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F. Solutions to course work 3

Q1.25 Marks

a)Formulate the equivalence principle and explain what is the difference in interpretation of this principle in Newtonian theory
and in General relativity.

Solution:A uniform gravitational field is equivalent to a uniform acceleration.
b) Explain the similarity between an ”actual” gravitational field and a non-inertial reference system. Give the definition of a
locally Galilean coordinate system.

Solution:The fundamental property of gravitational fields that all test particles move with the same acceleration
for given φ is explained within frame of newtonian theory just by the following ”coincidence”: min = mg. The GR
gives very simple and natural explanation of the Principle of Equivalence: In curved space-time all bodies move along
geodesics, that is why their world lines are the same in given gravitational field.
c) Explain why an ”actual” gravitational field cannot be eliminated by any transformation of coordinates over all space-time.

Solution:Globally (not locally), ”actual” Gravitational Fields can be distinguished from corresponding non-inertial
frame of reference by its behavior at infinity: Gravitational fields generated by gravitating bodies fall with distance.
d) Formulate the covariance principle and explain the relationship between this principle and the principle of equivalence.

Solution:The shape of all physical equations should be the same in an arbitrary frame of reference. This principle is
a mathematical formulation of the Principle of Equivalence.

Q2.25 Marks

a) Give the definition of a contravariant vector in terms of the transformation of curvilinear coordinates.

Solution:The Contravariant four-vector is the combination of four quantities (components) Ai, which are transformed
like differentials of coordinates:

Ai = Si
kA′k, where Si

k

∂xi

∂x′k
. (F.1)

b) Give the definition of a covariant vector in terms of the transformation of curvilinear coordinates.

Solution:The Covariant four-vector is the combination of four quantities (components) Ai, which are transformed
like like components of the gradient of a scalar field:

Ai =
∂x′k

∂xi
A′

k, where S̃i
k =

∂x′i

∂xk
. (F.2)

c) What is the mixed tensor of the second rank in terms of the transformation of curvilinear coordinates (you can assume that
a mixed tensor of the second rank is transformed as a product of covariant and contrvariant vectors).

Solution:Mixed tensor of the 2 rank has 42 = 16 components and 2 indices, 1 contravariant and 1 covariant.
Corresponding transformation law is the same as for a product BiCk = (Si

nBn)(S̃m
k Cm), hence

Ai
k = Si

nS̃m
k A′n

m, (F.3)

we see 2 transformation matrices in the transformation law.
d) Explain why the principle of covariance implies that all physical equations should contain only tensors.

Solution:By definition, tensors are objects which are transformed properly in the course of coordinate transformations
from one frame of reference to another keeping the shape of any physical equation unchanged as it is required by the
covariance principle.

Q3.25 Marks

a) Prove that the metric tensor is symmetric. Give a rigorous proof that the interval is a scalar.

Solution:

ds2 = gikdxidxk =
1
2
(gikdxidxk + gikdxidxk) =

1
2
(gkidxkdxi + gikdxidxk) =

1
2
(gki + gik)dxidxk =

= g̃ikdxidxk, (F.4)
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where

g̃ik =
1
2
(gki + gik), (F.5)

which is obviously a symmetric one. Then we just drop ”̃”(The end of proof).

ds2 = gikdxidxk = (S̃n
i S̃m

k g′nm)(Si
pdx′p)(Sk

wdx′w) = (S̃n
i Si

p)(S̃
m
k Sk

w)(g′nmdx′pdx′w) =

= δn
p δm

w (g′nmdx′pdx′w) = g′pwdx′pdx′w = g′ikdx′idx′k = ds′2, (F.6)

hence ds = ds′ which means that ds is a scalar.(The end of proof).
b) Give the definition of the reciprocal tensors of the second rank. What is the contravariant metric tensor gik.

Solution:Two tensors Aik and Bik are called reciprocal to each other if

AikBkl = δl
i. (F.7)

The contravariant metric tensor gik is reciprocal to the covariant metric tensor gik:

gikgkl = δl
i. (F.8)

Solution Q3(b)

c) Show that in an arbitrary non-inertial frame

gik = Si
(0)0S

k
(0)0 − Si

(0)1S
k
(0)1 − Si

(0)2S
k
(0)2 − Si

(0)3S
k
(0)3,

where Si
(0)k is the transformation matrix from locally inertial frame of reference (galilean frame) to this non-inertial frame.

