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You are reminded of the following:

PHYSICAL CONSTANTS

Gravitational constant G = 6.7 x 107" N m? kg2

Speed of light c =3x10® ms!

1 kpc =3x10"Y m
NOTATION

Three-dimensional tensor indices are denoted by Greek letters o, (3,7, ...
and take on the values 1, 2, 3.

Four-dimensional tensor indices are denoted by Latin letters i, k,l,... and
take on the values 0, 1, 2, 3.

The metric signature (+ — ——) is used.
Partial derivatives are denoted by ”,”.
Covariant derivatives are denoted by ;.

USEFUL FORMULAS, which you may use without proof.
Minkowsk: metric:
ds® = mkdxidxk = Adt? — da? — dy® — d2?
Covariant derivatives:
Alk = Afk + T4, A™, App = Aigp — T A, whereT},, are Christoffel symbols

Christoffel symbols:

1
k= 59”” (Gmkg + Gmik — Gklm)

Geodesic equation: ‘
du*

g + T4, ufu™ =0,
s

where
u' =dx'/ds 1is the 4-velocity along the geodesic.

Riemann tensor:
A?k;l — A?l;k =—-A"R! .., where Ry, = g" Rukim,
Rt = Thmit — Thim + Tl km — T Uit
Bianchzt identity:

n n n _
Rikzl;m + Rimk;l + Rilm;k =0.

Ricer tensor:
!
Rii. = 9" Rigmi = Rij
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Scalar curvature:
R =g"g" Ripim = 9" Rir. = R},
FEinstein tensor:
Gir = R, — 1/29:1R.
FEinstein equations:

PR 887G,

where T,ﬁ is the Stress-Energy tensor.
Schwarzschild metric:

2
ds? — (1 _ 7“9) 2a? drrg) — 2 (sin? 0dg? + do?)
T N

Gravitational radius:
ry = 2GM/c* = 3(M/Mg) km, where M, is the mass of Sun.
Kerr metric:

2 2

ds* = (1 — %)CthQ - %er —p2d0? — (r* +a® + % sin? 0) sin? Od¢?

2rgrac . o

—=5— sin” 0dgdt,

p

where p?> = r2+a’cos’ 0, A = rQ—rgr+a2, and a = é, where J is the specific
angular momentum.

Quadrupole formula for gravitational waves:

_ 2G d*Dag
3cAR dt?

hag =
where R is the distance to source of gravitational radiation and
D.sg = /(?mjax@ — 12505)dM

is the quadrupole tensor.
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Section A: Each question carries 8 marks. You should attempt ALL
questions.

Question 1 Prove that the metric tensor is symmetric. Explain how this symmetry
and dimensions of space-time pre-determine the total number of the Einstein Field
Equations required for the description of space-time geometry.

Question 2 Give the definition of the contravariant metric tensor ¢g**. What ma-
nipulations with indices can be produced with the help of g;, and ¢**? Show that in
an arbitrary non-inertial frame

9" = S{)0S(oy ~ Son Ston ~ Stz ~ S0 S0y

where Sfo)k is the transformation matrix from a locally inertial frame of reference
(local Galilean frame) to this non-inertial frame.

Question 3 Transformation from a local inertial (or local Galilean) frame of ref-
erence azz(o) to some non-inertial frame z* is given by the following transformation

matrix: Sfo)k = 8§ + f0309, where f = f(:c?é)) is a scalar field. Using the result of

Question 1, show that the metric in the non-inertial frame of reference z* has the
following form: ds? = (1+ f)72(dz®)? — (dz')? — (dz?)? — (da?).

Question 4 Explain why in order to prove that some tensor is identically equal to
zero it is enough to show that all components of this tensor are equal to zero in the
local galilean frame of reference. Then, prove that the Christoffel symbols, F}'d, are
symmetric with respect to their low indices.

Question 5 Prove that all covariant derivatives of the metric tensor are equal to
zero, - i.e., git; = 0. Then, using the symmetry of the Christoffel symbols proofed
in question 4, show that the Christoffel symbols in terms of the metric tensor are

2= 59" Gk + Gmik — Grim)-

Question 6 Prove that the determinant of the metric tensor, g, is negative in all
frames of reference. Then, prove the following identity:

2d1n /—g = g"*dgi, = —gixdg™.

Question 7 Consider a light ray (electromagnetic signal) propagating in a gravi-
tational field. The four-dimensional wave vector for the electromagnetic signal is
defined as k' = dx'/d\, where X is some parameter varying along the ray. The scalar
function ¥ is called the eikonal and defined as k; = W ;. Derive the Eikonal equation
(i.e., the equation for ¥) and explain how using this equation one can describe the
propagation of electromagnetic signals in a given gravitational field.
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Section B: Each question carries 22 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 8 .

(a) Prove the following identities:
T — (Inv/=g)x =0 and [V=gg™)]x +v=99"T}; =
[13]

(b) Prove that the covariant divergence of an arbitrary contravariant vector can
be written as ]
Al = ﬁ(w/—g/ﬂ),i.
Show that the analogous expression can be written for an antisymmetric tensor
of the second rank A*:
. 1 .
k S~ Ak
A;il = ﬁ( —gA Z),Z‘.

Question 9 .

(a) Give brief explanation of what is meant by the limit of stationarity and the
event horizon of a black hole and how to determine their locations. What is
meant by ergosphere and where it is located? [11]

(b) Consider a rotating black hole described by the Kerr metric given in the rubric.
Find the mass (express your result in solar masses) and angular momentum
parameter of the black hole, & = 2a/ry, if its ergosphere in the equatorial plane
(0 = m/2) lies between 7,3, = 125km and 7,4, = 150km. [11]

Question 10 .

(a) Prove the Bianchi identity. 8]

(b) Prove that the covariant Riemann tensor Rk = gin R}y, is antisymmetric in
each of the index pairs ¢,k and I;m (Rikim = —Rkitm = —Rigmi) and is sym-
metric under the interchange of two pairs with one another (Rikim = Rimik)-
Using these properties, show that by contracting the Bianchi identity on the
pairs of indices 7,k and [,n, one obtains that the covariant divergence of the
Einstein tensor G (see rubric) is equal to zero. [14]
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Question 11 .

(a) A weak gravitational wave is a small perturbation of the Minkowski metric,
Gik = Nik+hik. Show that, to terms of first order in h;x, the contravariant metric
tensor is ¢'* = n** — ny*™h,,;.. Consider a linear transformation z° = 2/ + £,
where &' are small functions of 2°. Show that h;, = hly. — &k —&ki- Prove that
it is always possible to find such & that the Ricci tensor takes the following

simple form:

1
Ri, = _inlmhik,l,m~

[14]

(b) Two bodies of equal mass, m; = mg = m, attracting each other according
to Newton’s law, move in circular orbits around their common centre of mass
with orbital period P. Using the quadrupole formula for the generation of

gravitational waves, show that in order of magnitude, h ~ (ry/R)(r,/cP)?/3,
where R is the distance to the system and ry = 2?{” is the gravitational radius. [8]

End of Paper

(© Queen Mary, University of London (2010)



[y
%) Queen Mary

University of London

M. Sci. Examination by course unit 2010

MTH720U/MTHMO033 Relativity and gravitation.
SOLUTIONS

Duration: 3 hours

Date and time: xx xxx 2010, xxxxh

Apart from this page, you are not permitted to read the contents of
this question paper until instructed to do so by an invigilator.

(© Queen Mary, University of London (2010) TURN OVER



Page 2 MTH?720U/MTHMO33 (2010)

Section A: Each question carries 8 marks. You should attempt ALL
questions.

Question 1 Prove that the metric tensor is symmetric. Explain how this symmetry
and dimensions of space-time pre-determine the total number of the Finstein Field
Equations required for the description of space-time geometry.

Solution 1 [Seen similar]

9 girdridz® + gipdatda® B gidridz® + gipdadat
B 2 B 2 '
The following substitution in the second term

ds

11—k k—1

gives ' '
ds? — gikdxldmk + gkidmldxk’ _ Yik + Gri dtde® — gikdxid$k7
2 2
where
Gik = Gik + ki
ik 9 .
[4]
Obviously that
Gik = Jki-

We can use g instead g;; and then changing notations just drop ™~ 2]
Space-time is four dimensional, i.e g;; have 4 x 4 component. Due to the symmetry
there only 44+ 3+ 2+ 1 = 10 independent components. Hence, to describe geometry
of 4-space time one needs 10 equations. 2]
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Question 2 Give the definition of the contravariant metric tensor g'*. What ma-
nipulations with indices can be produced with the help of gy and g'*? Show that in
an arbitrary non-inertial frame
ik i ok i ok i ok i qk

9" = S{0)0500 = S(0)150)1 = S(0)250)2 — S(0)35(0)3»
where Séo)k s the transformation matriz from a locally inertial frame of reference
(local Galilean frame) to this non-inertial frame.
Solution 2 [Seen similar]

Two tensors A;;, and B are called reciprocal to each other if

Ay, BM = 6.

We can introduce a contravariant metric tensor ¢'* which is reciprocal to the covari-
ant metric tensor g;:

ging = oL

With the help of the metric tensor and its reciprocal we can form contravariant
tensor from covariant tensors and vice versa, for example:

Al =g* Ay, A= g AR

We know that in the galilean frame of reference

1 0 0 0
; 0 -1 0 O ;
ik — itk — 3: 11
9"=10 o -1 0l=" = diag(1,—-1,—-1,-1).
0 0 0 1

Hence

g* = S%O)nS(kO)mT]lm = 530)0550)0 - 550)1550)1 - SEO)zséco)z - 520)3550)3-

(© Queen Mary, University of London (2010) TURN OVER
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Question 3 Transformation from a local inertial (or local Galilean) frame of ref-
erence xfo) to some non-inertial frame x* is given by the following transformation

matriz: Séo)k = 68 + f040), where f = f(x%)) is a scalar field. Using the result of

Question 1, show that the metric in the non-inertial frame of reference ' has the
following form: ds* = (1+ f)~2(dz®)? — (dz')? — (dx?)? — (dz?)?.

Solution 3 [Seen similar]
9% = Sy Sloymn™™ = (65 + [5500) (5%, + FS50m)n™™ =
= (01,00, + f(8,0600, + 63,8000 + 28000500 =
="+ f000G +n"0y) + 208656 = 0" + 2£005 + f25606 =

1+£)* 0 0 0
B 0 -1 0 0
- 0 0O -1 0
0 0 0 -1
[5]
Determinant |¢?*| = —(1 + f)2, hence g;; which is reciprocal to g%*, is presented by
inverse matrix:
1+£f2 0 0 0
o 0 -1 0 0
Jik = 0 0 -1 0
0 0 0 -1
2]
Finally
ds® = (1 + f)72(dz®)? — (dzh)? — (dz*)? — (dz?)2.
[1]

(© Queen Mary, University of London (2010)
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Question 4 Ezplain why in order to prove that some tensor is identically equal to
zero it is enough to show that all components of this tensor are equal to zero in the
local galilean frame of reference. Then, prove that the Christoffel symbols, F};Z, are
symmetric with respect to their low indices.

