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Thermal & Kinetic Physics (PHY-214) Exam 2010 

Solutions. 
SECTION A 

 

A1.    PdVTdSdU   

 

dU is the incremental change in internal energy. 

dS is the incremental change in entropy. 

-PdV is the incremental work done on the system where P is the pressure and dV the 

incremental change in volume.       [5] 

 

A2.    lnBkS        [5] 

 

A3. 
1

21
T

T
          [5] 

 

A4. 0S   

where 0S  for a reversible process.      [5] 

 

A5.  
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A6.  

ffii VPVP   where 

V

P
c

c
  is the ratio of the specific heat capacity at 

constant pressure, cP to that at constant volume, cV.     [5] 

 

 

A7.  
P

P
T

H
C 




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






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 H is the enthalpy, T the temperature and P the pressure of the system. [5] 
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A8.  

 

TNkU B
2

5
         [3] 

 

 

  Tkmv B
2

3

2

1 2         [2] 

 

 

A9. For an ideal gas RTPV  and therefore we can write 

 

    
V
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P        [1] 
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
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
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






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A10.   PdVdW   

 

    
2

V
PVVPdVPPdVW fi

V

V

f

i

f

i

   [4] 

 

The sign is positive and therefore represents work done ON the gas.  [1] 
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SECTION B 

 

B1 

 

a) 

i) 
f

i

PdVW  

 RTPV     
V

RT
P   

 

  2lnlnln RTVVRT
V

dV
RTPdVW if

V

V

f

i

f

i

  

 

As ln2 is greater than 0 it follows that 0W  and this represents work done BY the gas. 

           [2] 

 

 

ii) In an isochoric process there is no work done and therefore by the first law of 

thermodynamics we have 

 

111
1

1
4

3

22

3
VPP

P
VQU 








   

 

This is a negative quantity indicating that heat has been released by the gas. [1] 

 

iii) 111
1

1
4

5

22

5
VPV

V
PU 








       [1] 

 

b) 

 

i) From the adiabatic rule 

ffii VPVP   by using RTPV   and 

V

RT
P   we obtain the 

rule in terms of V and T
 

    
11 



ffii VTVT  
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i
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  [2] 

 

ii)    RTU
2

5
  

 

    TRU 
2

5
  
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   J.K.KmolJ.U 712932762318
2

5 11      [2] 

 

iii) There is no heat transfer during an adiabatic process andt the first law of 

thermodynamics then gives 

 

  JUW 7.1293   

 

Being positive the work is done on the gas during this process.   [2] 

 

 

c) 

i) 
1

21
Q

Q
E           [1] 

 

   

ii) To find the engine efficiency we need to begin by finding Q1 and Q2. 

To find Q1 begin with the fact that 2  3 is an isochore and no work is done as dV = 

0. The heat can be calculated from the first law 

There are two ways to proceed either is acceptable 

 )(
2

5
232332321 TTnRUUUQQ     

or alternatively 

)PP(VUQQ 23232321
2

5
   

 

We can see that Q1 is positive as T3 > T2  (P3 > P2)and it is therefore a flow of heat 

into the gas. 

 

To find Q2 we may use the fact that 4  1 is also an isochore and again no work is 

done. The heat can be calculated from the first law as before 

  )(
2

5
41411414 TTnRUUUQ    

Or alternatively 

  )PP(VUQ 4111414
2

5
   

14Q  is negative as T1 < T4 (P1 < P4) and it is therefore a flow of heat from the gas as 

shown. However we need the modulus of 14Q  to represent Q2 in the expression for 
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engine efficiency as this expression requires a positive value (the direction of heat 

flow is implicitly accounted for in the expression for efficiency and thus 

 

  )TT(nRQQ 14142
2

5
   

Or 

  )PP(VQQ 141142
2

5
   

 

Using our earlier expression for the efficiency 
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Or 

  
)

E
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V

V

Q

Q

23

14

2

1

1

2 11



  

We need this in terms of the two volumes V1 and V2 and to achieve this use the fact 

that 1  2 is an adiabatic compression where work is done on the gas and the 

equation from b i) holds; 

