
Lecture 5  Polytropic models  

The equation of hydrostatic equilibrium, discussed in the previous lecture, can be 

solved in the case where density ρ is a known function of pressure P. A particular 
example of this is a relation of the form 

                                                    (5.1) 

where K and γ are constants; this is called a polytropic relation, and the resulting 
models are called polytropic models. 

Models of this nature have played a very important role in the development of the 
subject; they are still very useful as simple examples which are, nevertheless, not too 
dissimilar from realistic models. More importantly, there are cases where the 
polytropic relation (5.1) is a very good approximation to reality. An example is where 
pressure and density are related adiabatically, as in equation (3.34). 

To obtain the equation satisfied by polytropic models, we note that from equations 
(4.5) and (4.7) we have 

          
(5.2) 

Hence, using equation (5.1), we obtain 

                
(5.3) 

It is convenient to replace γ by the polytropic index n, defined by  



                        (5.4) 

Furthermore, we introduce a dimentionless measure θ of density ρ by 

                                                 (5.5) 

where ρc is central density. Then equation (5.3) becomes 

 

or 

      (5.6) 

To simplify the equation further, we introduce a new measure ξ for the distance to 
the centre by 



 (5.7) 

Then the equation finally becomes 

                                (5.8) 

This equation is called the Lane-Emden equation, and the solution θ=θ(ξ) is called 

the Lane-Emden function. From equation (5.5) it follows that θ must satisfy the 
boundary condition 

                             (5.9) 

The surface of the model is defined by the point ξ=ξ1, where θ(ξ1)=0. 

Given the solution θ(ξ), we can obtain relations between the various quantities 
characterizing the model. It follows immediately from equation (5.7) that the surface 
radius of the model is 



      (5.10) 

The mass m(ξ) interior to ξ may be obtained by integrating equation (4.7), using 
equations (5.5, 5.7, 5.8) as 



 (5.11) 

Using the expression (5.7) for α, we finally obtain 

 (5.12) 

In particular, the total mass is given by 



 (5.13) 

From equations (5.10) and (5.13), by eliminating ρc, we may find a relation between 

M, R and K. The result is 

 (5.14) 

There are two different interpretations of this relation. If the constant K in equation 
(5.1) is given in terms of basic physical constants and hence is known, equation 
(5.14) defines a relation between the mass and the radius of the star. If, on the other 

hand, equation (5.1) just expresses proportionality, the constant K being essentially 

arbitrary, then equation (5.14)  may be used to determine K for a star with a given 
mass and radius; as shown below one may then determine other quantities for the 
star. In the former case, therefore, there is a unique polytropic model for a given 

mass, whereas in the latter case a model can be constructed for any value of M and 

R. 

------------------------- 

Exercise 5.1. Verify equation (5.14).   

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution5_1.htm�


------------------------- 

From the last of equations (5.11) we find that the mean density of the star is 

              
(5.15) 

and hence the central density is determined by the mass and radius as 

 (5.16) 

where the last equation defines constant an which depends on the polytropic index n 
only. Finally, using that from equation (5.1) 

                                        (5.17) 

and using equations (5.14) and (5.16), we find that 



 (5.18)                      

where cn depends on the polytropic index n only. The pressure throughout the model 
is then determined by 

                                               (5.19) 

--------------------------------- 

Exercise 5.2. Fill in the missing details in the derivation of equations (5.15), (5.16), 

and (5.18).   

--------------------------------- 

In the case where the temperature is related to pressure and density through the 
ideal gas law (3.13), it may be determined from equations (5.5) and (5.19) as 

                                                   (5.20) 

where 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution5_2.htm�


 (5.21) 

where bn depends on the polytropic index n only. In the case when the star is 

composed of an ideal gas, therefore, θ is a measure of the temperature. 

To determine the structure of a polytropic star completely, we only need to find the 
solution to the Lane-Emden equation (5.8). Unfortunately, in general no analytical 

solution is possible. The only exceptions are n=0, 1 and 5 where the solutions are 



 (5.22) 

           (5.23) 

 (5.24) 

  

  

--------------------------------- 

Exercise 5.3. Verify that these solutions satisfy the Lane-Emden equation (5.8) and 

the boundary condition (5.9).  

--------------------------------- 

The solution for n=5 is evidently peculiar, in that it has infinite radius. On the other 
hand, since 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution5_3.htm�


           
(5.25) 

is finite, so is the mass of the model. It may be shown that only for n<5 does the 
Lane-Emden equation have solutions corresponding to finite radius. 

For values of n other than 0 and 1 , the Lane-Emden equation must be solved 
numerically. Extensive tables of the solution exist; in any case, with modern 
computational facilities the solution of the equation is a simple numerical problem. 
Table 5.1 lists a number of useful quantities, which enter into the expressions given 
above, for a selection of polytropic models. 

n ξ1 an bn cn 

0 2.449 1.00 0.5 0.12 
1 3.142 3.29 0.5 0.39 
1.5 3.654 5.99 0.54 0.77 
2 4.353 11.40 0.60 1.64 
3 6.897 54.18 0.85 11.05 
4 14.97 662.4 1.67 247.6 

Table 5.1. Properties of polytropic models. Constants an, bn and cn specify the central 
density, central temperature and central pressure as given by equations  (5.16), 
(5.18) and (5.21). 

  

  

  

  

  

  

  

The next table, Table 5.2, presents the solution for two particular cases n=1.5 and 

n=3, at selected values of ξ.         

 
ξ θ dθ/dξ   ξ θ dθ/dξ 



0 1 0   0 1 0 
0.5 0.96 -0.16   0.5 0.96 -0.16 
1.0 0.85 -0.29   1.0 0.86 -0.25 
1.5 0.68 -0.36   1.5 0.72 -0.28 
2.0 0.50 -0.37   2.0 0.58 -0.26 
2.5 0.32 -0.34   3.0 0.36 -0.18 
3.0 0.16 -0.28   4.0 0.21 -0.12 
3.5 0.03 -0.22   6.0 0.04 -0.06 
3.654 0 -0.22   6.897 0 -0.04 

Table 5.2. Properties of polytropes of indices n=1.5 and n=3. 

From Table 5.1 it follows that the properties of polytropic models vary widely with n. 

This is true in particular of the degree of central condensation, as measured by an, 

the ratio between central and mean density. For n=0 it is obvious from equation 

(5.5) that density ρ is constant, and hence a1=1 , whereas the value of an tends to 

infinity as n→5. For stars on the main sequence the central condensation is typically 
around 102, corresponding to a polytrope of index around 3.3. 

It should be noticed also that equation (5.18) for the central pressure and, in the 
ideal gas case, equation (5.21) for the central temperature, confirm the simple 
scaling derived in the previous Lecture (section 4.2). Now, however, the polytropic 

relations contain the additional numerical constants bn and cn . It is obvious from 

Table 5.1 that that cn varies strongly with n; hence the estimate in equation (4.9) of 
the central pressure is at most a rough approximation. On the other hand, the range 

of variation of bn is much more modest, except when n is very close to the critical 

case n=5 . Thus equation (4.10) gives a reasonable estimate for the central 
temperature for a wide range of models. 

  

  

--------------------------------- 

Exercise 5.4. Find ρc , Pc and Tc in a polytrope of index 3 with solar mass 

(2.00×1030kg) and radius (6.96×108m) and chemical composition X=0.7 , Z=0.02 

, where the ideal gas equation of state is assumed to be valid. Find also ρ , P and T 

at the point where r=R/2. (Use the data in Tables 5.1 and 5.2).  

 