Solution 4. [Seen similar]

Transformation of tensors from the local galilean frame of reference to an arbitrary
frame of reference is produced with the help of matrices S,i and S”,Zf It does not matter
how many times these matrices appear in the transformation law, the resulting
components of the tensor in a new frame of references are linear combinations of
the components in the local galilean frame of reference, hence all new components
are automatically equal to zero in an arbitrary frame of reference, if they are zero in
the local galilean frame of reference. 2]

Let A; = ¢;, where ¢ is a scalar, then

Ajp—Apyi = Aip =Tl A —Ap i+ T A = ik — O i+ Ui —Tik) Am = (T =T A

3]
LHS is a tensor. In a local galilean coordinates RHS=0, hence in the local galilean
coordinates LHS=0. Thus LHS=0 in all coordinates, and finally taking into account
that A,, is an arbitrary vector, we conclude that I'J} — '}/ = 0 in all coordinates,
hence 't =T} 3]

© Queen Mary, University of London (2010) TURN OVER
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Question 5 Prove that all covariant derivatives of the metric tensor are equal to

zero, - i.e., giky = 0. Then, using the symmetry of the Christoffel symbols proofed

in question 4, show that the Christoffel symbols in terms of the metric tensor are
L= 39" (G + Gmik — Gklm)-

Solution 5. [Seen similar]

Let A; is an arbitrary covariant vector. By the definition of D one can say that D A;
is also vector and its contravariant representation is

DA' = ¢*DA,,.

[1]

On other hand ' 4 . '

DA' = D(¢9" Ay) = Dg"™ Ay + g™ DA,
hence ' 4 '
9" DAy, = Dg* Ay, + g™ DAy,
which means that '
Dg* A, =0
for arbitrary vector Ay, hence ‘
Dg* = 0.

2]

This means that

Dgix = girada' =0,
for arbitrary da!, which means that all giky = 0. [1]
We can apply covariant differentiation to g;p:
ikt = Gikd — L Gmr — Upigmi = 0,
or after two cycling permutations of indices i — k k — [ | — i we have
ik = Ui gmk + L Gmas
9kt = Ukigmk + Tl Gy
=gk = — L gmi — Lipgmu-

3]

Taking into account that I'}} = '} and g¢;; = griwe obtain by summation of LHSs

and RHSs that 1

k= 59“” (Gmkg + Gmik — Gkim) -

[1]

(© Queen Mary, University of London (2010)
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Question 6 Prove that the determinant of the metric tensor, g, is negative in all
frames of reference. Then, prove the following identity:

2dIn /=g = g"*dgy, = —gindg™.

Solution 6 [Seen similar]

Taking into account that g;; and ¢g%* are reciprocal, one obtains that g = det(g;;) =
1/det(g'*). [1]

We know (see question 3) that

m

9" = SZO)nSéCO)mn
Obviously, det(n'™ = —1, hence
det(g*) = detSéO)n X detSé“O)m x det(n'™) = —S?,

where S is the determinant of the transformation matrix. One can see that g =
—S572 < 0 in all frames of reference. 2]

The determinant g depends on all components g;;. Calculating g with the help, say
the first raw, one can write

g = thlia
where M are minors of the components in the first row. Obviously M do not
contain g1;. Hence

9y — Ml
g1
This is true for any row in determinant, thus
09 _ ppi
agm‘
2]
Taking into account that g%* is inverse matrix of g;,, one can write g** = M%* /g, i.e.
M* = gg'*. Thus
dg . .
dg = ———dgix = M™*dgy, = gg™* g,
A
hence
ik dg
9" dgirx = i dlnlg| = dIn(—g) = 2In/—yg.
2]
g dgir, = d(g" gir) — gindg™ = do} — gidg™ = —gidg™.
[1]

(© Queen Mary, University of London (2010) TURN OVER
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Question 7 Consider a light ray (electromagnetic signal) propagating in a gravita-
tional field. The four-dimensional wave vector for the electromagnetic signal is de-
fined as k' = dx'/d\, where \ is some parameter varying along the ray. The scalar
function ¥ is called the eikonal and defined as k; = WV ;. Derive the Eikonal equation
(i.e., the equation for V) and explain how using this equation one can describe the
propagation of electromagnetic signals in a given gravitational field.

Solution 7. [Seen similar]

We know that along any light ray ds® = g;kdz'dz* = 0. [1]

Thus we have ] ]
dzt dzF B gipdzridz® B ds?
d\x d\  d\? d)2

girk k" = gir =0.

For an arbitrary covariant vector k; = g;,k* we can find such a scalar that k; = v, [1]

Substituting this to the previous formula we obtain the following equation for W:
9SSk =0.

This equation is called the Eikonal equation. 2]

The Eikonal equation ”works” in the following way:

(i) We solve this single equation for single scalar field W (z™);

(ii) Taking partial derivatives we calculate covariant components of the four-dimensional
wave vector k; = —W ;;

(iii) With the help of ¢’* we obtain contravariant components of the four-dimensional
wave vector

(iv) Finally we calculate world lines of electromagnetic signals:

r'(s) = / E'd.

(© Queen Mary, University of London (2010)
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Section B: Each question carries 22 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 8 (a) Prove the following identities:

= (nyv=9)x =0 and [v—g9™)] 1 + v—gg"T}; = 0.

[13]
Solution Bla [Seen similar]
Uik = 59" Ging + Ghni = Gikin) = 59" Jink + 59" 9kni = 59" Jitein;
changing indices of summation in the last term, ¢ — n, n — 4, one obtains
Uik = 59" 9ink + 59" 9kni = 59" ki = 59" gink = (Inv/=9)
(see question 6). Hence ‘
I — (Inv/—g)x =0.
[4]
wpi L ki B L i in L 3t in L i in
9 U = 599" (Gkng + Ginge = Gn) = 597 9" Ghnit 597 9" Gin =597 9™ Ikt n,
changing indices of summation in the second term, £ — [, [ — k, one obtains
. 1 1 1 . dg
9"l = 59" 9" gns + glkgmgzmz — 59" gkin = 9" 9" gns — 59—
2 2 27 7y
(see question 6). 4]

Then taking into account that

(\/ _g),n 1 —dn 1 —dn 9n

V=9 2Va/s 2y 29

one obtains

= T [V s !~ (0] = A [Vl o = 700 =
f[ V=90l — 4" (V=g)n] = j_fg V=99~ 9" (V=9)n] = —\/1_7 (v=99") .-
hence
V=99")k + V=gg"'T}y =
5]

(© Queen Mary, University of London (2010) TURN OVER
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(b) Prove that the covariant divergence of an arbitrary contravariant vector can be
written as

i L oA,
A,Z_H(NA),Z

Show that the analogous expression can be written for an antisymmetric tensor
of the second rank A™*:

1
N
Solution B1b. [Seen similar]

Al = AL+ T, A" = A% + (Iny/—=g) n A"

(see the previous sub-question). Taking into account that

— _ (V=9)n
(Inv=g)n = (=)

one obtains

i _ At (\/?g),n no__ 1 — A — ) AT —
A;i_A,z+ (\/TQ) A" = H(NA71+(N),1A)

A = A A T A
Since A™ = — A"
anAm — _Fi?nAin — _I‘fLiAin — _Féanm'7 hence Fianm —0.

Thus _ ‘ A
Al = AK 4 (In/=g) ;A¥

(see the previous sub-question) and finally

i 1 7
Al = ﬁ(wﬁ—g/lk ) -

(© Queen Mary, University of London (2010)
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Question 9 (a) Give brief explanation of what is meant by the limit of stationarity
and the event horizon of a black hole and how to determine their locations.
What is meant by ergosphere and where it is located? [11]

Solution B2a. [seen similar/

The surface ggo = 0 (this equation determines the location of this surface) is
called the limit of stationarity. No particle can be in rest inside this surface [but
it does not mean that such a particle should move inward.]. Let us consider ds
for the test particle in rest, i.e. put dr = df = d¢ = 0, in this case

ds® = goodl‘OQ.

If ggo = 0 then ds? = 0, which means that the world line of the particle at rest
is the world line of light, hence at the surface ggo = 0 no particle with finite
rest mass can be at rest. 4]

The surface g'! = 0 (this equation determines the location of this surface)is
called the event horizon. No particle can move outward from inside this surface.
Let us consider a surface F'(r) = const and let n; = F; is its normal. If gt =0
then g*n;n, = ¢"'niny = 0, which means that n; is the null vector and any
particle with finite rest mass can not move outward the surface g'' = 0, thus
this surface is the event horizon [within the event horizon all particles should
move inward.] [5]

The ergosphere is the region outside the event horizon, where rotational energy
of the black hole is located, that is why it is possible to extract the rotational
energy of the Kerr black hole.The ergosphere is located between the limit of
stationarity and the event horizon. 2]

(b) Consider a rotating black hole described by the Kerr metric given in the rubric.
Find the mass (express your result in solar masses) and angular momentum
parameter of the black hole, o = 2a/rg, if its ergosphere in the equatorial plane
(0 = 7/2) lies between rmin = 125km and e = 150km. [11]

Solution B2b. [seen similar/
Location of the event horizon corresponds to
g11 =0.

Taking into account that all out of diagonal components g1, = 0 (if i # i), one
can see that g'! = 1/g1; and the location of event horizon can be determined

(© Queen Mary, University of London (2010) TURN OVER
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from g11 = oo or, as follows from the expressions for Kerr metric given in the
rubric, from
A:rz—rgr—kaz:().

rg:t,/rg+4a2
5 )

The outer event horizon,ry,, corresponds to the sign ”+”, hence

rhor:%]<1+M)-

There are two solutions

rL+ =

[4]
The location of limit of stationarity corresponds to
goo = 0.
In the case of Kerr metric this corresponds to
TgT
-9 —y,
P2
where
p? =12+ a*cos? 0,
hence from
r? — rgr + a?cos?H = 0.
There are two solutions
re = 5 .
The outer limit of stationarity, rs; corresponds to the sign ”+”, hence
Ty 55\ . 2GM
rst—5(1+\/1—a cos 9) =rg= 2
(because for the equatorial plane theta = 7/2).Thus we have
GM 2GM
Pmin = =5~ (1 +V1— a2) and Tyar = 2
[4]

Hence M /Mg = Tpmaq/3km = 50 and

27 min 2 2 2
a= \/1 - ( Imin_ 1) = = \/"min (Fmaz — Tmin) = —=V/125 x 25 = \f ~ 0.75.

