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THERMAL AND KINETIC PHYSICS 2010, (PHY 214) 
 

Outline Solutions to Coursework 3 :   Week 3 
 

QUESTION 1: (10 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

This is the same series of paths that were considered in week 2 exercises when the 

work and internal energy changes were calculated for each of the three paths. 

Path 1. 

From week 2 we found that  
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We find from this the heat flow by using the first law as follows 
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Path 2 

From week 2 we found that  
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We find from this the heat flow by using the first law as follows; 

 

  aaaa VP.VP.WUQ 693069300222     [3mks] 

 

Path 3 

From week 2 we found that  

     aaVP.W 55503   

and 

     aaVP.U 55503   

 

We find from this the heat flow by using the first law as follows; 

 

  055505550333  aaaa VP.VP.WUQ    [2mks] 

as we would expect for an adiabatic process. 

 

 

QUESTION 2: (14 Marks) 

(a) From cPV   we can express the pressure as  cVP  Then the work 

calculation is 

  

2

1

2

1

2

1
1

1

1

V

V

V

V

V

V

V
cdVVcPdVW



























   [3mks] 

 

      1
1

1
2

1
1

1
21

1

1

1













 cVcVVV

c
W  

and using  cVP  gives  

    11221
1

1
VPVPW 





     [4mks] 

  



 3 

(b) For monatomic argon 
3

5Ar while for diatomic nitrogen 
5

7
2
N . In an 

adiabatic process 

bbaa VPVP  and if Vb = 3Va , Pb = (3

-
)Pa . Remembering that in 

any process   gasONWorkgasBYWork   

we can use the result in (a) to calculate for argon 
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and for nitrogen we obtain 
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Thus the diatomic gas does more work on the surroundings.   [1mk] 

 

QUESTION 3:(16 marks) 

(a) 

 

constnRTVPVVPV   11      

thus the adiabatic law can also be written as  

   constTV 1      [2mks] 
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 (b) 

(i) There are three systems to use throughout the two stage process; 

 

 

 

 

 

 

 

 

 

 

 

 

1) the initial state, tyre is at Tatm and Pi 

2) the state immediately after the valve is opened and shut, T , Patm 

and  

3) the final equilibrium state, Tatm , Pf  

 

Let V be the fixed total volume of the tyre and let V1 be the initial volume of gas 

which remains inside the tire throughout. We can apply the equation of state to each 

stage for the n1 moles of gas which remain inside . 

NB. We are using the fact that V and n are extensive variables and in general we 

can divide any volume V of a gas with n molecules into (V1 , n1) and (V2 , n2) and 

write RTnPV 11   and RTnPV 22   (P and T are intensive variables being the same 

in each of the divided volumes). 

 

Thus in stage 1, PiV1 = n1RTAtm  (and PiV = nRTAtm )  

Stage 2 

Considering only atoms 

that remain throughout 

Equilibrating 

Adiabatic 
V, PAtm ,T, n1 

V, Pf ,TAtm ,n1 

V, Pi ,TAtm, n 

V1, Pi ,TAtm, 

n1 

Stage 1 
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in stage 2, PAtmV = n1RT , where T is some intermediate temperature immediately 

following the expansion of the gas. 

and in stage 3 finally PfV = n1RTAtm . 

Stage 1 to stage 2 is an adiabatic process, constPV   or equivalently 

constVP 
1

 by taking root  on both sides of the equation, but only if we compare 

systems with the same number of moles n (or molecules) ie for our initial system only 

the sub-volume V1 containing n1 moles so we can write VPVP atmi


1

1

1

  and use the 

equation of state to change the variables  
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

1

11111
  

Thus the adiabatic law in terms of pressure and temperature is  
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11

      [1mk] 

Remember the constant is generally not the same constant! 

As we go from stage 1 to stage 2 adiabatically we can write 

   TPTP
AtmAtmi

1111 



    [1mk] 

whence 
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ii) Now we compare stage 1 with stage 3,  

NB. In comparing stages 1 and 3 we need to take care in using equations of state and 

adiabatic rule as there is a different number of molecules present in stage 1 and 3 

(some were lost when the valve was opened). To apply the equations equally to stages 

1 and 2 (or 3) we need only consider in stage 1 the volume V1 containing the 

molecules n1  

From the equation of state we will have  

  VPVP fi 1  
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However, from stage 1 to stage 2 we have the adiabatic relation 
VPVP Atmi 

1
 

Thus 
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Taking logs 
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