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Physical Constants

Gravitational constant G 6.7× 10−11 N m2 kg−2

Speed of light c 3× 108 m s−1

Solar mass M� 2.0× 1030kg
Gravitational radius of Sun rg� 3 km
Hubble constant H0 70 km s−1Mpc−1

Hubble radius c/H0 6× 103 Mpc

1 pc = 3.1× 1016 m

NOTATION

Three-dimensional tensor indices are denoted by Greek letters α, β, γ, ...
and take on the values 1, 2, 3.
Four-dimensional tensor indices are denoted by Latin letters i, k, l, ... and
take on the values 0, 1, 2, 3.
The metric signature (+−−−) is used.
Partial derivatives are denoted by ”,”.
Covariant derivatives are denoted by ”;”.

USEFUL FORMULAS.

Cosmology

ds2 = c2dt2−R2(t)

[
dχ2 +

sin2(
√

kχ)
k

(dθ2 + sin2 θdφ2)

]
(Robertson–Walker metric),

R̈ = −4πG

3

(
ρ +

3p

c2

)
R +

ΛR

3
(acceleration equation)

q = −R̈R

Ṙ2
deceleration parameter

Ṙ2 + kc2 =
8πG

3
ρR2 +

ΛR2

3
(Friedmann equation)

d(ρc2V ) = −pdV (energy conservation equation)

ρcrit =
3H2

0

8πG
= 0.92× 10−26 kg m−3 (critical density)

Ω0 =
ρ

ρcrit
(density parameter)

General Relativity

Minkowski metric:

ds2 = ηikdxidxk = c2dt2 − dx2 − dy2 − dz2
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Covariant derivatives:

Ai
;k = Ai

,k + Γi
kmAm, Ai;k = Ai,k − Γm

ikAm, where Γi
kn are Christoffel symbols

Christoffel symbols:

Γi
kl =

1
2
gim (gmk,l + gml,k − gkl,m)

Geodesic equation:
dui

ds
+ Γi

knukun = 0,

where
ui = dxi/ds is the 4-velocity along the geodesic.

Riemann tensor:

Ai
;k;l −Ai

;l;k = −AmRi
mkl, where Ri

klm = ginRnklm,

Ri
klm = Γi

km,l − Γi
kl,m + Γi

nlΓ
n
km − Γi

nmΓn
kl.

Symmetry properties of the Riemann tensor:

Riklm = −Rkilm = −Rikml, Riklm = Rlmik.

Bianchi identity:
Rn

ikl;m + Rn
imk;l + Rn

ilm;k = 0.

Ricci tensor:
Rik = glmRlimk = Rm

imk.

Scalar curvature:
R = gilgkmRiklm = gikRik = Ri

i.

Einstein equations:

Ri
k −

1
2
δi
kR =

8πG

c4
T i

k,

where T i
k is the Stress-Energy tensor.

Gravitational radius:

rg = 2GM/c2 = 3(M/M�) km, where M� is the mass of the Sun.
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Section A: Each question carries 10 marks. You should attempt ALL
questions.

Question 1 Show that the density parameter Ω0 (see rubric) is dimensionless. Ex-
plain briefly how the value of this parameter can be obtained from direct observations
and what is the relation between the dark matter problem and the determination of
Ω0.

Question 2 The Hubble radius is determined as

RH =
c

H0
,

where H0 is the Hubble parameter. It is given that according to some cosmological
model with k = −1 the present scale factor, R0, is twice as large as RH . Use the
Friedman equation to find the density parameter corresponding to such a cosmolog-
ical model.

Question 3 Assume that the contribution of some low mass Jupiter-like dark ob-
jects of mass m to the average density of the Universe is 1% of the critical den-
sity. Estimate the average distance d between these objects at the present time.
You can assume that the Hubble parameter H0 is equal to 70km s−1Mpc−1 and
m = 10−3M�. What was the average distance between such objects at the moment
corresponding to the redshift z = 9?

Question 4 A cosmological model describes the early Universe which contains a
perfect fluid with equation of state p = αρc2. Using the energy conservation and
acceleration equations (see rubric) show that

ρ(R)
ρ0

=
(

R

R0

)−3(1+α)

.