Tmazx T"mazx

(© Queen Mary, University of London (2010)
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Question 10 (a) Prove the Bianchi identity. 8]
Solution B3a. [seen similar]

The Bianchi identity, R}, + Rij, . + Rij, . = 0, in the local galilean frame
of reference, where all Christoffel symbols are equal to zero, can be re-written
as

Rifim + Rimp + Rijm . =0

and the Riemann tensor in this frame can be written as

i i ; i i pn i i
Rt = Ut = ki + Tntlkem = DLt = Loy — Dhims

Rittmt R i+ Rifm e = (FZ,kz - F?k,l) +(F?m,z - F?l,m) k+( ihm — F?ch)’ =

m : !
=T km = Uikrm + Uimae = Vit + Uikma — Limogs =
= [k = Titmgel + Likmg = Dikaoml + Tk — Dimoga) = [0 4 [0] + [0] = 0.
[4]

(b) Prove that the covariant Riemann tensor Rigim = gin R}y, is antisymmetric in
each of the index pairs i,k and l,m (Rikim = —Rpitm = —Rikmi) and is sym-
metric under the interchange of two pairs with one another (Rim = Rimik)-
Using these properties, show that by contracting the Bianchi identity on the
pairs of indices i,k and l,n, one obtains that the covariant divergence of the
Einstein tensor Gi. (see rubric) is equal to zero. [14]

Solution B3b. [seen similar/

In the local galilean frame of reference

Rikim = nmRZlm = Tin (FZmJ - ZLm) =

1 1
= 577171 [gnp(gkp,m + Imp,k — gkm,p]J - inz'n [gnp(gkp,l + Jip,k — gkl,me =

1

= §ninnnp (gkp,m,l + 9mp,k,l — Gkm,p,l — Jkp,lm — Gip,k;m T+ gkl,p,m) =

1, 1
= 551‘ (Gmpkd = Gempl — Gip.kom + Gkl pm) = 3 (Gim kel + Gklim — Gilkm — Gkm,il) -

[4]

(© Queen Mary, University of London (2010) TURN OVER
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1
Gkm,il + Gilkm — Gklim — Gimkl) = —= (Gimkd + Gklim — Gilkym — Jkm,il) =

Ryiim = 5

3 (
= —Rikim.-

2]

1 1
Ritmi = = (Gitkym + Gkm,it — Gimed — Iklism) = —= (Gimked + Gklim — il kym — Jkm.il) =

2 2
= —Rikim.-
2]
1
Rimir = 3 (Gtk,m,i + Gmi Lk — Glimk — Gmkli) = 3 (Gim kel + Gklim — Gilkm — Gkmoil) =
= Rikim-
2]

After contracting the Bianchi identity we obtain
gklR;:clm;i + gklR;icil;m + gklR;cmi;l = gingkl (Rnklm;i + Rnkil;m + Rnkmi;l) =

= gklgin (_Rknlm;i + Rnkil;m - Rnkim;l) = _gianm;i+gklel;m_gklem;l = _R:’n;i_}_R,m_Rin;l =

3]

Hence

i = (RZ — ;6};}%) = —% (—2R} + Ry) =0.

)
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Question 11 (a) A weak gravitational wave is a small perturbation of the Minkowski
metric, gir, = ik + hik. Show that, to terms of first order in h;, the contravari-
ant metric tensor is g'* = n'* — n"p*mh,,.. Consider a linear transformation
z' = 2" +&', where £ are small functions of x°. Show that hy, = hlj —& k—Eki-
Prove that it is always possible to find such &' that the Ricci tensor takes the
following simple form:

1
Ry, = _inlmhik,l,m-
[14]
Solution B4a. [seen similar]

If gi = mir + hik, where h;, are small, contravariant metric tensor can be
written as ¢g'* = n"* + a’*, where a’* are also small. Taking into account that
gikg"™ = 67 we have

(it + har) (0" + a*7) = 67, 87+ miga®™ + hygn™ = 67,
nikakn — _hiknkna 77imnikakn — _nimhiknkn’ 5}2nakn — _77z'm77]~<:nhik7

a™m — _nminnkhib ﬁnally gik — nik’ _ ninnkmhnk-

14 ) )
ox 5 gi

anaom /| ol
gik = S; Sy, Gnms Where Sp = oxk = Ok ko

hence
ik + hir = (6] = € (OF" — €5) m + hiy);

to terms of first order in the h;k
ik = =1ik+07 (01" (Mrm~+10m) —E R Nrm] —E 301 Nm = — ik N+ Rip—E R im—E ke =

= i, — &k — Eksi-

[4]
Writing the Ricci tensors to terms of first order (in linear approximation) we
have
1
Rix = Fﬁk,l—réz,k = inlm (Pim kg + Pemoit — Rikmg — Rimok — Rimik + Ritm i) =
1 Im 1 Ilm
= 3" Pikm,i + BX (hkem,it — Pimik + Pitmk) =
S L (Y S A ¥ here h = h)
— 277 ik,m,l 2 kil ik imk ) where = hy.
[4]
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We have four arbitrary functions £, thus we can impose on h;; four supplemen-
tary conditions: hf’k —1/2h; =0,

1 1/1 1 1
Rip = =0 higpm + = <2h,k,i —hik+ Qh,i,k) = 0" Rt pm-

2 2 2
3]
(b) Two bodies of equal mass, m1 = mg = m, attracting each other according to
Newton’s law, move in circular orbits around their common centre of mass
with orbital period P. Using the quadrupole formula for the generation of
gravitational waves, show that in order of magnitude, h ~ (r,/R)(ry/cP)*?,
where R is the distance to the system and ry = 2?;” is the gravitational radius. [8]
Solution B4b. [seen similar/
To an order of magnitude (and omitting indices) we have
G . G,
3]
Taking into account that according to Newton low
P72 ~ Gmr™3, we have r ~ (GmP?)'/3,
2]
hence
Gm 9\2/3 Ty 252\%/3 Ty (T 2/
he~ s (GmP?) ™~ s (e'P?) T~ 3 (cp)
3]

End of Paper

(© Queen Mary, University of London (2010)
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You are reminded of the following:

PHYSICAL CONSTANTS

Gravitational constant G = 6.7 x 107! N m? kg2

Speed of light c =3x108ms!
1 kpc =3x10"m
NOTATION

Three-dimensional tensor indices are denoted by Greek letters «, 3,7, ... and take on
the values 1, 2, 3.

Four-dimensional tensor indices are denoted by Latin letters i, k,[,... and take on
the values 0, 1, 2, 3.

The metric signature (+ — ——) is used.

Partial derivatives are denoted by ”,”.

Covariant derivatives are denoted by ”;”.
USEFUL FORMULAS, which you may use without proof.
Minkowski metric:
ds?® = mkd:z:id:ck = Adt? — da? — dy® — d2?
Covariant derivatives:
Alk. = Afk + T4, A™, Apg = Aig — T A,,, where T't, are Christoffel symbols

Christoffel symbols:

1
bl = 59”" (Gmkg + Gmik — Gklm)

Geodesic equation: ‘
du’ % k,n
Is + I, u v =0,

where
u' = dz'/ds is the 4-velocity along the geodesic.

Riemann tensor:
Afk;l B A?l;k = _AmRinkb where R};lm = ngnklma
R};lm = F?ﬂm,l - P%ﬂl,m + FZlFZm - F;LmFZl
Symmetry properties of the Riemann tensor:
Rikim = — Rkitm = —Rikmi, Rikim = Rimik-

Bianchi identity:
R?kl;m + R?mk;l + R:llm,k =0.

(© Queen Mary, University of London 2009 MTHMO033/MTH720U
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Ricci tensor:
Im m
Rir, = 9" Riimp. = Ry

Scalar curvature:
R = ¢"¢"" Ripi, = " Ry, = R..

Einstein equations:
A 811G,
R, — -0, R = ——T},
kT 5% A Ltk
where T,i is the Stress-Energy tensor.
Schwarzschild metric:

ds® = (1 - Tg) Adt? —

T

2
dr ] —7r? (sin2 Odg* + d02) .

-z
Gravitational radius:
ry = 2GM/c* = 3(M/My) km, where M, is the mass of Sun.

Kerr metric:

2 2
ds? = (1 - "0 )2ai? — pz dr? — p2d6® — (> + a® + " sin? 0) sin® 0dg?
P p
2197 4C G2 O,
PZ

2 2 _J : .
—rgr +a“, and a = -, where J is the specific

where p? = 72 + a’cos?0, A = r
angular momentum.

Eikonal equation for photons:

i 0¥ O
ozt oxk

o
oxt”

where four-wave vector of the photon k; =

(© Queen Mary, University of London 2009 TURN OVER
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Geodesic deviation equation:

DQni

i k l.m
ds2 _Rklmu un,

where 7’ is the 4-vector joining points on two infinitesimally close geodesics, and u*
is the 4-velocity along the geodesic.
Quadrupole formula for gravitational waves:

_2G d?Dag
3ciR dt?

hag =
where R is the distance to source of gravitational radiation and
D.s = /(Sxaacg — r25aﬁ)dM

is the quadrupole tensor.

(© Queen Mary, University of London 2009 MTHMO033/MTH720U
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Section A: Each question carries 8 marks. You should attempt ALL
questions.

Question 1 Give the definition of a tensor with N contravariant and M covariant
indices. What is the rank of the tensor and the number of independent components
if N =2 and M = 3. State the covariance principle and explain why according to
this principle all physical equations should contains only tensors.

Question 2 Transformation from a local inertial (or local galilean) frame of ref-
erence :UZ('G) to some non-inertial frame z° is given by the following transformation
matrix:

1 0 0 0

G _ 0 [0 A@™) 0 1
Gk = 5 )

&U(G) 0 0 1 0

0 0 0 B(z™)
where A(2™) and B(z™) are some functions of the coordinates ™. Show that the
metric in the non-inertial frame of reference x* has the following form
ds® =777
[Hint: Express first ¢"® in terms of the matrix SfG) . and the calculate g;;, taking

into account that ¢g’* and g;;, are reciprocal with respect to each other.]
Question 3 Given that the interval
ds?® = gikdfnidmk
is a scalar, prove that g;; is a covariant tensor of the second rank. Show that without
loss of generality this tensor has 10 independent components.

Question 4 Using the formulae for the Cristoffel symbol and covariant derivatives
given in the rubric or otherwise, show that covariant derivatives of contrvariant
metric tensor are equal to zero, ng;n = 0.

Question 5 Using the Kerr metric given in the rubric, find the location of the event
horizon, 4., and the limit of stationarity, rs;. Compare these results with the case
of a non-rotating black hole. Give brief qualitative explain of what is the main
difference between the limit of stationarity and the event horizon of a black hole.

Question 6 Show that the circle defined by r = 71, and 0 = 7/2, is the world line
of a photon moving around the rotating black hole with angular velocity,

a
Qhor =

T9Thor .
Question 7 The four-velocity and the four-momentum of a particle of mass m in a
gravitational field are defined as

o dxt A .
u' = s p" = meu'.
s

Show that

9" pipr = m*c’.
Then, derive the Hamilton-Jacobi equation and explain how using this equation one
can describe the motion of a test particle in a given gravitational field.

