Extrasolar Planets and Astrophysical Discs Problem Set 3

January 2010

Consider a dwarf-nova binary system consisting of two equal mass stars, the donor star being a 1 M_{\odot} solar-type star, and the compact object being a 1 M_{\odot} white dwarf. The system is observed to be quiescent for time scales of 1 month, and to undergo periodic outbursts with duration of 5 days.

Assume that the disc mass builds up to $10^{-11} M_{\odot}$ before the outburst ensues, that the disc has a radius equal to 2/3 of the Roche lobe radius, and that the effective temperature is given by

$$T_{eff} = 6.6 \times 10^4 \left(\frac{R}{10^7 \text{ m}}\right)^{-3/4}$$

during the outburst. Assume also that the disc surface density is constant, and that H/R = 0.03.

Estimate the atomic mean free path, L, according to

$$L = \frac{1}{n\sigma}$$

where *n* is the particle number density and σ is the collision cross section for the atoms. For simplicity use $\sigma = \pi a^2$ where $a = 10^{-10}$ m is the radius of a hydrogen atom. Estimate the kinematic 'molecular' viscosity assuming a characteristic temperature of 6.6×10^4 K, and hence calculate the evolutionary time scale of a dwarf-nova disc evolving under the influence of a viscosity of this magnitude. Given this estimate of the evolutionary time, argue that a source of anomalous viscosity is required to explain the duration of dwarf-novae outbursts.

Using an ' α ' model of turbulent viscosity, estimate the value of ' α ' required to obtain an outburst duration of 5 days.

[The radius of the Sun is $1 R_{\odot} = 6.96 \times 10^8$ m, the mass of the Sun is $1 M_{\odot} = 1.99 \times 10^{30}$ kg, the mass of a hydrogen atom is $1 m_H = 1.67 \times 10^{-27}$ kg, and the gas constant is $\mathcal{R} = 8.314$ J mol⁻¹ K⁻¹.]