distances
R > 5 × 107 m shows the T ∝ R−3/4 relation that is expected for steady-state
Keplerian discs where the disc is heated by viscous dissipation. The inner part of
the disc has a different T ∝ R−1/2 behaviour.
Therefore, the power of the radiation over the radius range 1×107m ≤ R < 5×107m
due to the T ∝ R−1/2 temperature dependence will be different to what it would
be if the standard T ∝ R−3/4 dependence applied there. To calculate the deficit we
need to calculate the power in this radius range produced by the R−1/2 and R−3/4

relations, and calculate the difference.
The total luminosity emitted by the disc between radii Rin and Rc will be
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relation over the Rin = 1× 107 m to Rc = 5× 107 m range in radius, the luminosity
would be
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The luminosity from the Rin ≤ R < Rc region is less in the T ∝ R−1/2 case. This is
a deficit of

1.14× 1027 − 4.59× 1026 W = 6.8× 1026 W .



If this luminosity deficit is emitted from the system in the form of 1 keV X-ray
photons, the flux of X-ray photons is

6.8× 1026 W

103 × 1.602× 10−19 J
= 4.3× 1043 X-ray photons per second.

Problem 2

The first and second parts of this question were given on pages 40 to 42 of the
course notes. You can find the answers in full there! The estimate of the total
torque exerted on the inner part of the accretion disc by the magnetic field is

T =
4π

3

B2
z (R∗)

µ0

R6
∗

R3
min

,

where Bz(R∗) is the component of the magnetic flux density in the direction per-
pendicular to the disc at the surface of the star, R∗ is the radius of the star, and µ0

is the permeability of free space.
The inner radius Rmin and the radius of the central star R∗ are related by
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where ṁ is the mass flow rate through the disc, and M is the mass of the central
star. G is the constant of gravitation.

From page 42 of the course notes, the ratio Rmin/R∗ is given numerically by
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where R� is the radius of the Sun, and M� is the mass of the Sun. For the T Tauri
star, putting M = 1M�, R∗ = 1R�, Bz(R∗) = 10−1 Tesla and ṁ = 10−8 M� yr−1,
we get an inner radius of the accretion disc

Rmin = 13.4 R� .

If the accretion rate increases by a factor 104 in the FU Orionis star, it becomes
ṁ = 10−4 M� yr−1. Putting this into the equation, we get

Rmin = 0.97 R�

during the outburst, if we use the same values for Bz(R∗), R∗ and M used for the
T Tauri star. This figure is actually smaller than the radius (R∗ = 1R�) used for
the star itself.
In this case the magnetic field lines are swept in towards the star by the increased
mass flow and are essentially crushed against the stellar surface. The configuration
is now very different since a boundary layer is generated.