(© Queen Mary, University of London 2009 TURN OVER
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Section B: Each question carries 22 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 8 (a) Using Biancci identity prove that covariant divergence of the
Ricci tensor R is related to the the gradient of the scalar curvature R by

the following relationship:
, 1
2;1' = §R,k-
[12]

(b) Using the Einstein Field Equations (EFEs) given in the rubric and the iden-
tity proved in the previous sub-question show that the covariant divergence of
the stress-energy tensor is equal to zero, Tk’:, -, = 0. Explain briefly why this
equation is considered as energy and momenta conservation law. [13]

(c) Take the stress-energy tensor in the form

0 0 —p

where ¢ is energy density and p is pressure (if p > 0) or tension (if p < 0).
Using the Einstein equations, evaluate the scalar curvature in terms of ¢ and
p. [13]

Question 9 (a) Using the equation ds = 0 with 0, ¢ = const, consider the prop-
agation of radial light signals in the Schwarzschild space-time. Consider a
photon emitted outward from r = ry at time ¢ = 0. Show that the world-line
of the photon is given by

=Ty

ct=r—rog+ryln .
7’0—7“9

(b) A particle moves along a radial geodesic in the Schwarzschild metric. Using
the expression for ds and an appropriate component of geodesic equation, show
that if the particle starts to fall freely from infinity, then

3/2 3 12 2/3
r(r) = [r*/*(m0) — 507“9 (1 —710) ,

where 7 is the proper time (ds = cdr).
[10]

(c) Using the coordinate transformations

1/27“1/2d7“ r3/2dr
T_d+/ ; —d+/
r—=Tg (r—mrg)
(© Queen Mary, University of London 2009 MTHMO033/MTH720U
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show that the Schwarzschild metric takes the form
ds? = c2dr? — %ng? — 2(d6? + sin? 6d¢?).

Expressing r in terms of R — c7, demonstrate that the latter metric is non-
stationary. What can be said about the true character of the Schwarzschild
space-time metric at r = r,?

[10]
Question 10 Consider the propagation of a photon in the equatorial plane (6 = %)
of the spherically symmetric Schwarzshild gravitational field.
(a) Derive the Eikonal equation
i) 0¥ OV _
Ox' Oxk
from the Hamiltom-Jacobi equation or otherwise. [10]

(b) Given that the solution of the Eikonal equation can be written in the following

form w
U= —wt+ 2Ly, (r),
C

where w is the frequency of the photon and p is its impact parameter, find a
differential equation for ¥, and show that

ro\ L dr 0 o°r
1--2) —=4/1-= g,
( ) cdt 2t

[10]

(c) Sketch the regions of possible motions on the (r — p) diagram and hence show
that the radius of the unstable stable circular orbit for photons corresponds to
0= %7‘9 and r = %rg. [10]
Question 11 Consider a plane gravitational wave propagating along the z-axis. All
components of h;p = g;x — Mir vanish except hoo = —hss = hy and hog = h3go = hy.
Let two test particles be located in the (y—z) plane and separated by the 3-vector
[*=(0,lpcosb,lpsinf).

(a) Show that the perturbation of the distance 4l between the two particles in the
gravitational wave varies as

l
Sl=1—1Iy= Eo(m cos 260 + h, sin 26).

(b) Consider a ring of test particles initially at rest in the (y — z) plane and a
plane monochromatic gravitational wave with frequency w and polarization
hy = hosinw(t —x/c), hx = 0. Sketch the shape of the ring perturbed by the
gravitational wave at times ¢ = 5, 7, 3775 and 2% Repeat the analysis for a
gravitational wave with another polarization: hy = 0, hy sinw(t—=z/c). Finally
consider the superposition of two polarized waves: hy = hgsinw(t — x/c),

hyx = hocosw(t —x/c). What would you call this state of polarization? [10]

(© Queen Mary, University of London 2009 TURN OVER
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(c) Consider a binary system located in the center of our Galaxy (R ~ 10kpc), and
consisting of two components of the same mass m. Show that to an order of
magnitude the amplitude of the gravitational radiation generated by the binary
and its frequency are hg ~ 1“3 /(rR) and w ~ (CT;/ 2p=3/ %) respectively, where 7,

is the gravitational radius of each component and r is the separation between

the two components. A future gravitational wave antenna detects gravitational

radiation with frequency 1072H z and amplitude 10723, Estimate the mass m

and 7r. [10]

(© Queen Mary, University of London 2009 END OF EXAMINATION
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Section A: Each question carries 8 marks. You should attempt ALL
questions.

Question 1 Give the definition of a tensor with N contravariant and M covariant
indices. What is the rank of the tensor and the number of independent components
if N =2 and M = 3. State the covariance principle and explain why according to
this principle all physical equations should contains only tensors.

Solution 1 [Book work]

This is the mixed tensor of N 4+ M rank defined as the object containing 4V+M
components A;ll 2322 3;;1;} , which in the course of an arbitrary transformation from one
frame of reference, =", to another, ™, are transformed according to the following
transformation law:

i1 12 13...4N __ Qi1 i2 i3 iN QN1 QN2 QN3 QMM Al/M1 M2 Mm3...my
Aj1 i aday = Sy Sima St Sy Sj1 Sj2 Sj3 "'SjM A Y

N times M times
where . p
ox ox
l I _
Sy, = 5 and S,, = D

This tensor of the fifth rank and contains in the most general case 4° = 1024 com-
ponents.

The Principle of Covariance says: The shape of all physical equations should be
the same in an arbitrary frame of reference. Otherwise the physical equations [being
different in gravitational field and in inertial frames of reference] would have different
solutions. Laws of transformations for tensors and only for tensors keep the the shape
of equations unchanged after transformations of coordinates.

Question 2 Transformation from a local inertial (or local Galilean) frame of ref-
erence x’(G) to some non-inertial frame x* is given by the following transformation
matrix:

‘ 1 0 0 0
o = oz | 0 1+ A@@™) 0 1
@k =gz | 0 0 10 |’
(&)
0 0 0 1

where A(x™) # —1 is a function of the coordinates x™. Show that the metric in the
non-inertial frame of reference x* has the following form

2 _ 0\2 dx')? . 22 3)2
ds® = (dz°) A+ A2 (dz?)* — (dz”)=.

[Hint: Ezxpress first g'* in terms of the matriz S(iG)k and then calculate g, taking

into account that g'* and gy, are reciprocal with respect to each other.]
Solution 2 [Unseen]

Let us first calculate g**. One can rewrite SéG) i as

Sioyk = 0% + Adi 6.

(© Queen Mary, University of London (2009)
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Taking into account that

1 0 0 0

ik ik | 0 =1 0 0
o)y =n = 0 0 -1 0 )

0 O 0 -1

we have ’ ' , 4
9% = SicynStaymn™ = (6}, + AS}6L) (0F, + skl ™ =

= [01,0%, + A(5,,018), + 65,616) + A*818)616), 0™ =
= "+ A o 40" )+ AP 616Y = 0" — A(5107+0161)— A%6167 = ™ —2A8] 5F —A%616) =

1 0 0 0
10 —(1+ A2 0 0
10 0 -1 0
0 0 0 -1
[5]
Determinant _
g™ = —(1+ 4%) #0,
hence g;;, which is reciprocal to ¢**.is presented by inverse matrix:
1 0 0 O
10 —(1 +A)72 0 0
Jik =10 0 1 0
0 0 0 -1
Finally
dl‘l)Q
2 _ 02 22 3\2
3]

Question 3 Given that the interval
ds® = gikdacidxk,

is a scalar. Prove that g; is a covariant tensor of the second rank. Show that without
loss of generality this tensor has 10 independent components.

Solution 3. [Seen similar/

The fact that ds? is a scalar means
ds® = ds?, gpda'da® = grndx™dz"™,
hence
0 = gppdz'dz®—gl, de'™da’™ = ggdz'dx—g, SMdzr'Spda® = (g —gln ST SE)dxtda”.

taking into account that da’ and dz* are arbitrary we conclude that the expression
in brackets is equal to zero, hence

9it = G S SE = 87" S} G

© Queen Mary, University of London (2009) TURN OVER
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thus according to the definition of the covariant second rank tensor g;; indeed is the
tensor of the second rank. 4]

9 gidrida® + gipdatda® B girdridz® + gipdada
B 2 B 2 '
The following substitution in the second term

ds

1—k k—1

gives
wdridek sdatdek ; P ,
d82 _ ik ;—gkz _ gik ;gkz d.%'ld.l'k _ gikdl‘zdxk,

where

Gie = gik + Gki

ik 2 .
Obviously that
Gik = Gki-

We can use g;; instead g; and then changing notations just drop ™. 4]

Question 4 Using the formulae for the Cristoffel symbol and covariant derivatives
given in the rubric or otherwise, show that covariant derivatives of contrvariant
metric tensor are equal to zero, g’ff =0.

Solution 4. [Book work]

The shortest proof (otherwise) looks like this. Let us first prove that Dg?* = 0. Let
A; is an arbitrary covariant vector. By the definition of D one can say that DA, is
also vector and its contravariant representation is

DA = ¢"*D A,

On other hand ' 4 ' '
DA = D(¢* A;) = Dg* Ay, + ¢"* DA,
hence ' 4 '
9" DAy, = Dg* Ay, + g DAy,

which means that

Dg* A, =0
for arbitrary vector Ay, hence
Dg* = 0.
[5]
By definition of covariant derivatives
D¢ = gf,’f@da:m
for arbitrary infinitesimally small displacement dz™ which means that
Gim = 0.
3]

[The proof with the help of expressions for an is approzimately twice longer.]

(© Queen Mary, University of London (2009)
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Question 5 Using the Kerr metric given in the rubric, find the location of the outer
event horizon, Ther, and the outer limit of stationarity, rs. Give a brief qualitative
explanation what is the main difference between the limit of stationarity and the
event horizon of a black hole.

Solution 5. [Book work]
Location of the event horizon corresponds to

g11 =0.

Taking into account that all out of diagonal components gi; = 0 (if ¢ # ), one can

see that
n_ 1

gi1
and the location of event horizon can be determined from

g11 = 0
or, as follows from the expressions for Kerr metric given in the rubric, from

A:rQ—rgr+a2:0.

g+ /72 + 4a?
5 .
The outer event horizon,rp,, corresponds to the sign ”+”, hence

rhor:%<1+m)v

There are two solutions

Ty =

where

The location of limit of stationarity corresponds to

goo = 0.

In the case of Kerr metric this corresponds to
roT
_ 9 _ 0,
0
where
p? = 1%+ a®cos? 0,
hence from
2 2 24 _
r° —1rgr +a”cos” 0 = 0.
There are two solutions

g+ \/T2 + 4a? cos? 0

2

Ty =

(© Queen Mary, University of London (2009) TURN OVER
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The outer limit of stationarity, rs corresponds to the sign ”+”, hence

re="2 (14 VI—?co79).

3]
Within the limit of stationarity no test particle can be in rest, but it does not mean
that such a particle should move inward. Within the event horizon all particles
should move inward. [1]

Question 6 Show that the circle defined by r = o and 0 = /2, is the world line
of a photon moving around the rotating black hole with angular velocity

Solution 6. [Unseen]

Putting dr = df = 0, r = o and 0 = 7/2 (i.e. sinf =1, cosf = 0 and p = r) into
the Kerr metric, 1]
one obtains

2 2
ds? = (1 — TL;)CthQ _ P2 p?do% — (r? + a? + 1" G 20) sin? 0d >
P A p
9 2
20970 502 gt = (1 — )PP — (12 + 0 + ) + 22 it
1Y Thor Thor Thor
3]
r 9 9 9 9 T a? 2rgyac 9
= [(1 -4 )C - Qhor (Thor +a” + . ) + z Qhor}dt =
Thor Thor Thor
Tg a 9, 9 9 rga2 2rqa  a 9 .9
=[1- - ) (Pior +0” + =) + Jetdt” =
Thor TgThor Thor Thor TgThor
2 2 2 2
r a T¢0 2rsa  a r a a 2a
= (1= () (rhorrg - )+ Je?dt? = 1= — () (14— )+ 5 Jcdt? =
Thor  TgThor Thor Thor TgThor Thor  TgThor Thor rhor
2 2 2 2 7,2
r a 2a T a codt
= (1=t 5 )dt® = (1=~ o )?dt* = (rjpp —1gThor +0*) —5— = 0.
Thor  Thor  Thor Thor  Thor Thor
3]
The fact that ds? = 0 means that this is the world line of a photon. 1]

Question 7 The four-velocity and the four-momentum of a particle of mass m in a
gravitational field are defined as
N v . ,
u' = l, p' = meu’.
ds

Show that

9" pipk = m*c*.
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Then derive the Hamilton-Jacobi equation and explain how using this equation one
can describe the motion of a test particle in given gravitational field.

