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Thermal & Kinetic Physics (PHY-214) Exam 2010
Solutions.
SECTION A
Al. dU =TdS — PdV

duU is the incremental change in internal energy.
dS is the incremental change in entropy.

-PdV is the incremental work done on the system where P is the pressure and dV the

incremental change in volume. [5]
A2. S=kgInQ [5]
A3, p=1-12 [5]
T
A4, AS>0
where AS =0 for a reversible process. [5]
Ab.
TH
_Q_ @
TR = W Q-0
L2 Q
or ! -
Q/ 4
2
Q:
Tc
AG. RV/ =PV where y = C%/ is the ratio of the specific heat capacity at
constant pressure, cp to that at constant volume, cy. [5]
AT, Cp = [ﬁ]
T Jp

H is the enthalpy, T the temperature and P the pressure of the system. [5]
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A8.

5
U =—NkgT
2 B

<1 mv2> = §kBT
2 2

A9.  Foranideal gas PV = RT and therefore we can write

p-RT
\Y

(@) -
N ) v?

A10. dW = —PdV
f Vs
AW =—[PdV =—P [dV = P; -V, ):+P%

i v,

The sign is positive and therefore represents work done ON the gas.

[3]

[2]

[1]

[1]

[3]

[4]

[1]
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SECTION B
Bl
a)
f
i) AW =—[PdV
i
PV = RT p-=L
v
f Vi
AW =—-[PdV =—RT | (i/—V:—RT(Ian —InV;)=—RT In2
i Vi

As In2 is greater than 0 it follows that AW < 0 and this represents work done BY the gas.
[2]

i) Inanisochoric process there is no work done and therefore by the first law of
thermodynamics we have

3, (R 3
Q > 1( > 1) P!
This is a negative quantity indicating that heat has been released by the gas. [1]
5_(V 5
|||) AU :Epl(?l—vl]:—z PlV1 [1]

b)

i) From the adiabatic rule RV;” = P{V by using PV =RT and P = T/—T we obtain the

ruleintermsof Vand T

TVt =Tvi

y-1
Vv
Te =T, [V—'J =298.15x 294 = 393.41K =144.02 °C _ 2]
f
i) U= g RT
AU = 2RAT
2
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AU =§8.31J mol *K 1 x 6227 K =+1293.7J [2]

i) There is no heat transfer during an adiabatic process andt the first law of
thermodynamics then gives

AW = AU =+1293.7J

Being positive the work is done on the gas during this process. [2]

c)

: Q2

i) ng =1--*% [1]
Q1

i) To find the engine efficiency we need to begin by finding Q; and Q.
To find Q1 begin with the fact that 2 — 3 is an isochore and no work is done as dV =
0. The heat can be calculated from the first law

There are two ways to proceed either is acceptable
5
Q]_ = AQ32 = AU32 = U3 —U2 = EHR(T:; —T2)
or alternatively

5
Qp =4Q3; = AUz, =§V2(P3 -P)

We can see that Q; is positive as T3 > T, (P3 > Py)and it is therefore a flow of heat

into the gas.

To find Q, we may use the fact that 4 — 1 is also an isochore and again no work is

done. The heat can be calculated from the first law as before
AQuq = AUq =Uy ~Ug =2 nR(T; Ty)

Or alternatively
AQuq = AUy = gvl( PL—Py)

AQq4 is negative as Ty < T4 (P1 < Py4) and it is therefore a flow of heat from the gas as

shown. However we need the modulus of AQ4 to represent Q, in the expression for
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engine efficiency as this expression requires a positive value (the direction of heat

flow is implicitly accounted for in the expression for efficiency and thus

5
Q2 =-4Qq4 = > NR(T4 —Ty)
Or

5
Qo =-4Qq4 = EV1( Ps—Pp)

Using our earlier expression for the efficiency

Q2 (Ta—T1)
pe =1-<2 -1 Y4711
ST QT (Ta-Ty

Or

e =1-92 21 V1 (Pa=P)
Q Vo (P3—Py)

We need this in terms of the two volumes V; and V; and to achieve this use the fact
that 1 — 2 is an adiabatic compression where work is done on the gas and the

equation from b i) holds;

TV, =TVt
Or
PV, =PV

Also 3 — 4 is an adiabatic expansion where work is done by the gas

TV =Tt
Or
PV =PV
Subtracting the first of these adiabatic expressions from the second and noting that

Vq =V, and that V, =V3



Or

therefore

Or

and
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(Ta —To To(3-T, ) 24 -
(Ps =PV =(Ps =Py VS

(T,-T) (Vz JH
(T3-Ty M

(P4—P1):[\g]7
(P3=Pyy (1

me =1-—— QED [6]

1ii)  The compression ratio is

And therefore

Q

4.

