
2B28 Statistical Thermodynamics - Problem Sheet 1 (2005)   

Answers should be handed in on Monday 31 January 2005 

   

1 (a) Give the Kelvin and the Clausius statements of the Second Law of Thermodynamics.
   

(b) Show that if the Clausius statement is untrue, then the Kelvin statement is also untrue.   

  

(c) One litre of water is heated from 10oC to 90oC by placing it in contact with a large 
reservoir at 90oC.  Calculate the entropy changes of: 

  (i) the water; 

  (ii) the reservoir; 

  (iii) the universe.   

  

(d) One litre of water is heated from 10oC to 90oC by operating a reversible heat engine 
between it and a reservoir at 90oC.  Calculate the entropy changes of: 

  (i) the water; 

  (ii) the reservoir; 

 (iii) the universe.   

 

 (e) Explain briefly why the answers to c (iii) and d (iii) differ.  

 

  

  

2. State Boltzmann’s definition of entropy, explaining the symbols used, and the conditions 
under which the definition is valid. 

  



Brass is an alloy of 70% copper and 30% zinc. If all the lattice sites are occupied by an atom, 
determine the configurational entropy of the system when the total number of atoms (N) is (i) 
50 and (ii) 500.   What are the corresponding values of the entropy for an alloy of 50% 
copper and 50% zinc? 

  

You may use Stirling’s formula for large N:  ln N! = N ln N - N 

  

  

3. A Schottky defect is formed when an atom leaves a perfect crystal and migrates to the 
surface.  If the energy of formation of a single defect is ε, derive an expression for the 
concentration of defects at a temperature T.  

  

For what concentration of defects does the entropy of the crystal reach (i) its maximum value, 
and (ii) its minimum value? 

  

According to one theory, melting occurs when a substance contains 0.01% of vacancy 
defects. Consider whether this theory can satisfactorily explain the temperatures Tm at which 
Cu and Pt melt, given that: 

 for Cu, ε = 1.07 eV and Tm = 1356 K;  

for Pt, ε = 1.3 eV and Tm = 2046 K.  

 

  

2B28 Problem Sheet 2 . Answers to be handed in by Monday 14 February 2005 

   

1. Derive the Boltzmann distribution for a system in equilibrium with a heat bath at 
temperature T.  Explain the symbols used, and the conditions under which the distribution is 
valid. 

  

A certain atom has 3 possible energy levels. These energies are E1 =1.3 x 10-22 J, E2 = 2.3 x 
10-22 J, and E3 = 3.2 x 10-22 J.  The first level is non-degenerate (g1=1), whereas the other 



levels are degenerate : g2=3 and g3=5.  If the atom is in equilibrium at (i) T=5 K, and (ii) 
T=10 K, calculate: 

(a) the partition function Z(1,V,T); 

(b) the probability that the atom has energy E2; 

(c) the mean energy of the atom. 

  

  

2.  A paramagnetic material has non-interacting magnetic dipoles with spin S=1/2, and 
magnetic moment µ.  It is in contact with a heat bath at temperature T, and a magnetic field B 
is applied. 

  

Show that the partition function of a single magnetic dipole Z(1,V,T) is 2 cosh x, where x = 
µB / kT. 

  

Show that the average energy of a dipole is E = - µB tanh x, and sketch E as a function of x. 

  

By considering the possible states of a system of two dipoles, find an expression for 
Z(2,V,T). 

  

If the magnetic moment µ = 0.93 x 10-23 Am2, T = 4.2 K, and the applied field B = 5 T, 
calculate Z(1,V,T) and Z(2,V,T).  Deduce the temperature at which the probability of the 
moment being aligned parallel to the applied magnetic field is 0.8. 

  

  

3.State the general definition of entropy in terms of the probabilities Pj of the accessible 
microstates.  From this definition, show that the entropy of a system in contact with a heat 
bath at temperature T can be written as  

  



S(N,V,T) = k ln Z(N,V,T) + E/T.   