Solution 7. [Book work]

From .
ds® = g;kda'da”

we have

ik dz’ dz*  ggdxidz®  ds?
GikUW'u” = Gigg———— = =

ds ds ds? ds?
After this we have
9" pipk = p'or = gep*p’ = m*Pgpyutu’ = m?e.
3]

For each covariant vector p; we can find such a scalar that

pi = —95,.
Substituting this to the previous formula we obtain the following equation for S:

gikSViS,k = m202.

This equation is called the Hamilton-Jacobi equation. 2]
The Hamilton-Jacobi equations ”works” in the following way:
(i) We solve this single equation for single scalar field S(z™);
(ii) Taking partial derivatives we calculate covariant components of the four-momenta
vector

pi = =5
(iii) With the help of g?* we obtain contravariant components of the four-momenta
vector '

p* = g"pi;
(v) Then we calculate components of the four-velocity

A i
i
me
(vi) Finally we calculate world lines of test particles
zi(s) = /uids.
3]
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Section B: Each question carries 22 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 8

(a) Using Bianchi identity prove that covariant divergence of the Ricci tensor Ry
tensor is related to the the gradient of the scalar curvature R by the following

relationship:
Rj.;= %R,k.
[14]
Solution 8.a [book work/
After contracting the Bianchi identity
Riymn + Rintom + Rl = 0
over indices i and n (taking summation ¢ = n) we obtain
Rl + Riitan + Rigniq = 0.
1]
According to the definition of Ricci tensor
Ry = R,
the second term can be rewritten as
Rt = Riym.
1]

Taking into account that the Riemann tensor is antisymmetric with respect
permutations of indices within the same pair

= _R}cim = —ka,

A
kmi
the third term can be rewritten as
;cmi;l - _ka§l'
The first term can be rewritten as
i i
Riim: = 9" Rpklmis

then taking mentioned above permutation twice we can rewrite the first term
as

R}glm;i = gZpRpklm;i = _gZkaplm;i = gZkapml;i-

After all these manipulations we have
gika’pml;i + Rkl;m - ka;l =0.

(© Queen Mary, University of London (2009)
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2]
Then multiplying by ¢*™ and taking into account that all covariant derivatives
of the metric tensor are equal to zero, we have

"™ 9P Ripmti+9"™ Ritom — ™™ Rigmy, = (gkmgip Rk:pml)_i‘i'(gkakl)'m_(gkak:m)'l =0.
3]
In the first term expression in brackets can be simplified as
gkmgikapml = gipRpl = R;

In the second term expression in brackets can be simplified as

9" Ry = R

According to the definition of scalar curvature
R = g"" Ry,

the third term can be simplified as

(9" B

)

= Ri=Ry,.

Thus '
;;i + er:lm - RJ =0,

replacing in the second term index of summation m by i we finally obtain
4 , 1
2R;7,L - RJ = 0, or R;,Z - iR’l - 0

[3]

(b) Using the EFEs given in the rubric and the identity proofed in the previous
sub-question show that the covariant divergence of the stress-energy tensor is
equal to zero, Ty, ;. = 0. 4]

Solution 8.b/seen similar]

Multiplying the EFEs

k

by ¢™" we obtain

Taking covariant divergence of LHS and RHS of this equation we obtain

1 81G

(© Queen Mary, University of London (2009) TURN OVER
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hence

C4

1 c 1
T =~ (R = 20" Ry ) = —— (R, — SR, ) = 0.
kim 87TG< s g m) 87TG( B2 )

(¢) The stress-energy tensor has the following form

0

o o O

Ty, =

o oM
o oMo

0
P
0 P

where € is energy density and P is pressure (if P > 0) or tension (if P <0).
Using the Einstein equations express the scalar curvature in terms of € and P. [4]

Solution 8.c/Unseen/

Contracting the EFEs written in mixed form (see the previous sub-question)we
have

1 81G
Rm - §5$R = A T’r?;zn,
2]
hence A 8 8
7r T
hence r G
T
finally
8rG
2]
Question 9
(a) Using the equation ds = 0 with 6, ¢ = const, consider the propagation of
radial light signals in the Schwarzschild space-time. Consider a photon emitted
outward from r = rg at time t = 0. Show that the world-line of the photon is
given by
=Ty
ct=r—rog+ryln )
o — ’I“g
[5]

Solution 9.a [Unseen/

From ds = 0 for 6, ¢ = const, we have

2 Tgy 1,2 Tg\—1;.2
1—-Ddte — (1 - ) "dr =
A= )art - (1= 1) =,

(© Queen Mary, University of London (2009)
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hence
cdt = (1 — 7n—g)*lalr =7r(r—ry) tdr= /r(r —ry) tdr =
r

= /(7" —rg+1y)(r —rg) tdr = (r —r,) +r,In(r —r,) + C.
Ifat t =0 r = rg, then

C = —[(ro—rg) +rgln(ro —ry)l,

and finally
ct=1r—rog+ryln "7

ro—Tg
[3]

A particle moves along a radial geodesic in the Schwarzschild metric. Using
the expression for ds and an appropriate component of geodesic equation, show
that if the particle starts to fall freely from infinity, then

3/2 3 172 23
r(r) = [r*/*(m0) — 3¢ (1 —710) ,

where T is the proper time (ds = cdr). (7]
Solution 9.b [Seen similar/
A particle moves along radial geodesic in the Schwarzschild metric, then

cd?t
ﬁ + FgOCQ(

ﬂ
ds

dtdr o dr

2 o atar
)+2P01Cd8d8+ 11(d5

)2 =0.

1
Iy = 5900(900,0 + 900,0 — 900,0) = 0,
1 godgoo 1 d1-12) r,

Tg\_
900,1+910,0—901,0) =39 = *(1—*g) == 7(1—*

00( )1
2 dr 2 r dr 2r2 r ’

1
Fgl = 59

1
Y, = 5900(910,1 + 9101 — g11,0) = 0,

so we have
T dt dr
g 91— 9y 122
d32++7"2( r) ds ds
or

D=l Ty Tyl Ty,

(© Queen Mary, University of London (2009) TURN OVER
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At infinity o= = ¢!, hence C = ¢~ !. Substituting this into eq. for ds, we have

Tg\_1,dr

r r
1= (1= "9¢2(1=9Y2,2_(1— Ry
(- D=2 - T
r dr dr r
1-2=1—-()= ()= —¢/ 2
r (ds) (dT) AN
we take ”—" for falling objects, then
2
§T3/2(T) - 7“3/2(70) = —C"”;/Z(T —70),
and finally
3
(1) = [P () = Sery/?(r = ).
3]
(¢) Using the coordinate transformations
1/2d 3/2d
CT—Ct—I-/Tg T ! R:ct—l-/l/gir
r—=Ty rg " (r—rg)
show that the Schwarzschild metric takes the form
ds? = 2dr® — "LdR? — r2(d? + sin? 0de?).
r
Ezxpressing r in terms of R — ct, demonstrate that the latter metric is non-
stationary. What can be said about the true character of the Schwarzschild
space-time metric at r =ry? [10]

Solution 9.c [Book work/
By differentiating

/2, 1/24 3/24
cdrzcdt—l—w, dR = cdt + L
Py T

Subtracting the first from the second we have

3/2
AR — cdr — (7“ _ T1/2T1/2> _

T—Tg r;/2 g
ri/2dr r 1/2
= 1/2( —rg)=|— dr,
(r—rg)rg "y
hence
ry 1/2
dr = —= (dR — cdr).
r

Subtracting the first multiplied by r/r, from the second we have

" edr — DR = cdt(— — 1),

Tg Tg

(© Queen Mary, University of London (2009)
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hence
cdt — crdr — rng.
r—"Ty
3]
Then substituting the expressions for dr and cdt into ds? in the Schwarzschild
form we obtain
2
— dT — redR
ds? = =9 (TC T ) — 19 (dR — cdr)® — r2(d6? + sin® 0dg?) =
r r—r7g r—rg
1 1
= {(rch — 1gdR)? —ry(dR — ch)Q} — 1r2(d#* + sin? 0d¢?) =
r—rg L7
Tor r2
= [02d72(7" —1y) — 2cdRdr (-~ —r,) — dR*(-L — rg)l —r%(df?+sin? 0d¢?) =
r r
= 2dr? — T9dR? — r2(d6? + sin? 0d¢?).
T
From
2 dr = T;/2d(R —cT)
we have 5
§r3/2 =C+r)A(R—ecr),
then choosing the constant of integration C' =0 so that r =0 — R —c7 =0,
we have 23
3
r= [27“;/2(1% — CT):|
[4]
Finally, putting this into the metric in new coordinates we have
) 2/3 3 4/3
ds* = 2dr? — [?:(RT—QCT)} — [QT;/Q(R - CT)] (d6? 4 sin® Bdp?),
we can see that the metric depends on 7, which means that the gravitational
field is non- stationary. 2]
We can see that there is no physical singularity at r = r,. [1]
Question 10 Consider the propagation of a photon in the equatorial plane (0 = %)
of the spherically symmetric Schwarzschild gravitational field.
(a) Derive the Fikonal equation
ir O OV
ozt Oxk
from the Hamilton-Jacobi equation or otherwise. [4]

Solution 10.a/Book work]

(© Queen Mary, University of London (2009) TURN OVER
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The Eikional equation can be obtained from Hamilton-Jacobi equation by set-

ting m = 0 and replacing S by ¥ with %—\f = —w, where w is frequency of the
light, and replacing the constant angular momentum L by an impact parameter
p=cL/w. [4]

[To derive this equation otherwise takes approximately the half of a page.]