Solution:We know that in the galilean frame of reference

gik = ηik, (F.9)

hence

gik = Si
(0)nSk

(0)mηlm = Si
(0)0S

k
(0)0 − Si

(0)1S
k
(0)1 − Si

(0)2S
k
(0)2 − Si

(0)3S
k
(0)3. (F.10)

d) Demonstrate how using the reciprocal contravariant metric tensor gik and the covariant metric tensor gik you can
form contravariant tensor from covariant tensors and vice versa.
Solution:

Ai = gikAk, Ai = gikAk, (F.11)

we can rise and descend indices as we like.
e) Show with the help of straightforward differentiation that if Ai is a vector then dAi is not a vector.

Solution:

Ai =
∂x′k

∂xi
A′

k dAi =
∂x′k

∂xi
dA′

k + A′
k

∂2x′k

∂xi∂xl
dxl, (F.12)

Q4.25 Marks

a) Motivate the necessity to introduce parallel translation of a vector. Explain the meaning of the Christoffel symbols. Explain
why the Christoffel symbols do not form a tensor.

Solution:In arbitrary coordinates to obtain a differential of a vector which forms a vector we should subtract vectors
in the same point, not in different as we have done before. Hence we need produce a parallel transport or a parallel
translation.
Under a parallel translation of a vector in galilean frame of reference its component don’t change, but in curvilinear
coordinates they do and we should introduce some corrections:

DAi = dAi − δAi. (F.13)
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These corrections obviously should be linear with respect to all components of Ai and independently they should be
linear with respect of dxk, hence we can write these corrections as

δAi = −Γi
klA

kdxl, (F.14)

where Γi
kl are called Christoffel Symbols which obviously don’t form any tensor, because DAi is the tensor while as

we know dAi is not a tensor.
b) Show that

Γi
km =

1

2
gin (gkn,m + gmn,k − gkm,n) .

Solution:We know that

Γl
ik = Γl

ki (F.15)

and

gik;m = 0. (F.16)

Introducing useful notation

Γk, il = gkmΓm
il , (F.17)

we have

gik; l =
∂gik

∂xl
− gmkΓm

il − gimΓm
kl =

∂gik

∂xl
− Γk, il − Γi, kl = 0. (F.18)

Permuting the indices i, k and l twice as

i→ k, k → l, l→ i, (F.19)

we have

∂gik

∂xl
= Γk, il + Γi, kl,

∂gli

∂xk
= Γi, kl + Γl, ik and − ∂gkl

∂xi
= −Γl, ki − Γk, li. (F.20)

Taking into account that

Γk, il = Γk, li, (F.21)

after summation of these three equation we have

gik,l + gli,k − gkl,i = 2Γi, kl (F.22)

Finally

Γi
kl =

1
2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
. (F.23)

c) Explain why for the derivation of physical equations in the presence of a gravitational field one can simply replace partial
derivatives by covariant derivatives, and as an example show that the motion of a particle in a gravitational field is given by
the geodesic equation

d2xi

ds2
+ Γi

kl
dxk

ds

dxl

ds
= 0.

Solution:Gravity is equivalent to curved space-time, hence in all differentials of tensors we should take into account
the change in the components of a tensor under an infinitesimal parallel transport. Corresponding corrections are
expressed in terms of the Cristoffel symbols and reduced to replacement of any partial derivative by corresponding
covariant derivative.

ui =
dxi

ds
(F.24)
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is the four-velocity. The equation for motion of a free particle in absence of gravitational field is

dui

ds
= 0. (F.25)

In presence of a gravitational field this equation is generalized to the equation

Dui

ds
= 0, (F.26)

which gives

Dui

ds
=

dui

ds
+ Γi

knuk dxn

ds
=

d2xi

ds2
+ Γi

knukun = 0. (F.27)
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