
Lecture 4 Theory of rotating bodies  

4.1 Equilibrium equations for a slowly rotating body  

In this lecture we shall be considering principally how to calculate the shape of a fluid 
body that is rotating slowly with a uniform rotation rate. We shall consider in 
particular the case of a slowly rotating star; but the equations apply equally well to, 
for example, a slowly rotation gaseous planet. It will be assumed that in the absence 
of rotation the body would be spherically symmetric, and that rotation induces a weak 
distortion of the shape from spherical symmetry. For slow rotation, the distorted body 
is axisymmetric about the rotation axis, as one would expect. Although we shall not 
consider it here, faster rotation can give rise to some surprises, notably the Jacobi 
ellipsoids which are triaxial figures of equilibrium. For a fuller exposition of the 
subject, see the classic texts [4.1] and [4.2].  

The momentum equation (1.9) is  

 

assuming that the only body forces are due to gravity. Since the rotation is axially 

symmetric, it is convenient to introduce cylindrical polar coordinates , 

being the rotation axis; is the distance from the rotation axis, and is the 

angular coordinate, so that the fluid velocity is directed along .  

For a steady rotation, we have , but differs from zero: the 
velocity of a given fluid element does not change with time in its absolute value, but 
changes in its direction. Simple geometrical considerations show that for an observer 
moving together with the fluid element,  

 

where is unit vector along and . Introducing the angular velocity of 

rotation , we have  

 

since . Indeed, the equation (4.2) gives nothing else but the centripetal 
acceleration of the circular motion.  



For a uniform rotation ( is constant in space), the right-hand side of the equation 
(4.3) can be written as a gradient of scalar function:  

 

and the momentum equation (4.1) reduces to  

 

where  

 

   

 

Exercise 4.1 Now, instead if the uniform rotation, consider a general rotaton law 

around the - axis. Show that the centripetal acceleration can be written 
as a gradient of a scalar function if and only if the rotation rate is independent of 

and , i.e. only.  

 

We can argue qualitatively from equation (4.4) what the effect of rotation on the 
equilibrium shape of the body will be. For an observer moving together with the fluid 
- in the corotating coordinate system, the fluid is at rest; instead of the centripetal 
force of the circular motion, in the corotating frame we have the fictitious centrifugal 
force (a body force), which has to be balanced by pressure and gravity. On the stellar 
surface, the centrifugal acceleration is zero, and it is radially outwards at the equator. 
It thus reduces the "effective gravitational acceleration'' at the equator, i.e. the 
centreward pull is not so strong there as at the poles and so instead of being 
spherical the body "bulges'' at the equator.  

The gradient vector of any scalar is perpendicular to surfaces of constant . Thus 

it follows from equation (4.5) that surfaces of constant are also surfaces of constant 

, and vice versa. Thus we can write , and so  

 

http://www.maths.qmul.ac.uk/~svv/MTH707U/ex41.htm�


Substituting this into equation (4.5) yields  

 

so is also a function of : .  

Henceforward, for definiteness, we shall speak of the body as being a star, but it 
could equally be a gaseous planet, for example. The outer surface of the star is a 
surface of constant pressure (because the pressure outside is constant, say zero) and 

so on the surface, is constant.  

We consider the case where if the star were not rotating it would be spherically 
symmetric, and rotation induces a weak distortion from sphericity. We suppose that 

the star has mass and (in the nonrotating case) radius .  

Let us approximate the gravitational potential by what it would be in the 
nonrotating case:  

 

at the surface and outside the star.  

We suppose that the surface of the rotating star is described by  

 

where is a small function of the colatitude . Then, using , we 
have on the surface  

 

constant (i.e. independent of ). The rotation is slow and the distortion weak, so 

and are small and we neglect products of small quantities. Then (4.8) implies 
that  

 



is independent of , i.e.  

 

(possibly plus a constant). Note that is the equatorial acceleration due to 

centrifugal forces; and is the gravitational acceleration. So the 

dimensionless quantity is the ratio of centrifugal acceleration to 
gravitational acceleration.  