 

1
22

1
11





VTVT  

Or 

    

2211 VPVP   

Also 3  4 is an adiabatic expansion where work is done by the gas  

 

    
1

33
1

44





VTVT  

Or 

    

3344 VPVP   

Subtracting the first of these adiabatic expressions from the second and noting that 

41 VV   and that 32 VV   
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       1
223

1
114





VTTVTT  

Or 

       
223114 VPPVPP   

therefore 
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and 

   

1

1

21
















V

V
E  

   
1

1
1







r
E      QED [6] 

 

 

iii) The compression ratio is  

 

4
75

300

3

3

2

1 
cm

cm

V
V

r      [2] 

And therefore 

 

1. 425.0
4

1
1

1
1

4.01





r
E     [2] 

 

  2. atmatmrP
V

V
PP 96.641 4.14.1

1
2

1
12 












  [2] 

 

  3.    2322233231
2

5

2

5
)(

2

5
PPVVPVPTTnRQ   [2] 

 

    JPamPPVQ 62.3411001.196.6251075
2

5

2

5 536

2321    

 

 

4. Finally if 425.0E  and JQ 62.3411   we have 
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   cycleperJQW E 1451   

 

Therefore with 50 cycles per second 

 

   kWWattsPower 26.714550     [2] 
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B2. 

 

a) 

i) 
f

i

R
if

T

Q
SSS


  

The reversible heat transfer RQ  is by convention positive when heat flows into the system 

whose entropy change is being considered.     [2] 

 

ii) The entropy change of the water as it cools is 

 


f

i

R

T

Q
S


  and dTmCQ PR   

Therefore 

   
15.303

15.280
ln102.43 113

15.280

15.303

  KJkgkg
T

dT
mCS P  

 

   1994  JKS       [2] 

 

iii) This process occurs in three stages and the calculation must be split into three parts; 

` 

1) The ice warming from -10 
o
C to 0 

o
C 

 


f

i

R

T

Q
S


 1  and dTmCQ PR   

 

    
15.263

15.273
ln101.23 113

15.273

15.263
1   KJkgkg

T

dT
mCS Ice

P  

 

    1
1 0.236  JKS        

 

2) The ice melting at constant temperature 

 

    
15.273

1033.33 15

2




Jkgkg

T

ml
S melt  

 

    1
2 33.3657  JKS  

 

3) The melted ice water warming up to ambient temperature 

 

    
15.273

15.280
ln102.43 113

15.280

15.273
3   KJkgkg

T

dT
mCS P  
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    1
3 0.319  JKS  

 

The net change in entropy is the sum of these three 

 

    133.4212  JKSnet      [5] 

 

 

 

b) 

 

i) We have the thermodynamic identity for a gas 

 

    PdVTdSdU   

 

Also, for a monatomic ideal gas 

 

    RTU
2

3
  

 

Therefore 

    RdTdU
2

3
  

 

Re-arranging the expression for the thermodynamic identity 

 

    RdTPdVPdVdUTdS
2

3
  

 

From the equation of state for an ideal gas 

 

     
V

RT
P   

 

    RdT
V

dV
RTTdS

2

3
  

Re-arranging 

 

    
T

dT
R

V

dV
RdS

2

3
  

 

Integrating both sides at constant volume 

     

    )(ln
2

3
VfTRS   

 

Integrating both sides at constant temperature 
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    )(ln TgTRS   

 

For both to be generally true in passing from initial temperature and volume, Ti , Vi to final 

temperature and volume, Tf , Vf 

 

    


















i

f

i

f

V

V
R

T

T
RS lnln

2

3
    QED [5] 

 

 

ii) In an isothermal process we have; 

 

    113.91.131.8
3

1
lnln  JKR

V

V
RS

i

f
   [2] 

 

iii) In an isochoric process we have 

 

    163.82ln31.85.1ln
2

3 







 JK

T

T
RS

i

f
   [2] 

 

c)  

i) The system will reach equilibrium by reaching the temperature of the reservoir and 

in this process 

   