(b) Given that the solution of the Eikonal equation can be written in the following
form

U =—wt+ %qu + U, (1),

where w is the frequency of the photon and o is its impact parameter, find a
differential equation for ¥, and show that

-1 2 2
d
(1_%) ar _ @& oy

r cdt r2 r3
[12]
Solution 10.b [Seen similar/
Taking 0 = 7/2 we can write down the Eikonal equation in the Schwarzschild
metric as
(-2) () - (-2 (5) = (5)
r cot r or r2\0¢/)
3]
Then putting
wp
U =—wt+ —¢+ V. (r),
c
we have
( 7’9>_1“’2 (1 7‘9) <d‘1’r)2 Pt
r c2 r dr c2rz 7
which is the usual differential equation for W, (r). 2]
The radial component of the four wave vector k° can be found as () is a
arbitrary scalar parameter along the world line of photon)
dr A r w? re—2 p2w? r
k‘lz—: 11]{;:_117: g 1_79 o _i—lz
a9 9 ar ( 7“) 02( r 027“2( T‘)
2 2 2
P Tg w P Py
=t h-Ea-9=51-£ ¢
c r2( r ) c r2 + r3
[4]

On other hand

cdt ov w T W
koza:gooko:—goo (Cat) _9007:(1_79) v

(© Queen Mary, University of London (2009)
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Thus
d
ﬂ:é: (1_7@) 1_&2+T9p2
cdt <t r T2 73
3]
(¢) Find the regions of possible motions on the (r — p) diagram and show that the
radius of the unstable stable circular orbit for photons corresponds to o = %rg
and r = 3r,. [6]
Solution 10.c [Seen similar/
The limits of the radial motion (the turning points) are determined by the
roots of the expression under the square root:
2 2
1— p—z — Tgé) =0, hence r° — p*r + p*r, =0,
r r
thus s 3/2
9 r r
= and p=+——+.
P r—"rg P (r—rg)l/2
2]
When r — oo, p — r. When r — rg, p — oo. 1]
The curve p(r) has a minimum corresponding to unstable circular orbit:
dp
X _p
dr
gives
3 2 3
N 5 =0 or 3(r—rg) —7=0,
r—rg (r—rg)
finally
3
Ty = 57'9
and
B <3 >3/2 1 _3V3
Pr=\2" (3 — 12?2 o
3]

Question 11 Consider a plane gravitational wave propagating along the x-axis. All
components of hii. = gi. — Mir, vanish except hoo = —hss = hy and has = h3y = hx.
Let two test particles be located in the (y — z) plane and separated by the 3-vector
[*=(0,lpcosb,lpsind).

(a) Show that the perturbation of the distance dl between the two particles in the
gravitational wave varies as

=1-1= %O(h+ cos 20 + hy sin 20).

(© Queen Mary, University of London (2009) TURN OVER
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[4]
Solution 11.a/Seen similar/
I =1\/—gapAx®Axh =
= \/_(naﬁ + haB)A:L’O‘A.Tﬁ =
\/—naﬁAa:aAJ:ﬁ — hi(Ay? — Az?) — 2h AyAx =
— /13 — hil3(cos? 0 — sin? ) — 21,13 cos O sin § =
h h
= lo[l — =~ c0s 20 — = 5in 20)]
2 2
3]
1 .
ol=101-1= —§lo(h+ cos 26 + hy sin 20)
[1]
(b) Consider a ring of test particles initially at rest in the (y — z) plane and
a plane monochromatic gravitational wave with frequency w and polarization
hy = hosinw(t — x/c), hx = 0. Sketch the shape of the ring perturbed by the
gravitational wave at times t = 5, T, S’—Z and %T Repeat the analysis for a
gravitational wave with another polarization: hy = 0, hy sinw(t — z/c). Fi-
nally consider the superposition of two polarized waves: hy = hgsinw(t—x/c),
hx = hocosw(t — x/c). What would you call this state of polarization? [10]
Solution 11.b/Seen similar]
wt ol(0) 1(0)
o O
5 —%lgho cos 20 Q
O
m 0
37| 170 ho sin wt cos 20 Q
2 |2
| O

© Queen Mary, University of London (2009)
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If hy =0, hy = hgsinwt 0l(0) = f%loho sin wt sin 26
wt 51(0)

—2loho sin 26

B

3 %loho sin 260

2 0

OO0 0 0O 0k

If hy = hpsinwt, hy = hgcoswt
81(0) = —3loho(sinwt cos 20+cos wtsin 20) = —1loho(sinwt+20) = —Slohg sin 2(6—

Oo(t)), where 6o (t) = —Fwt

wt | Op(t) 31(0) () ‘
0 0 —%loho sin 26 O
g —% —%loho sin2(9+ %) = —%lohg cos 260 Q
s 1 : s 1 : [3]
i -3 —iloh(] Sln2(9+ 5) = §loh0 Sm20
37” — ?jf %loho cos 20 Q
27 | —7 —%loho sin(20 4 27) = —%loho sin 26 O
This polarization can be called circular polarization. 1]

(¢) Consider a binary system located in the center of our Galaxy (R ~ 10kpc), and
consisting of two components of the same mass m. Show that to an order of

(© Queen Mary, University of London (2009) TURN OVER
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magnitude the amplitude of the gravitational radiation gemerated by the binary
and its frequency are ho ~ rg/(rR) and w ~ (CT‘;/Q’F_S/Q) respectively, where 4
is the gravitational radius of each component and r is the separation between
the two components. A future gravitational wave antenna detects gravitational
radiation with frequency 103 Hz and amplitude 10723, Estimate the mass m

and r. 8]
Solution 11.c [Unseen]
Using quadruple formula and taking into account that in the binary

T =rcoswt, y=rsinwt,

where
~ GM 1
w_( 7'3 )27
we have
2G 2G G r2
h ~ ﬁuﬂmrz cos 2wt ~ w%mﬁ cos2wt~£c052wt.
Hence
2 GM .. 2 12
h~-Z ~ 3 ~edt 9 VhR
R ( 73 )? CT%’ r
[3]
3 2 3 5
Tg w Ty Tg 3 w -2 w _3
— o~ — —(hR)2 ~ — 2~ —(hR)" 2.
7“% C’ r h ’ 7“3( )2 C’ Tg C( )2
w,_2 s wR _2 3 1073.10%-3-10'8 _2 4 23
TQZ(Z) 5(hR)5 :(T) 5 Rhs N( £ T3.7000 ) 5.3.10%10'8.10~ 5% =
_ 18 2 _ 66 1784 1
=10"5 -3-10°2-10"5 ~3-10 5 ~3-105 = 3-1.4.
[3]
Hence M = My (5% ) ~ 1.4Mg and
1
r 3km - 1035 1
— ~ 10° - 105.
v~ G022 3 107 105 i
r~5-10°km
2]

End of Paper

(© Queen Mary, University of London (2009)
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You are reminded of the following:

PHYSICAL CONSTANTS

Gravitational constant G = 6.7 x 107! N m? kg2

Speed of light c =3x10ms!
1 kpc =3x10¥ m
NOTATION

Three-dimensional tensor indices are denoted by Greek letters «, 3,7, ... and take
on the values 1, 2, 3.

Four-dimensional tensor indices are denoted by Latin letters i, k, [, ... and take
on the values 0, 1, 2, 3.

The metric signature (+ — ——) is used.

7 N
y .

Partial derivatives are denoted by

9,9

Covariant derivatives are denoted by ”;
USEFUL FORMULAS, which you may use without proof.

Minkowski metric:

ds? = nikdxidxk = Adt? — da® — dy? — d2?

Covariant derivatives:

Azk = Afk + T8 A™ Aup = Ay — TP A, where T, are Christoffel symbols
Christoffel symbols:

7 1 im
Iy = 59 (Gt + Gmik — Gkim)

Geodesic equation: '
du’

dS + F;Cnukun = 07

where ' ’
u' = dz'/ds is the 4-velocity along the geodesic.

Riemann tensor:
Al — Al = —A" Ry, where Ry, = g™ Rugim,
kim = Lkmi = Ukim + Dol — DUt

2



Symmetry properties of the Riemann tensor:

Riklm = _Rkilm = _Rikmly Riklm = leik~

Bianchi identity:
znkl;m + Rznmk;l + RZm,k =0.

Ricci tensor:
Im m
Ri. = ¢ Riimi = Rl

Scalar curvature: ’ , ,
R = g"¢"" Rijum = 9" R, = R},

Einstein equations:
81G

i Ly i
where T} is the Stress-Energy tensor.
Schwarzschild metric:

ds* = (1 — 7"g> Adt* —

r

—r? (sin” 0d¢” + d6?) .

Gravitational radius:

ry =2GM/c* = 3(M/My) km, where M, is the mass of Sun.

Kerr metric:

2 2
ds* = (1 — g)c2dt2 — %dr2 — p?do* — (r* +a® + rg;;a sin? #) sin? fd¢?
2rgrac .
9T Gin? Odept,
p
where p? = r? 4+ a?cos?, A = r? — ryr 4+ a?, and a = L, where J is the specific

angular momentum.

Eikonal equation for photons:

Ox' Ox* ’
where four-wave vector of the photon k; = _g;pi'



Geodesic deviation equation:

D2ni
ds?

= ;‘clmukulnmu

where 7’ is the 4-vector joining points on two infinitesimally close geodesics, and
u” is the 4-velocity along the geodesic.

Quadrupole formula for gravitational waves:

26 Dy
3cAR dt?

hag
where R is the distance to source of gravitational radiation and
Daﬁ = /(3{L‘al‘ﬁ - T25a5)dM

is the quadrupole tensor.



SECTION A

FEach question carries 8 marks. You should attempt all questions.

1. State the equivalence principle and explain the difference between interpretation of this
principle in Newtonian theory and in General relativity. State the covariance principle
and explain the relationship between this principle and the principle of equivalence.

2. What is the reciprocal tensor? Demonstrate how, using the reciprocal contravariant
metric tensor ¢** and the covariant metric tensor gz, you can form a contravariant
tensor from covariant tensors and vice versa. Show that in an arbitrary non-inertial
frame

9" = SiopS(op — Sty Sion — S S — S0)sSos:

where S fo) . 1s the transformation matrix from locally inertial frame of reference (galilean
frame) to this non-inertial frame.

3. Give a rigorous proof that the interval squared,
ds® = gikdxidxk,

is a scalar if it is given that g¢;;, the metric tensor, is a covariant tensor of the second
rank. Prove that the metric tensor is symmetric.

4. A light signal emitted at the moment corresponding to time coordinate z° + Az
propagates from some point B with spatial coordinates z® + Ax® to a point A with
spatial coordinates z® and then, after reflection at the moment corresponding to time
coordinate 2, the signal propagates back over the same path and is detected at point
B at the moment corresponding to time coordinate 2° + Az°®). Given that ggo = 0,
express the physical distance between A and B, [4p, in terms of the metric tensor, g,
and Ax®. You may assume that g;; is the same at points A and B.

5. Show that all covariant derivatives of metric tensor are equal to zero. Find the re-
lationship between the Christoffel symbols and first partial derivative of the metric
tensor.

6. Explain the main difference between the limit of stationarity and the event horizon of
a black hole?

7. Consider a rotating black hole described by the Kerr metric. Find the locations of
event horizon, "limit of stationarity” and the ”"ergosphere”? Compare your results
with the case of the Schwarzschild black hole.

5 [Next section overleaf.]



SECTION B

Each question carries 22 marks. Only marks for the best TWO questions will be
counted.

1. (a) [10 Marks] Give the definition of the Ricci tensor Ry, and prove that

_ort,ary

Fir = oxl Ozt

+ Tt = T T,

(b) [8 Marks] Starting from the Einstein equations in the form

1 8rG
R, — igikR = TTik;
c

where G is the gravitational constant, prove that

C4

. . 1.
T — U Y .
kT 8rG (R’f 25’“R)

(c) [4 Marks] What can you say about the nature of gravitational field, for which
R;, = 0, while R;j, is not equal to zero?

6 [Nezt question overleaf.]