V 300cm
[2]
2 75cm3
1 1
Me =1-—5 =1-—57=0425 [2]
YA
P, = Pl(\/_lJ = p1r1-4 —1 atmx 4% =6.96 atm [2]
2

5 5 5
Q= 2 nR(T3 —Tp) = (P3V3 —-PV;)= EVz(Ps -P,) [2]

= gvz(PS -P,)= gx 75%x10°m?(25—6.96)x1.01x10° Pa =341.62 J

Finally if 7 =0.425 and Q, =341.62 J we have
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W =7.Q, =145 J per cycle

Therefore with 50 cycles per second

Power =50x145 Watts =7.26 kW [2]
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B2.
a)
f
i AS=S; -5 = [XR
T
The reversible heat transfer Qg is by convention positive when heat flows into the system
whose entropy change is being considered. [2]
i) The entropy change of the water as it cools is

f
AS = J% and @R = medT
i

Therefore
280.15
45 =mCp [ 9T _3kgx4.2x108Kkg 1K L xIn 22045
30315 | 303.15
AS =-994 JK1 2]

i) This process occurs in three stages and the calculation must be split into three parts;

1) The ice warming from -10 °C to 0 °C

f
ASl = j% and &QR = medT
|

273.15
A5 = mCILCE J‘ d_T = 3kg x 2-1><103Jkg"1K‘1 <IN 273.15
263.15 T 263.15
AS; =236.0 JK 1
2) The ice melting at constant temperature
ml 3kg x3.33x10° kg
AS, — —melt _ .
T 273.15
AS, =3657.33 JK
3) The melted ice water warming up to ambient temperature
280.15
ASg = mCP J' d_T — 3kg x 4.2 X103Jkg—lK—1 <In 280.15
27315 | 273.15
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AS3=319.0 JK 1

The net change in entropy is the sum of these three

b)

ASpet =4212.33 JK [5]

i)  We have the thermodynamic identity for a gas
dU =TdS — PdV
Also, for a monatomic ideal gas

3

U=—RT
2
Therefore
du = § RdAT
2

Re-arranging the expression for the thermodynamic identity

TdS =dU + PdV = PdV +ngT

From the equation of state for an ideal gas

p_RT
\Y

TdS = RTd—V+§RdT
vV 2
Re-arranging

dS=Rd—V+§Rd—T
\Y 2 T

Integrating both sides at constant volume

AS:RglnT+ f(V)

Integrating both sides at constant temperature
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AS =RINT +g(T)

For both to be generally true in passing from initial temperature and volume, T;, V; to final
temperature and volume, Ty, V¢

3 Tt Vi
AS:ERIn— +RIn| — QED [5]
i i
i) In an isothermal process we have;
Vi 1 1
AS=RIn—= Rln§:—8.31x1.1:—9.13 JK [2]
i
11)) In an isochoric process we have
3 Ty -1
AS :ERIn — [=15x%x8.31xIn2=+8.63 JK [2]
i

c)

1) The system will reach equilibrium by reaching the temperature of the reservoir and

in this process

TrRQ TRgT T
ASsystem = f? =mCp f? =mCp ”{_ﬂ
Ti Ti |

And the reservoir remains at a constant temperature giving up heat AQ to the system

and therefore

f f
dog _ 1 AQr _ mMCp
Asreservoir = = IdQR = == (TR _Ti)
i T TR TR Tr

ASyniverse = ASSystem +A4S reservoir

TR T; T: T;
AS| jni =mCp In| = |-mCp|1—— |=—mCp In| =~ |-mCp|1- L
Universe P (Ti j P( Tr J P [TR J p( Th j
which can be re-written as

ASyniverse =—MCp |n{l— (1—T—'ﬂ - mCP(l_T_ij
Tr TR

10
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This is in the form

ASuniverse =—MCp In(l_ X )_ mCp X

where
Ti
X=[1-— QED [5]
TR
. . T . .
i)  For the system warming, — <1 and X is positive.
R
x2 xS
Using McClaurens series expansion, —In(1-x)=x+ T3 + ) + e
2 3 2 3
X X X X
ASni =mCp| X +—+—+...... —X|=mCp| —+—+...... >0
Universe P 2 3 } Pl: 2 3 }
ASuniverse as increased. QED (2]

11
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B3.
a)
i) Starting with the ideal gas equation of state
PV =RT

The three variables are P,V, T and we form the cyclic relation

WA/
=), (&), &),

P:E V:E T:ﬂ
\ P R
(@} _-RT (ﬂ} _R (ﬂ} _Y

[@J (ﬁj [O_Tj :ﬂﬂ\i:ﬂﬁ\i:_l QED [2]
oV )t \aT Jp\loP ), v2 PR y2 PR

i) The product k£ may be written using the given definitions of the two quantities as

(WJ(W)
kf=— — | | —
oV 7\ 0T Jp
We have already from part i) using the cyclical relation
CINCREI
oV )1\ T Jp\ P N,
Therefore using the reciprocal relation
(apj (av) 1 (apj
Kﬂ =— — — == —
oV )r\oT Jp (aTj oT A
oP N
The required differential relationship. [2]

i) The pressure is changed isothermally and therefore use K=—V(2—5j to find the
T

change in temperature by considering small changes

12
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o= (5_F’J __ Y
oV )t AV
We also have from part i) (ﬁj _ZRT = (E) _=PV
Therefore
_ (@) _p—_V AP
oV ); AV
And
vy __P_ ~0.02
AV AP
The volume also changes decreasing by -2%. [2]
b)
i) Given the definition of the Gibbs free energy, G =U —TS + PV
To find the natural variables we write the infinitesimal of G
dG =dU —TdS — SdT + PdV +VdP
Now use the thermodynamic identity, dU —TdS + PdV =0 to tidy this up
dG =-SdT +VdP
The natural variables of G are then T and P
G=G(T,P) [4]

i) Using the natural variables we may write the infinitesimal of G as

o[ ar+(S) o
oT Jp oP )