 

i

R
P

T

T
P

T

T
system

T

T
lnmC

T

dT
mC

T

Q
S

R

i

R

i


  

And the reservoir remains at a constant temperature giving up heat Q to the system 

and therefore 

   iR
R

P

R

R
f

i
R

R

f

i

R
reservoir TT

T

mC

T

Q
dQ

TT

dQ
S 




1
 

 

  reservoirSystemUniverse SSS    

  

 






































R

i
P

R

i
P

R

i
P

i

R
PUniverse

T

T
mC

T

T
lnmC

T

T
mC

T

T
lnmCS 11  

 

which can be re-written as 

   



























R

i
P

R

i
PUniverse

T

T
mC

T

T
lnmCS 111  
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This is in the form 

 

     XmCXlnmCS PPUniverse  1  

where 

     









R

i

T

T
X 1     QED [5] 

ii) For the system warming, 1
R

i

T

T
 and X is positive. 

 

Using McClaurens series expansion,  .......
xx

x)xln( 
32

1
32

 

 

0
3232

3232






























 ......

XX
mCX.......

XX
XmCS PPUniverse  

SUniverse has increased.       QED [2] 
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B3. 

a) 

i) Starting with the ideal gas equation of state 

    RTPV   

The three variables are P,V,T and we form the cyclic relation  

 

   P V   T    P 

 

   
TV

P













PT

V












1













VP

T
 

V

RT
P      

P

RT
V     

R

PV
T   

2V

RT

V

P

T















   

P

R

T

V

P













   

R

V

P

T

V













 

 

 

TV

P













PT

V












1

22




















R

V

P

R

V

PV

R

V

P

R

V

RT

P

T

V

 QED [2] 

ii) The product   may be written using the given definitions of the two quantities as 

 

    
PT T

V

V

P
























  

 

We have already from part i) using the cyclical relation 

 

    1




































VPT P

T

T

V

V

P
 

 

Therefore using the reciprocal relation 

 

   
V

V

PT T

P

P

TT

V

V

P





















































1
   

The required differential relationship.      [2] 

 

iii) The pressure is changed isothermally and therefore use 
TV

P
V 












 to find the 

change in temperature by considering small changes 
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    P
V

V

V

P
V

T




 











  

We also have from part i) 
2V

RT

V

P

T















    

2V

PV

V

P

T















 

Therefore  

    P
V

V
P

V

P
V

T
















  

And 

    02.0



 P

P

V

V
 

The volume also changes decreasing by -2%.     [2] 

 

b) 

i) Given the definition of the Gibbs free energy, PVTSUG   

 

To find the natural variables we write the infinitesimal of G 

 

   VdPPdVSdTTdSdUdG   

 

Now use the thermodynamic identity, 0 PdVTdSdU  to tidy this up 

 

   VdPSdTdG   

 

The natural variables of G are then T and P 

 

   ),( PTGG         [4] 

 

 

ii) Using the natural variables we may write the infinitesimal of G as 

 

    dP
P

G
dT

T

G
dG

TP


























  

 

And compare this with the expression of dG from i) 

 

 

  S
T

G

P













  and  V

P

G

T













   [3] 

 

iii) From i) and ii) and using the fact that dG is a perfect differential and that T and P are the 

natural variables of G gives 
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TP P

G

TT

G

P

































 

 

And therefore 

     
T

V

P

S









  

 

 

Which is the required Maxwell relation.      [3] 

 

c) 

i) In part a the thermal expansion coefficient was defined as  

    
PT

V

V














1
  

We are given the equation of state for one mole of a van der Waals gas, 

      RTbV
V

a
P 










2
 

We need to find 
PT

V












 

 

Begin by finding 
PV

T












 

 

      
























23

21

V

a
PbV

V

a

RV

T

P

 

 

    
























232

221

V

a
P

V

ab

V

a

RV

T

P

 

We need to use the reciprocal relation and therefore to invert this equation and start by getting 

the RHS over a common denominator 

 

    
3

3

33

3

33

2221

RV

abaVPV

V

aV

V

PV

V

ab

V

aV

RV

T

P

































 