2. The "effective potential energy” is defined as

1/2 2 1/2
U(r) =mc® (1—%> <1+L> ,

r m2c2r?

where L is the angular momentum and m is the mass of a particle, moving around a
Schwarzschild black hole.

(a) [5 Marks] What is the physical meaning of the "effective potential energy”?
Explain how U can be used to find stable and unstable circular orbits.

(b) [10 Marks| Using the Hamilton-Jacobi equation, show that the energy of a par-
ticle moving along circular orbit depends on the radius of the orbit as follows:

E(r) = vV2md (r=ry)

(2r — 37“9)1/2 P2
(¢) [7 Marks] Determine the radius of the last circular orbit. What fraction of the

initial energy will be released by the particle when it reaches the last circular
orbit?

7 [Nezt question overleaf.]



3. Consider a compact object of mass m moving along circular orbit around a black hole
of mass M assuming that m < M and using the quadrupole formula for the metric
perturbation associated with gravitational waves,

(a)

(b)

[7 Marks] show that all the amplitudes h,s of gravitational wave, emitted by
such a system, are periodic functions of time with w = 2wy, where wy = 27/T,
and 7' is the orbital period;

[9 Marks] show that, to an order of magnitude (omitting the indices o and f3)

s (ng>”3
R\ ¢ ’

where 7, is the gravitational radius of the mass m and R, is the gravitational
radius of the black hole.

[6 Marks] The future LISA mission will be able to detect gravitational waves with
h>10"2if 107*Hz < w < 3-102Hz. From what distance will it be possible
to detect gravitational radiation from a binary system, containing a black hole of
mass m = 3Mg, moving along a circular orbit with radius r = 10*R,, around a
massive black hole of mass M = 103M?

8 [Nezt question overleaf.]



4.

(a)

[8 Marks| Derive the geodesic deviation equation

D2T’i

_ i k
ds? = LU

L, m
wn,

where 7' is the 4-vector joining points on two infinitesimally close geodesics and
u” is the 4-velocity along the geodesic.

[9 Marks] Consider two neighbouring particles freely falling from rest in the
Schwarzschild gravitational field in the same radial direction. Using the geodesic
deviation equation show that the component of the Riemann tensor which is
responsible for the tidal force in the radial direction is

2

1 Tg Tg g
Ry=—=|1—-—+2+-"21].
0oL = 3 ( r + 2r2>

[5 Marks] If the height of an observer is [ ~ 2m, find the radial distance r > r,
from a solar mass neutron star at which the radial tidal 3-acceleration experienced
by the observer at rest ( a = ¢? [Z;Zl) is equal to 100 ¢ ~ 10>ms~2. You may assume
that the observer’s body is aligned along the radial direction, and you may take
the gravitational radius of the Sun to be 3 km.

9 [End of examination paper.]
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SECTION A

1. Formulate the equivalence principle and explain what is the difference in interpretation
of this principle in Newtonian theory and in General relativity. Formulate the covari-
ance principle and explain the relationship between this principle and the principle of
equivalence.

SOLUTION A1 [book work]

This principle states that an uniform gravitational field is equivalent to a uniform
acceleration of reference frame.

[1/8 Mark]

In Newton theory the motion of a test particle is determined by the following equation
of motion
mznd = _mgrv¢7

where @ is the acceleration of the test particle, ¢ is newtonian potential of gravitational
field, m;, is the inertial mass of the test particle and my, is its gravitational mass. The
fact that all test particles move with the same acceleration for given ¢ is explained
within frame of newtonian theory just by the following ”coincidence”:

Min
=1

Y

My
i.e. inertial mass m;, is equal to gravitational mass mg,.

[2/8 Marks]

The General Relativity gives very simple and natural explanation of the Principle of
Equivalence: In curved space-time all bodies move along geodesics, that is why their
world lines are the same in given gravitational field. The situation is the same as in
flat space-time when free particles move along straight lines which are geodesics in flat
space-time.

[2/8 Marks]

The covariance principle says: The shape of all physical equations should be the same in
an arbitrary frame of reference, including the most general case of non-inertial frames.
If in contrast to the covariance principle the shape of physical equations were different
in local inertial frames in presence of gravitational field and in non-inertial frames in
absence of gravitational field then these equations would give different solutions, i.e.
different predictions for (a) standing on the Earth, feeling the effects of gravity as a
downward pull and (b) standing in a very smooth elevator that is accelerating upwards
with the acceleration ¢ , hence these equations would contradict to the basic postulate
of the General Relativity, the principle of equivalence, which states that a uniform
gravitational field (like that near the Earth) is equivalent to a uniform acceleration.
Hence, the covariance principle is the mathematical formulation of the principle of
equivalence.

[3/8 Marks]

2 [Next question overleaf.]



2. Explain what is the reciprocal tensor. Demonstrate how using the reciprocal contravari-
ant metric tensor ¢** and the covariant metric tensor g;; you can form contravariant
tensor from covariant tensors and vice versa. Show that in an arbitrary non-inertial
frame

9" = S0 — S1501 — S0)25(0)2 ~ 9(0)3°(0)3:

where S é()) . is the transformation matrix from locally inertial frame of reference (galilean
frame) to this non-inertial frame.

SOLUTION A2 [book work]

Two tensors A;;, and B are called reciprocal to each other if

ApBH = 4.

[2/8 Marks]

We can introduce a contravariant metric tensor ¢g'* which is reciprocal to the covariant
metric tensor g;:

girg™ = 0.

With the help of the metric tensor and its reciprocal we can form contravariant tensor
from covariant tensors and vice versa, for example:

A= gikAk, A = gz‘kAk-

[3/8 Marks]

We know that in the galilean frame of reference

1 0 0 0
; 0O -1 0 O ;
ik — ik — 71: 1 1
g - 0 O _1 O —77 —dla’g(17 ]-7 ]-7 1)7
0 0 0 1

hence
gik = SEO)nSZCO)mnlm = 550)0550)0 - 560)1550)1 - 550)2550)2 - 520)3550)3-
[3/8 Marks]

3. Give a rigorous proof that the interval squared,
ds* = gikdxidxk,
is a scalar if given that g;., the metric tensor, is a covariant tensor of the second rank.

Prove that the metric tensor is symmetric.

3 [This question continues overleaf . .. ]



SOLUTION A3 [seen similar]

ds? = gipdxida®,

hence,
ds® = gada'dz® = (575} g,,,)(S,dx")(Sydx"™) = (SS})(Sy" S ) (g daPda’™) =

= 0000 (GrmdaPda’) = gl da"Pda’ = g da’*da’™ = ds™,
thus
ds = ds’
which means that ds is a scalar.
[6/8 Marks]

) 1 ) . 1 ) . 1 )
ds® = gikdx’dmk = §(gikdmldxk—l—gikdxldmk) = §(gkidxkd:p’+gikda:’dxk) = §(gki+gik)dxzdxk =

= gikdxid$k7

where
1

Jik = i(gki + gik),

which is obviously symmetric one. Then we just drop .
[3/8 Marks]
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4. A light signal emitted at the moment corresponding to time coordinate z° + Az
propagates from some point B with spatial coordinates x® + Ax® to a point A with
spatial coordinates z® and then after reflection at the moment corresponding to time
coordinate z° the signal propagates back over the same path and is detected in the
point B at the moment corresponding to time coordinate z° + Az%?. Given that
Joo = 0, express the physical distance between A and B, l4p, in terms of the metric
tensor, g;r, and Ax®. You may assume that g;; is the same in the points A and B.

SOLUTION A4 [seen similar]

For the proper time between any two events occurring at the same point in space we
have

1
T = E/w/goodmo.

[2/8 Marks]

Separating the space and time coordinates in ds we have
ds? = gagdr®da’ 4 2goadax’dz® + goo(da®)? = gagdx®da’ + goo(dz®)?.

The interval between the events which belong to the same world line of light in Special
and General Relativity is always equal to zero:

ds = 0.

Solving this equation with respect to dz® we find two roots:

1
dz®V = — =/~ g.5000)drdaP
900\/ o90)

and 1
de®® = —/—q, dzredaP,
Qoo\/ 9apgoo)
hence 5
dz®® — d0M = = /g, dzdzb.
goo\/ 9op9oo)
Then
dl = Sdr = VIO (302) _ 00

2 2 c

and finally
dI? = —gopdadz?®,

and finally

A
lag = / Vil = \/ —GapAx*Axb.
B

[6/8 Marks]
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5. Show that all covariant derivatives of metric tensor are equal to zero. Find the rela-
tionship between the Cristoffel symbols and first partial derivative of the metric tensor.

SOLUTION A5 [book work]

DA; = gi DA
DA, = D(gz’k:Ak) = g DA* + A*Dg,y.,

hence
gikDAk = gikDAk + AkDgika

which obviously means that
AkDgik =0.
Taking into account that A* is arbitrary vector, we conclude that
Dgy. = 0.
Then taking into account that
Dgii. = gigzmdx™ =0

for arbitrary infinitesimally small vector dz™ we have

Gik;m = 0.
[3/8 Marks]
Introducing useful notation
Uk, i = grml'if s
we have
0gir 0gir

Jiks1 = 51 T Ikl — gimLy = e Ie,it = Ui = 0.
Permuting the indices 7, £ and [ twice as

1 — k, k—1, [ —1,

we have
Ogin Og1; 09w
=T i1+ Fz s Fz + T ik Q d — - =TI i r i
Ol k, il Lkl Ok Lkl I, ik all or L,k k,l

Taking into account that
U, a =Tk, 1
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after summation of these three equation we have

Gikg + Giik — Gri = 21,

and finally

1 . (0gm oG O
zm(gk+ Imi gkl)

kL= 59 ozt oxk  Ogm

[6/8 Marks]

. Explain what is the main difference between the limit of stationarity and the event
horizon of a black hole?

SOLUTION A6 [book work]

The Limit of stationarity (Static Limit): the interval ds for test particle in rest

dr = df = d¢ = 0.

In this case
ds* = goodmoza
We can see that if
goo = 0,
then

ds® =0,

which means that the world line of particle in rest is the world line of light. Hence, at
the surface

goo =0

no particle with finite rest mass can be in rest. For this reason this surface is called
the limit of stationarity.

[3/8 Marks]

Event Horizon is a spherically symmetric surface
F(r) = const.

Its normal vector is defined as usually as

dF
i =F, =0 —.
" ’ b dr
If at this surface
gn —0
then

, dF\?
gzknmk = gllnlm = 911 (d) =0,
T
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which means that n; is a null vector and any particle with finite rest mass can not
move outward the surface g'* = 0, thus this surface is the event horizon.

[6/8 Marks]

. Consider a rotating black hole described by the Kerr metric. Find the locations of
event horizon, "limit of stationarity” and the ”ergosphere”? (compare your results
with the case of the Schwarzschild black hole).

SOLUTION A7 [seen similar]

Consider a rotating black hole described by the Kerr metric. Find the locations of
event horizon, "limit of stationarity” and the ”ergosphere”? (compare your results
with the case of the Schwarzschild black hole). Describe briefly the Penrose process of
extraction of energy from a rotating black hole and explain why this mechanism does
not contradict to the statement, that nothing can escape from within black hole.