  

Use this expression to obtain a definition of thermal equilibrium for a system in contact with 
a heat bath at temperature T.  

  

A particular system can exist in two energy levels. The ground level has energy 3.0 x 10-19 J, 
and has a degeneracy of 2.  The excited level has energy 7.0 x 10-19 J, and a degeneracy of 4.  

If the system is in equilibrium at T = 300 K, calculate (a) the entropy, and (b) the Helmholtz 
free energy.  Give the units in each case. 
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2B28 Problem Sheet 3  Answers should be handed in by Monday 7 March 2005. 

   

1.  Derive Planck’s law for the energy density of radiation in a black-body cavity at a 
temperature T.  Explain any assumptions or approximations that you use.   

 [11 marks] 

  

Sketch the radiation spectra emitted by stars with surface temperatures of 6000 K and 8000 
K, marking the visible and ultraviolet regions on your graphs.  What is the  

frequency of the maximum in the spectrum, in each case?  What does the area under the 
curve represent, and how does it vary with temperature?   

 [6 marks] 

  

Measurements of the cosmic microwave background suggest that the Universe has an 
effective temperature of about 3 K.  Calculate the wavelength of the maximum in the 
radiation spectrum in this case, and the energy (in meV) of the corresponding photons.   



[3 marks] 

  

2.  For an ideal gas comprised of N identical non-interacting fermions, explain the meaning of 
the Fermi energy, εF, and Fermi temperature TF.   

Draw the Fermi-Dirac distribution for the average occupation number of single-particle states 
as a function of energy, at T=0 K.  Mark εF on your diagram. 

           [6 marks] 

  

Consider N free electrons in a volume V as an ideal Fermi-Dirac gas. Show that the Fermi 
energy is given by εF = (h2 /2m ) (3N /8πV)2/3.  

           [8 marks] 

  

Calculate the Fermi temperature and the average Fermi-Dirac pressure for: 

  

(a) 3He atoms in liquid 3He, where the number density is 2.2 x 1028 m-3, 

  

(b)  conduction electrons in copper, where the number density is 8.45 x 1028 m-3, 

  

(c)  neutrons in a neutron star, for which the mass density is 1015 kg m-3. 

  

           [6 marks] 

 
 
 
 
 
 
 
 
 
 



2B28 Problem sheet 1 – 2005 Solutions 1 

 Qu 1. (20 marks) 

(a) Second law : Kelvin statement : No process is possible whose sole result is the complete 
conversion of heat into work.  

  [1] 

  

Clausius statement: No process is possible whose sole result is the transfer of heat from a 
cooler to a hotter body.  

  [1] 

  

(b) to demonstrate equivalence show that if Clausius statement is untrue, then so is the Kelvin 
statement. 

  

If Clausius statement is untrue, then this engine is possible. 

  

Imagine the engine to be a composite engine in which engine 1 drives engine 2 

  

Engine 2 is compatible with the First Law, but engine 1 is not, and violates the Kelvin 
statement. 

  

Thus, if Clausius statement is untrue, then so is the Kelvin statement.  

 [8] 

  

  

(c) For 1 litre water (mass = 1 kg) heated from 10oC to 90oC : 

Heat capacity of water = 4184 J kg-1 

  



(i) Entropy change of water ∆Swater = (dQ)/T = 4184 = (dT)/T  

= 4184 ln (T2/T1) 

T1 = 283K, T2 = 363 K 

∴ ∆Swater = 4184 ln (363/283) = 1041.6 J K-1  

 [3] 

  

(ii)  Heat supplied by reservoir Q = (-) 1 x 4184 x 80 J 

and entropy change of reservoir ∆Sres = Q/T, T = Tres = 363 K 

∴ ∆Sres = -922.1 J K-1  

 [2] 

  

(iii) Net increase in entropy of universe ∆Suniverse = 119.5 J K-1 (because process is 
irreversible)  

 [1] 

  

(d) with a reversible heat engine 

∆Swater is unchanged at 1041.6 J K-1  

 [1] 

but ∆Sres  is now the same magnitude as this:  ∆Sres = - 1041.6 J K-1  

 [1] 

  

so that ∆Suniverse = 0  

  [1] 

(e) because process is reversible  [1] 

 Qu 2. (10 marks) 



S(E,V,N) = k ln Ω (E,V,N) 

Valid for isolated system with energy E, volume V, number of particles N. 

k = Boltzmann’s constant = 1.38 x10-23 J K-1  

Ω = statistical weight of macrostate with (E,V,N) = number of microstates compatible with 
this macrostate.  