Express α in terms of the acceleration parameter q.

Question 5 Consider a spatially flat cosmological model containing dark energy
with equation of state α = −1/2 and radiation with density parameter Ω0(r). Using
the formula for the dependence of density on scale factor from the previous question,
show that the ratio of the total pressure P to the total energy density ρc2 depends
on redshift as

P

ρc2
=

1
3Ω0(r)(1 + z)4 − 1

2(1− Ω0(r))(1 + z)3/2

Ω0(r)(1 + z)4 + (1− Ω0(r))(1 + z)3/2
.

Find Ω0(r) if it is given that according to a such model the Universe started to expand
with acceleration at z = 1/4.
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Section B: Each question carries 25 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 6 This question is on Cosmological Models.
Assume that the Universe with Λ = 0 is open (k = −1) and contains only dust.

The evolution of the scale factor in this case is given in the following parametric
form

R(η) =
a

2
(cosh η − 1), t(η) =

a

2c
(sinh η − η),

where η is a variable which runs from 0 to ∞ and a is some constant.

(a) Using the Friedman equation express a in terms of the Hubble and density
parameters. [17]

(b) At some moment of time t∗ corresponding to η = η∗ the density of the Universe
is equal to ρ∗. Show that the moment of time, tγ , when the density of the
Universe is equal to γρ∗, is

tγ ≈ t∗γ
−1/3.

Estimate the ratio ρ(η = 10)/ρ(η = 20). [Hint: Take into account that for
such values of η one can approximate cosh η and sinh η by eη/2 � η � e−η/2.] [8]

Question 7 This question is on the Mathematical Structure of General Relativity.

(a) Give the definition of a covariant tensor of the second rank, Aik, and a mixed
tensor of the fourth rank, Bi

klm. In the local Galilean frame xi
[G] of reference a

mixed tensor of the fourth rank, Bi
klm, has only one non-vanishing component,

B0
000[G] = 1, and all other components are equal to zero. Write down all

components of this mixed tensor in arbitrary frame of reference, xi, in terms

of the transformation matrices Sl
m[G] = ∂xl

∂xm
[G]

and S̃l
m[G] =

∂xl
[G]

∂xm . [10]

(b) Using the EFEs and Bianchi identity (see rubric) show that the stress-energy
tensor satisfies the conservation law T i

k:i = 0. [15]

Question 8 This question is on Mathematical Aspects of Observational Cosmology.

(a) A spherical galaxy of diameter D has redshift z and apparent angular diameter
∆θ. Using the Robertson-Walker model with co-moving coordinate χ, find the
physical distance to this galaxy and show that

∆θ =
D
√

k(1 + z)
R0 sin(

√
kχ)

,

where R0 is a scale factor at the present moment. [7]

(b) Consider radially propagating photons to determine an integral relationship
between z and χ. Then assuming that the equation of state parameter α = 0
and k = 0, use the formula for ∆θ from the previous sub-question to find ∆θ
as a function of z only. Show that the function ∆θ(z) is not monotonic even
for a spatially flat Universe. Give a very brief qualitative explanation of this
effect. Find the value of z at which this function attains its minimum. [18]
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Question 9 This question is on Formation of Structure in the Universe.
Consider a dust sphere of average density ρ′ in a background flat Universe with

k = Λ = 0. Consider the amplitude of the small density perturbation

4(z,M) =

√〈
ρ′(z, ~r)− ρ(z)

ρ(z)

〉2

,

where ρ(R) is the average density of the Universe and 〈〉 means the average over
volumes containing mass M. Assume that

4(z,M) = δ(z)F (M),

where F (M) is determined by the power spectrum of primordial fluctuations.

(a) Show that δ(z) as a function of redshift z is the solution of the following
equation:

d2δ

dz2
+

2(1 + z)dδ

dz
− 3δ

2(1 + z)2
= 0.

[Hint: Show first that (R′ −R)/R = −δ/3.] [15]

(b) Show that the general solution of this equation can be represented in terms of
two independent modes, one of which is growing, while the other is decaying.
Given that δ(z) = 10−5 at z = 999 and δ(z) = 1 at z = 9, find δ(z) at z = 99. [10]

End of Paper
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