And compare this with the expression of dG from i)

(ﬁ) =-S and (ﬁj =V [3]
ol Jp oP )1

i)  From i) and ii) and using the fact that dG is a perfect differential and that T and P are the
natural variables of G gives

13
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3(@) i[@j

oP\ 0T Jp OT\ 0P )7
And therefore

v

oP oOT
Which is the required Maxwell relation. [3]
C)

1) In part a the thermal expansion coefficient was defined as

1(oV
Vi
VT Jp
We are given the equation of state for one mole of a van der Waals gas,

(P+ij(v —b)=RT

V2

We need to find (a—vj
T Jp

) o oT
Begin by finding | —
gin by g (anp

oT 1(-2a a
| == =2V -b)+P+=
(avjp R[v3( ) sz

(aT) 1(-2a 2ab a
— | == ——+—+P+—
N Jp R V2 V3 V2

We need to use the reciprocal relation and therefore to invert this equation and start by getting

the RHS over a common denominator

[gj _1£—2av 2ab  PV3 ﬂJ_PV3—aV+2ab
P

== + + +
oY% Rl v3 v3 y3 3 Rv 3

(ﬂ] __ RV
T Jp PV _aVv +2ab

14
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And therefore following the definition given we have

1(oV RV 2
p(®) g
VT Jp PV°—aV +2ab

i) Given that the internal energy of a van der Waals gas is;

3 a
U =—RT ——
Vdw > v

We can obtain dU and use this in the first law

dU = 3RdT + -2 v
2 v 2
The first law is
du =&Q — PdVv
And for an adiabatic process
dU =—-PdVv

therefore

SRAT +-2dv = —Pdv
2 V2

From the van der Waals equation of state, [P + %)(V ~b)=RT
\Y

3raT+ 2 av="RTgv: gy
2 Y

15
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Integrating both sides

3
glnT = InTA = —In(V —b)+ const

3
InTA +In(V —b)= const

T%(\/ —b)=const

16

QED

[5]



Thermal & Kinetic Physics 2010
Solutions

i Vims =2 2]

i) Using the equation from part i) we find the room mean square velocity of N,
3kgT  |3x1.38x10723JK 1% 300K
Vims = = 57
m 28x1.66x10

Vrms(N2)=v2.67x10° =517 ms™ 2]

Noting that the velocity depends on m~ and that the mass of O is a factor of
3%8 —1.1428 larger, the velocity will be a factor 1.069 smaller

517 ms L

L -4836 mst [2]
1.069

Vems (02) ==
b)
i)  The Maxwell speed distribution is P(v)dv = 42v f (v)dv

]%

2

4 2e _mv 2
ool

Pv) = [27z1r<nBT

i) To find the mean of a quantity requires integration of the product of that quantity with
the probability distribution over all possible values;

V= Ojov P(v)dv [2]
0

iii) Making the suggested substitution

VZ—)X, dV:d_X
2V

. m . .
and writing a = —— the integral of part ii) becomes
B

17
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3 3
V= 47{3}4 1 [ xexp(—ax)dx = 27{3}4 [ x exp( —ax )dx
V4 2 0 T 0

We can find the integral, [xexp(—ax)dx, by integrating by parts; [udv =uv— [vdu

0
as follows;
u=x dv =e
du = dx v=—1e_ax
a
fudv = [xe @ =~ X & —J—ée_axdx
o0
xe ~ dx ——e_ax—ie_ax _ L
] 2 2
0 a a o a
3
o Tat2 1[4 [BkgT
V-Z”H Z Vm \m 1°l
c)

i) We are given the expression for the flux, @ = %nv where n = g .

We may get the flux in terms of temperature and pressure by using the ideal gas equation of
state,

PV = NkgT
Therefore
N P
nN=—=—-
V. kgT

And the temperature will enter also through the mean velocity as found in part i),

o [BeT
zm

Therefore the flux is

18
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o(pT)~L P [BkeT P
U akgTV om2mkgT

[3]

i) Inthe effusion process described every gas molecule incident upon the hole will escape.
Thus the number that escape per unit time of molecular species i is given by,

Nie=@iA=lni —8kBT
4 7m;
Therefore
N _m (M2 QED 3]
NS no\m
2 2 1

11)) From part ii) we find the ratio of Helium isotopes as

3He _ n3He m4He \/EZOJ_ZS
Nite  Mepe | Mape 3

This  tells us  that N ‘;H =0.128N§ y and  therefore  that
e e
NS +NE  =1128N€ so the percentage of *He in the escaped mixture is
He He He
N3 0.128
3
— "He  4100=-—"22x100=11.4% [3]
NE +NE 1.128
He *He

19