 

    
abaVPV

RV

T

V

P 23

3















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And therefore following the definition given we have 

 

    
abaVPV

RV

T

V

V P 2

1

3

2















     [4] 

 

ii) Given that the internal energy of a van der Waals gas is; 

   
V

a
RTUVdW 

2

3
 

We can obtain dU and use this in the first law 

 

    dV
V

a
RdTdU

22

3
  

The first law is 

    PdVQdU    

And for an adiabatic process 

    PdVdU   

therefore 

    PdVdV
V

a
RdT 

22

3
 

From the van der Waals equation of state,   RTbV
V

a
P 










2
 

    
2V

a

bV

RT
P 


  

Using this expression for P 

 

    dV
V

a
dV

bV

RT
dV

V

a
RdT

222

3





  

 

    dV
bV

RT
RdT






2

3
 

 

    
bV

dV

T

dT






2

3
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Integrating both sides 

 

      constbVTT  lnlnln
2

3 2
3

 

      constbVT  lnln 2
3

     

 

      constbVT 2
3

    QED  [5] 
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B4 

 

a)  

i)    
m

Tk
v B

rms
3

       [2] 

 

ii) Using the equation from part i) we find the room mean square velocity of N2  

 

    
27

123

1066.128

3001038.133









KJK

m

Tk
v B

rms  

 

      15
2 5171067.2  msNvrms    [2] 

 

 Noting that the velocity depends on 1m  and that the mass of O2 is a factor of 

1428.1
28

32   larger, the velocity will be a factor 1.069 smaller 

 

      1
1

2 6.483
069.1

517 


 ms
ms

Ovrms    [2] 

 

b) 

i) The Maxwell speed distribution is    dvvfvdvvP 24  

 

     






















Tk

mv
v

Tk

m
vP

BB 2
exp4

2
)(

2
2

2
3




   [2] 

 

 

ii) To find the mean of a quantity requires integration of the product of that quantity with 

the probability distribution over all possible values; 

 

    


0

)( dvvvPv         [2] 

 

iii) Making the suggested substitution  

v
2
  x ,    dv = 

v

dx

2
  

and writing 
Tk

m
a

B2
  the integral of part ii) becomes 
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       







 












0

2
3

0

2
3

2
2

1
4 dx)axexp(x

a
dxaxexpx

a
v





  

 

We can find the integral,  


0

)exp( dxaxx , by integrating by parts;   vduuvudv  

as follows; 

xu     axedv   

 

  dxdu    axe
a

v 
1

 

 

  dxe
a

e
a

x
xeudv axaxax 

  
1

 

 

2
0

2
0

11

a
e

a
e

a

x
dxxe axaxax 














  

 

m

Tk

aa

a
v B




841
2

2

2
3







      [6] 

 

c) 

i) We are given the expression for the flux, vn
4

1  where 
V

N
n  .  

We may get the flux in terms of temperature and pressure by using the ideal gas equation of 

state, 

    TNkPV B  

 

Therefore 

 

    
Tk

P

V

N
n

B

  

 

And the temperature will enter also through the mean velocity as found in part i),  

    
m

Tk
v B



8
  

 

Therefore the flux is 
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     
Tmk

P

m

Tk

Tk

P
TP

B

B

B 


2

8

4

1
,     [3] 

 

ii) In the effusion process described every gas molecule incident upon the hole will escape. 

Thus the number that escape per unit time of molecular species i is given by, 

 

     
i

B
ii

e
i

m

Tk
nAN




8

4

1
  

 

Therefore 

     
1

2

2

1

2

1

m

m

n

n

N

N
e

e

    QED  [3] 

 

iii) From part ii) we find the ratio of Helium isotopes as 

 

    128.0
3

4

90

10

3

4

4

33

4



He

He

He

He
e
He

e

He

m

m

n

n

N

N
 

 

This tells us that e

He

e

He
NN

43
128.0  and therefore that 

e

He

e

He

e

He
NNN

443
128.1  so the percentage of 

3
He in the escaped mixture is 

   %4.11100
128.1

128.0
100

43

3


 e

He

e

He

e

He

NN

N
    [3] 


