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THERMAL AND KINETIC PHYSICS 2010, (PHY 214) 
 

Outline Solutions to Coursework 7 :   Week 8 
 

QUESTION 1: (total 14 marks)  

(a) This is an energy conservation problem. The total energy per second emitted at the 

sun's surface must be equal to the total energy per second passing through a spherical 

surface located at the earth's distance (LE) from the sun. Total energy per second is 

calculated from the product of the energy flux times the total area emitting or through 

which the energy is passing. Thus we have the balance equation 
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Here RS is the sun's radius.  

Re-arranging; 
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TS 5790 K     [4 mks] 

 

(b) The sun radiates the same total energy per second as above, 4
S

2
S TR4  . TheEarth 

catches all the energy that falls on its cross-sectional area, 2
ER , and so Earth absorbs 

a fraction  
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of the sun's total output.  

 

In steady state this must just balance what Earth radiates away (from ALL points on 

its surface).The balance equation now looks like 
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giving numerically 

 

TE  280 K :    [1 mk] 

 

(c) We assume that Icarus is heated by the sun in exactly the same manner as is Earth 

in part (b), therefore, we have also that 
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From this we deduce that Max
IT corresponds to Min

IL and vice versa. Thus 
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QUESTION 2: (total 12 marks) 

(a) In steady state at maximum power there is an energy balance, 

 

Heat in = Heat radiated away : 
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giving Tsurface  328:2 K.        [3 mks] 

 

For a Carnot engine we have the efficiency as 
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Therefore useful power is given by 
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(b) After the panel is deployed the surface area is effectively doubled so that the 

steady state equation now reads 
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We find for the new surface temperature Tnew  275:8 K. The new efficiency is then; 
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giving a useful power of . 
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QUESTION 3: (total 14 marks) 

(a) 

(i) For a monatomic gas like Argon we have PV
2

3
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For the photon gas then 
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(iii) The first part is like Question 1 (a), 

Rate of energy loss of the fireball is 
dt
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(b)  
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From Eq. (2) ,
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Using this relation between dS and dA and solving for T 
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(ii) The entropy is found from AS
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 We find the temperature using our derived equation and the mass of the sun, 

M = 1.99  10
30

kg 
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