
Lecture 5 Radial oscillations of stars 

In this lecture we consider oscillations of a star about its spherically symmetric 
equilibrium state, with the oscillatory motion being purely radial.This is relevant to a 
number of classical variable stars, e.g. Cepheids. A readable account of the theory of 
radial stellar pulsations may be found in [5.1], while [5.2] provides a more 
mathematical treatment. 

5.1 Linear adiabatic wave equations for radial oscillations 

We shall assume that the amplitude of the oscillations is small, so that linear 
perturbation theory will suffice, and in the present section we shall suppose that the 
period of the oscillations is sufficiently short that no heat is exchanged between 
neighbouring fluid elements, i.e. the oscillations are adiabatic. Then the linearized 
equations for small perturbations are equations (2.19, 

2.21):   

We now seek solutions with sinusoidal time dependence. Writing  

 

and , equations (5.1) become 



 

by using , and  , 

where is the adiabatic sound speed. Eliminating and in equations (5.3), we 
arrive to 

 

where is the so-called Brunt-V�is�l� frequency, 

 

   

 
Exercise 5.1. Convince yourself, using the divergence theorem, that  

 



for any spherically-symmetric vector field . Further, fill in the missing 
steps to derive equations (5.4). [Hint: from equations (5.3b,c) we have 

].  

 

5.2 Boundary conditions 

Equations (5.4) represent a system of two ordinary differential equations for 

and . In order to solve this system, we require boundary conditions at 

the center of the star ( ) and at its surface ( ). 

The boundary condition at the center is that the solution be regular, not divergent, at 

the origin. We are looking for the solutions in the vicinity of as a power 
series expansion 

 

The first term in the series specifies the leading-order behaviour of near the 

origin; we require and allow to be an unknown constant which has to be 

determined. With this expansion for , equation (5.4a) provides a corresponding 

expansion for : 

 

where and are the central values of the equilibrium density and the 
sound speed, and we limit our analysis by the leading-order term only. 

We now substitute the expansions (5.6, 5.7) into the second equation (5.4b): 

 

As before, dots designate terms of higher order, proportional to etc. From 

equation (5.8), we get or . The requirement that the solution be 

regular rules out ; hence we must have . The regularity condition 
thus selects one of the two linearly-independent solutions of the oscillation equations, 
which behaves as 
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in the vicinity of . Constant is arbitrary, since the equations are 
homogeneous (solutions are only determined with an arbitrary scaling factor). 

At the surface, we require the Lagrangian pressure perturbation to be zero. With 

(equation 2.25 of Lecture 2), the outer boundary condition 
is 

 

In a realistic stellar model, we do not have any well-defined "surface", but rather a 

smooth transition to the low-density atmosphere. the boundary condition is 
still applicable, however, when the "stellar radius" is taken to be sufficiently high in 
the atmosphere. The physical reason is that the atmospheric layers above 

have essentially no dynamical influence on the global oscillations due to their 

very small mass. Also when is small, the boundary condition (5.10) can be 

replaced with . 

5.3 Eigenvalue nature of the problem 

The second-order system of differential equations (5.4) has two linearly-independent 

solutions. Regularity condition at selects one of them; this solution does not, 
in general, satisfy the surface boundary condition (5.10). The second boundary 

condition can be satisfied for certain values of only: these values are called 

eigenvalues, and corresponding solutions for and are called 
eigenfunctions. The eigenvalues give the resonant frequencies (eigenfrequencies) at 
which the star can oscillate radially. 

5.4 Local dispersion relation and mode classification 

Let us suppose for a moment that we have some solutions and  to the 
differential equations (5.4) with a sinusoidal character, which oscillate rapidly with . 
We will see later in this section that this is indeed the case in the high-frequency limit 

(when is high). We write these solutions as 

 



with slowly-varying amplitude functions and , and rapidly-varying 

exponent ( is high). Differentiation with respect to gives 

 

when is large (contribution of terms with derivatives of the amplitude functions can 
be neglected). We substitute (5.12) into the oscillation equations (5.4), getting 

 

Note that we were using the asymptotic limit of large once more, neglecting 

and compared with . 

Equations (5.13) are algebraic equations. This homogeneous system of two linear 

equations for and has a non-trivial solution if and only if the determinant of 
matrix of its coefficients iz zero, i.e. when 

 

We observe from this relation that is large when is large, so that our local 
analysis is indeed applicable in the asymptotic limit of high frequencies. 

What we also observe is that when is high, is approximately , which 
is nothing else but the dispersion relation for sound waves developed earlier in 
Lecture 2 (equation 2.32). We thus arrive to the simple physical interpretation of the 
radial oscillations: at least in the high-frequency limit, they are formed by the 
acoustic waves propagating along stellar radius. A wave travelling upwards is 
reflected back at the stellar surface, and the downward wave is reflected back at the 
stellar center. When added together, these waves can form a standing wave (a 
particular mode of stellar oscillations), which can only happen at frequencies of 
acoustic resonances (radial oscillation frequencies). 

When going to smaller frequencies, simple local analysis can loose its accuracy. Note 

also that it is always in trouble in the vicinity of : indeed, we were neglecting 



compared with . By doing that we have the effects of spherical geometry 
discarded: we are using a plane-wave approximation to describe spherical waves. 

When gets higher, the acoustic wavelength becomes smaller, and radial 

displacement function acquires more and more modes in its variation with 
radius. Different modes of radial oscillations are classified according to the number of 

nodes in . The oscillation with no nodes, which has the lowest frequency, is 
called the fundamental radial mode. Higher in frequency is the first overtone, with 

one node in , and so 

on.  

5.5 Non-adiabatic oscillations: physical discussion of driving and damping 

Consider a small fluid element of volume . Let it be small enough so that at any 

time, pressure can be considered as uniform everywhere inside . If increases 

by an ammount , the mechanical work done by the fluid element against the 

external pressure is . Integrating over one cycle of the oscillation, this work 
will be 

 

If this work is positive, it goes to the increase of the total mechanical energy of the 
surrounding fluid, i.e. to the increase of of the pulsational energy of the star; the fluid 
element acts as a driving source (Fig.a): 

 

In the driving case, at point of maximum compression ( minimum, 

), is still increasing, (Fig.a), which means that 
some heat is being added. What we have is assentially a small heat engine, which 
transfers thermal energy into mechanical energy. 



One way in which oscillations can be driven is by the so-called opacity mechanism, or 

- mechanism. It operates in the near-surface layers of partial ionization with 

anomalous behaviour of the opacity . If the opacity increases when the star is 
compressed, the heat is gained due to the blocking of the radiative flux coming from 

the stellar interior. Another driving mechanism is the so-called - mechanism. When 
the star is compressed, density and temperature increase, hence the nuclear energy 

generation rate increases and so more heat is generated. 

If the work integral is negative (Fig.b), the fluid element acts as an energy sink for 
the oscillation, absorbing the mechanical energy from the surrounding fluid and 
transfering it into heat. At maximum compression, the heat is being lost. This 
scenario is realized in the so-called radiative damping, when the compressed (and 
hence hotter) fluid element looses its heat to the surrounding. Note that in the 
adiabatic approximation, we neglect any heat exchange, and the work integral is zero 
(Fig.c). Further discussion of the various excitation mechanisms may be found in 
[5.2]. 
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