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In what follows, unless otherwise stated, we will use units such that the
speed of light, c = 1.

1.

We are given a spherical shell of mass M and Radius R. Outside the shell
we have a spherically symmetric mass distribution, so the metric will take the
Schwarzschild form:

ds2 = −
(

1− 2GM

rc2

)
dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2) (1)

Inside there is no mass enclosed and therefore by Gauss’s law there is no
gravitational field strength and thus the metric is flat

ds2 = −dt2 + dx2 + dy2 + dz2. (2)

However, this does not mean that the gravitational potential inside the shell
is zero. Recall from electromagnetism where the field strength is given by the
gradient of the potential E = −∇V . Thus if the field strength is zero it implies
that the potential is constant, but not necessarily also zero. In our case the
potential inside the shell is not equal to zero. By continuity of the metric (i.e.
to avoid singularities in the metric) one has to match the metric at the surface
of the shell with that in the interior, this will tell us the constant graviational
potential that we have inside the shell. Since we are only interested in the
time dilation effects we focus on the time component of the metric. So, at the
boundary of the shell:

ds2 = −
(

1− 2GM

Rc2

)
dt2 (3)

and so this will be the constant time component of the metric we feel inside the
shell. Outside, the laptop is placed quot;far awayquot; from the shell, meaning
far enough that it won’t feel the gravitational effects it causes. The laptop
is in flat space. So, we sit inside the shell with a constant Schwarzschild-like
time component of the metric, whilst the laptop is in flat space. Now, in a
Schwarzschild environment, the time dilation effects are given by:

t′ =

√(
1− 2GM

rc2

)
t (4)
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where t′ is the time measured by an observer in the field caused by the gravi-
tational object (i.e. us) and t is the time measured by an observer outside the
field (the laptop).

Rearranging this expression for the mass of the shell M and substituting for
its radius r = R we obtain:

M =
Rc2

2G

(
1− t′2

t2

)
(5)

which yields an answer

M = 6.75× 1027Kg (6)

The problem seems evident, the mass needed is extremely large. To achieve
such a time dilation one needs to surround oneself with a shell of mass approx-
imately equal (one thousandth) to that of the sun! Also, even though your in
the shell and the laptop does the equivalent of 100 years of calculations, the
whole world outside the shell will have moved forward by 100 years! So maybe
when you come out the money you wanted to make is not useful any more. A
better way would be to sit inside the shell on a savings account and let interest
make you rich, if the bank doesn’t collapse in the 100 years you are in there.
2.

Space in the vicinity of the neutron star will have a Schwarzschild metric.
Space far away from it will however not feel its graviational effects and thus will
be flat.

Close to the star

ds2 =
(

1− 2GM

rc2

)
dt2 (7)

but far from it
ds2 = dt′2 (8)

where the minus sign of the flat metric is not shown by choice of signature.
To obtain the redshift caused by the star we match the two solutions:

dt′2 =
(

1− 2GM

rc2

)
dt2 (9)

⇒ dt′

dt
=

√
1

1− 2GM
r

(10)

Now we can approximate the last expression via an expansion of the square
root to obtain:

dt′

dt
= 1 +

GM

r
(11)

Finally we are in a position to obtain the form of the graviational redshift. We
define the redshift Red:

Red =
dt′

dt
− 1 =

λo − λe

λe
=

GM

r
(12)
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where λo is the observed wavelength very far away and λe is the emitted wave-
length at the surface of the netruon star. Rearranging

λo = λe

(
1 +

GM

c2r

)
(13)

Substituting for the mass and radius of the star we obtain

λo = 344nm (14)

This is called red-shift (as opposed to blueshift) and is of important use in
every-day astrophysics and cosmology. We want to now calculate the effective
speed of light of a radially emitted photon at the surface of the star. For a
photon ds = 0 and therefore using the Schwarzschild solution (with constant
angular variations) we obtain (using the Newtonian approximation):

c2dt2
(

1− 2GM

c2r

)
= dr2

(
1 +

2GM

c2r

)
(15)

and therefore

dr

dt
=

√(
1− 2GM

c2r

)(
1 + 2GM

c2r

)c (16)

= 2.21× 108ms−1 (17)

Note that the effective speed appears lower than what it actually is.

3.

We are given the flat Minkowski metric

ds2 = −dx2
0 +

4∑
i=1

dxidxi (18)

with the constraint that defines de Sitter space

−x2
0 +

∑
i

xixi = 1 (19)

Now we make a change of coordinates to

x0 = sinh(t) xi = cosh(t)yi (20)

The constraint in these coordinates is

− sinh2(t) + cosh2(t)yiy
i = 1 (21)

which suggests
yiy

i = 1 (22)
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and the summation over the index i is used. We substitute these coordinates
back into the original metric to obtain the de Sitter metric:

−dx2
0 +

4∑
i=1

dxidxi − cosh2(t)dt2 + sinh2(t)dt2yiy
i (23)

+2 sinh(t) cosh(t)dtyidyi + cosh2(t)dyidyi (24)
= −dt2 + cosh2(t)dyidyi (25)

where in the last equation we used yidyi = 0 which comes from

yiy
i = 1 (26)

⇒ 2dyiy
i = 0 (27)

⇒ yidyi = 0 (28)

1 Summary of important concepts

1.Time feels the effect of gravity! So even though someone moving at high speed
in a plane will have its clock ticking slower because of special relativistic effects
it will also have it (to a minor effect) clicking faster because he feels less of the
effect of Earth’s gravity.
2.The light we see coming from other planets/stars is not strictly the same as the
one they emit. The light is red/blue-shifted according to the relative movement
of source and observer.
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