For the Kerr metric gog = 0 gives

TgT

1——==0,
2
thus
r? — TgT +a?cos’H =0,
A:r2—7’gr+a220,
and

1 r T
ro = 5(7‘9 + \/rg — 4a? cos? 0) = Eg + \/(29)2 — a?cos? 6.

[2/8 Marks]
The location of horizon in the Kerr metric: g'' = 0 (g1; = o) corresponds to
A:T2—Tgr+a2:0,

and

1 T'g Tg
r= 5(7“9 + \/7’3 — 4a? cos? ) = B + \/(2)2 — a?cos? 6.

2
T T
Thor = Eg + (;) — a?.

[2/8 Marks]

One can see easily that
Tst Z Thor;

for example,
Tst = Thor, if 6 =0, or § =7 (at the poles),
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and -
Tst = 2y > Ther, if 0 = 3 (at the equator).

The region between the limit of stationarity and the event horizon is called the ”ergo-
sphere”.

[3/8 Marks]

In the Schwarzschild metric as one can see putting a = 0,

Thor = Tst,

which means that in this case the "ergosphere” does not exist.
[1/8 Marks]
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SECTION B

Each question carries 22 marks. Only marks for the best TWO questions will be
counted.

1. (a) [10 Marks] Give the definition of the Ricci tensor Ry, and prove that

_or, ar
oxd oxk

Ri + Tl = T T
SOLUTION B1(a) [Seen similar]

By definition the Ricci tensor is
Ry = glleimk = Rﬁz/w
where the curvature Riemann tensor is defined by

Ai; kil — Ai; ik — AmR;Zl-
By straightforward calculations
Ai;k;l - Ai;l;k =

Aser — T A — T Ao —
—Aigp AT Ay + T Ay, =
(Aig = TiAm) , — T3 (A — T An) —
— (Aig = T Ap) o+ T (A — T AR) =
Aigg — A = T8 Ay — T8 A — T Ay + T A+ T Ay + TR A —
T8 A+ THTE A, + TETE Ayt
AT Ay — D0 A, — TR A, =
= A (T3, + THIp + TR0 4+ T, — T — TR =
= A (=Tp, + THIp + Ty, =TI
hence

m __ T'm m » Tm P Tm
Ry =T — Uiy + Tl — Ty,

and replacing k£ by [ and [ by k£ and then just putting m = [ we finally obtain

ort.  ort
Ry = —% & plpm —1ert

p =
' ox! oxk
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(b)

[8 Marks] Starting from the Einstein equations in the form

1 G

R, — igikR = 7Tz‘k;

where G is the gravitational constant, prove that

C4

. . 1.
T = U Y .
kT srG (R’“ z‘skR)

SOLUTION B1(b) [seen similar]

Contracting with ¢, we have the Einstein equations in mixed form

, 8nG 1
R), = A (Tk - §5kT)~
, 87G [ . 1. &G /. 1. 8¢ 1 8¢
= ¢*R, = lkT._Z’wT): (T?—Z.T>: (T—4):—
R = g" R A (g ik 29 9ik A i 252 A 5 A
Thus
ct R
T=-— .
8rG
Thus

o 1
Ti= o (Ru— 50uR).
k 87TG<k 2”)

then in mixed form we have

C4

. . 1.
T — U Y .
kT srG (R’“ z‘skR)

[4 Marks] ¢) What can you say about the nature of gravitational field, for which
R;. = 0, while R;j,, is not equal to zero?

SOLUTION B1(c) [unseen]

This situation corresponds to gravitational fields (for example, gravitational waves),
when the space-time is curved, but matter is absent (empty space-time).
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2. The "effective potential energy” is defined as
ro\1/2 12 1/2
Ur) = 2@—-9) I+ ——]
(r) = me r * m2c?r?

where L is the angular momentum and m is the mass of a particle, moving around

Schwarzschild black hole.

(a) [5 Marks] What is the physical meaning of the "effective potential energy”?
Explain how using U to find stable and unstable circular orbits.

SOLUTION B2(a)[book work]

The effective potential energy includes potential energy and that part of kinetic
energy, which is related with non-radial, angular motion. Points at which £/ = U,
(E is the conservative total energy) correspond to turning points, where dr/dt = 0.

U=E, U =0,

corresponds to the circular orbit, stable, if U,/,/r > 0, and unstable, if U;fr < 0.

(b) [10 Marks| Using the Hamilton-Jacobi equation, show that the energy of a par-
ticle moving along circular orbit depends on the radius of the orbit as follows

E(r) = vV2md? (r = 7“15,/)2 .
(2r — 3ry) /" rl/?

SOLUTION B2(b)[seen similar]

Introducing z = r,/r, we have U, = 0 corresponds U, = 0, so

(1 —2)(1 + az’], =0,

where
L2
“= m%%‘g’
—1 —3az? + 20z = 0,
and
1
o= .
x(2 — 3x)
Then 2 o )2
T 1—=z
= (1 — 1 =
m2ct (1 ==)( +2—3x) 3—3z
and finally

" V2me(1 —r,/r) _ V2mek(r —r,)
(2 = 3ry/r)1/? (2r — 3ry)1/2r1/2
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(¢) [7 Marks] Determine the radius of the last circular orbit. What fraction of the
initial energy will be released by the particle when it reaches the last circular
orbit?

SOLUTION B2(c)[unseen]

The last circular orbit corresponds the following system of equations: E = U,
U =0U" =0.

0=U"~2a(1 — 3z),

so x = 1/3, which corresponds to r = 3r,.

2

mE2€4 — (1= 1/3)(1+3/3%) = 8/9,
and

E, = mczﬁ.
3
Fraction of energy:
Ey — Ey, 2v/2
f:Tool:pT:o.om
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3. Consider a compact object of mass m moving along circular orbit around the black
hole of mass M, assuming that m < M and using the quadrupole formula for the
metric perturbation associated with gravitational waves

(a) [7 Marks] Show that all the amplitudes h,g of gravitational wave, emitted by
such system, are periodic functions of time with w = 2wy, where wy = 27/T, and
T is the orbital period;

SOLUTION B3(a) [seen similar]

T1 = T Ccos wyt,

To = T sinwpt,

1
Dy = mr2(3cos® wot — 1) = Emrz(l + 3 cos 2wyt ),
200 i 2 L
Doy = mrZ(3sin“wot — 1) = gmr (1 — 3 cos2wpt),

3
Dy = §mrf sin 2wyt,

then 2Gmr? 3 4wiGmr?
hi = —m§(2w0)2 cos 2wyt = 0047]% cos 2wy,
hag = 2;2?2(2%)2 cos 2wt = —W sin 2wy,
hiy = %;(Qwof sin 2wot = ngcfgw sin 2wy,

it is clear, that

(b) [9 Marks] Show that, to an order of magnitude (omitting the indices o and [3)

W = 2(.4)0.

o (ng>2/3

where r, is the gravitational radius of the mass m and R, is the gravitational

radius of the black hole.
SOLUTION B3(b) [unseen]

R

C

From
s GM
Wy = 2
we have )
I wy
r3 GM’
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and finally
rot = (4GM)_1/3w2/3.

Thus

b~ 4wiGmr? _ rely ~ s <ng)2/3.
AR rR R
(c) [6 Marks] The future LISA mission will be able to detect gravitational waves
with h > 10723, if 10 Hz < w < 3-10"2Hz. From what distance will it be
possible to detect gravitational radiation from the binary system, containing the
black hole of mass m = 3M,, moving along a circular orbit with radius » = 10*R,
around the massive black hole of mass M = 103M?

SOLUTION B3(c) [unseen]

c

GM  22GM R
0 r3 2 23 2r3’
hence,
R R 10~ 8¢ 107 4Hz
2r3 2-1012R3 /2R, V2
thus

w=2wy=V210""Hz > 10"*Hz,

which means that the radiation is within LISA frequency range.

po B0 (I T y (Ry My
- 3.1018 31010 M. pe’ “M. 10-4H z
R M w
~ 1019 Ty By 2 yem Y s
(M.)(lpc) (M.) (10,4HZ)
Then 3.10%m 3-10°-103-1.4-10"4s!
. cm . . 1.4 - s em
h: 2/3 10—23
R 31010 )7 > !
if

R <3-10%-10%m - 107* ~ 1 Mpc.
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4.

(a) [8 Marks| Derive the geodesic deviation equation

D2T’i

_ i k
ds? = gy U

L, m
wn,

where 7' is the 4-vector joining points on two infinitesimally close geodesics, and
u” is the 4-velocity along the geodesic.

SOLUTION B4(a) [book work]

;0 Sv = vi ou' v, 0
77_81) ”_”“afu_as“_as

i ok i ok
U U =0

l k1l

— i okl i
= U VU AU U5 U

D2 7 ) )
¥ 12) = (v u) g Ul = (Ul o)

S ) ’
D%y

(il mpi kol i1
@—(u;lu);k—l—u R u™v', ulu =0

(b) [9 Marks] Consider two neighboring particles freely falling from rest in the

Schwarzschild gravitational field in the same radial direction. Using the geodesic
deviation equation show that the component of the Riemann tensor which is re-
sponsible for the tidal force in the radial direction is

2

1 Tg T'g Ty
SR S R
Foon 7’3< T +2r2>

SOLUTION B4(b)[unseen]

Since two particles move in the same radial directions their spatial coordinates
are r, 0, ¢ and r + Ar, 0, ¢ respectively. Hence the separation vector n = §i Ar(t).
The fact that these two particles are in rest means that four- velocity of each
particle is u’ = 4},

hence, as follows from geodesic deviation equation

D2n1
ds?

_ e k,m, 1l __ i k cm gl _ 1
= R, puu™n = R, 1,0000"0; Ar = Ry, Ar.

1 _ pl 1 1 7 1 o
Roor =To10 = Too1 + Tholon — DnaLoo-
1 _

oo =0,

1 1
Lo = §9nm (Gom,1 + G1m,0 — Gor.m) = 553900900,1,
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1 1
Fgo = §gnm (290m,0 + gimo — goo,m) = —55?911900,17

hence . . .
Ry, = B (911900,1) L 1900911 (go0.1)” + 5911900,1F%1.
1
rlo— 2 .
11 29 g11,1
Taking into account that
T T 2r
f=90=1—=", gooa 50 o011 —739
r
and .
900 = —gn =, 911 = oo,
00
we have
Ry = S(— 1)+ f 24 SR =2y = =2y 4 £y - ) =
2 4f 4 f 2
1 Ty T T r?
= _—_[=2(1 - %4 — 9 _ 1L =
2 [ ( r )T3 + r >7’41

(c) [6 Marks] If the height of an observer is | ~ 2m, find the radial distance r > r,
from a solar mass neutron star at which the radial tidal 3-acceleration experienced
by the observer at rest (a = ¢? [5872’1) is equal to 100 ¢ ~ 10°ms—2. You may assume
that the observer’s body is aligned along the radial direction and you may take

the gravitational radius of the Sun to be 3 km.

SOLUTION B4(c) [unseen]

If r > r, we have

~ 10°m s 2,
hence

1/3 2 1/3
r~0.1 (CQTQSQm_l) / ~ 1071 {(3 -10%m s_1> :3-10°m-2mm ;s ~

~3.107 (2. 1019)1/3 m A~
~ 800 k.

17 [End of examination paper.]
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