The radius at the pole and at the equator are obtained from equation (4.7) by putting 

and respectively. Thus the relative difference between 
equatorial and polar radii is  

 

The only thing wrong with this argument is the use of . In general, 
we should properly use the gravitational potential appropriate to the distorted star. 
The relevant generalization of our analysis is known as the Chandrasekhar-Milne 
expansion. A description of the procedure is given in [4.3].  

The distorsion of the gravitational field can indeed modify our result (equation 4.10) 
significantly. The magnitude of this effect depends on the mass distribution inside the 
star: the distorsion of the gravitational field is bigger when more mass is localized 
closer to the surface, where centrifugal forces are bigger. For a star with uniform 
density, the coefficient 1/2 in the right-hand side of (4.10) appears to be replaced 
with 5/4. The rotational distortion of the stellar configuration becomes bigger; it is 
indeed quite a general property of gravity to have a destabilizing effect. In the 
oposite limit, when almost all the mass is concentrated very near the stellar center, 
the equation (4.10) is adequate. For a real star, we can well expect the result to be in 
between the two limits.  

4.2 Binary stars  

Consider a binary system in which the two components are in circular orbits about 

their common centre of mass , and in which the two stars corotate so as to always 
show the same side to the other star. In this system there is a rotating frame in 

which the stars are completely stationary. If is the angular velocity of each star 

about , in an inertial frame, then of course is also the angular velocity of the 
rotating frame.  



Suppose that the separation distance between the two stars is , that their masses 

are , and that their respective distances from are and . 

Since is the centre of mass,  

 

Also the gravitational force on star 1 towards star 2 (and hence towards ) must be 

equal to , since is the radius of its circular orbit; hence it is 
straightforward to show that  

 

Now equations (4.5) and (4.6) hold for this system (in the rotating frame), where the 

gravitational potential is given by the sum of the potentials due to the two stars. 
Choosing Cartesian coordinates such that the angular velocity of the frame is in the 

- direction, with the stars at and , can be 
written from equation (4.6) as  

 

(the Roche potential). Here we have made the same approximation as in section 4.1, 
namely that we can use the undistorted gravitational potential of each star: this is 
reasonable for centrally condensed stars.  

The potential (4.13) is plotted schematically as a function of along the line 

below.The Lagrangian points and , where , are 
indicated.  



 

As in the case of a single star, the surface of each star in the binary system is a 

surface of constant . Now provided the surface potential of each star is less than 

the potential at the Lagrangian point, each star occupies a well in the Roche 
potential and the stars form a detached binary system (Fig. a):  

 

Suppose though that expands (perhaps attempting to become a red giant) until 

its surface potential is equal to (Fig. b). Any further expansion will cause matter 
to fall from star 2 to star 1, since it will fall to the lower potential. Algol is an example 

of such a binary. Finally, if the surface potentials of both stars are greater than , 
then we have a "common envelope binary'' or "contact binary'' (Fig. c). It is also 

instructive to plot contours of constant in the plane:  

 



The shaded region, called a Roche lobe, is the maximum region the star can occupy 
before it starts to lose mass to its companion.  

4.3 Dynamics of rotating stellar models  

We have not so far considered how energy is transported in the rotating star. A well-
known result, which is discussed at length in [4.3] is that one cannot have a 
uniformly rotating star in strict radiative equilibrium. Assuming the contrary leads to 
what is known as "von Zeipel's paradox''. The same is true if the rotation rate is a 
function only of distance from the rotation axis. We conclude therefore that the 
rotation rate must have a more general form, depending on cylindrical polar 
coordinate as well as distance from the axis, or that strict radiative equilibrium does 
not hold.  

The von Zeipel paradox in effect says that the radiative flux cannot be balanced 
everywhere by the energy generation. Some regions have a net influx of heat: these 
will heat up and tend to rise under buoyancy. Others will cool and sink. This tends to 
set up motions in meridional planes: this is called meridional circulation.  
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