  [2] 

  

Ω = N! / {n! (N-n)!}  [1] 

  

(i) we have N = 50, n = 15, (N-n) = 35 

 

S = k ln {(50!) / 15! 35!} 

Using Stirling’s formula: S = k { 50 ln50 � 15 ln15 �35 ln 35} 

= k {195.6 �40.62 �124.44}� = 4.21 x 10-22 J K-1  

  [2] 

  

for N=500 since entropy scales with system size (strictly only true for macroscopic systems) 
S (N=500) = 10 S(50) = 4.21 x 10-21 J K-1  

  [2] 

  

(ii) we have N = 50, n = 25, (N-n) = 25 

 

S = k ln {(50!) / 25! 25!} 

Using Stirling’s formula: S = k { 50 ln50 � 2 x25 ln25} 

= k {195.6 � 2 x 80.47}� = 4.78 x 10-22 J K-1  



 [2] 

  

and for N = 500, S = 4.78 x 10-21 J K-1  

  [1] 

  

  

  

  

Qu 3.  (15 marks) 

Schottky defect : statistical weight of n defects on N lattice sites  

Ω (n) = N! / [ n! (N-n)! ] 

Entropy S(n) = k ln Ω (n) = k [ ln N! � ln n! � ln (N-n)! ] 

using ln N! = N ln N � N 

S(n) = k {[ N ln N � N] � [n ln N � n] � [(N-n) ln (N-n) � (N-n)]} 

  

       = k { N ln N � n ln n � (N-n) ln (N-n)}  

  [3] 

  

Using 1/T = (S/E) where E = n ε 

We have 1/T = [dS(n)/dn] [dn/dE] = (1/ε) �dS(n)/dn  

  [2] 

  

From the above Eqn for S(n) 

  



dS(n)/dn = k {- ln n �1 + ln (N-n) +1 } = k ln {(N-n)/n} 

  

In equilibrium: 1/T = (1/ε) �k ln {(N-n)/n} 

  

exp (ε /kT) = {(N-n)/n} = (N/n) � 1 = N/n  since N >> n 

  

n = N exp (-ε /kT)  

  [2] 

� 

S is max when dS(n)/dn = 0, i.e. when k ln {(N-n)/n} = 0 

  

this is when {(N-n)/n} = 1, - i.e. when (N-n) = n,  N=2n, 

  

S is maximum when n = N/2,    

  [2] 

and minimum (perfect order) when n = 0   

 [1] 

  

We consider the temperature for which n/N = 0.01% = 1 x 10-4 

1 x 10-4 = exp (-ε /kT) 

(-ε /kT) = ln (1 x 10-4) = - 9.210 

  

For Cu, ε = 1.07 eV = 1.07 x 1.6 x 10-19 J 

  



T when (n/N) = 1 x 10-4 is (1.07 x 1.6 x 10-19 ) / (1.38 x 10-23 x 9.210) 

  

= 1347 K.  This is in very good agreement with Tm = 1356 K  [3] 

  

For Pt, ε = 1.3 eV 

  

T when (n/N) = 1 x 10-4 is (1.3 x 1.6 x 10-19 ) / (1.38 x 10-23 x 9.210) 

  

= 1636 K.  

This is only 80% of the actual value of Tm = 2046 K, so this simple model is not very 
satisfactory for Pt.  

  [2] 

 
 
 
 
 
 
 
 
(Problems rendering some of the equations in Solutions 1) 


