
Lecture 3 Jeans instability and star formation. 
Spherically symmetric accretion and stellar winds  

We believe that at least some star formation takes place in interstellar gas clouds. 
Three pieces of observational evidence are that (1) associations of young, bright 
massive stars are found in nebulae; (2) nebulosity is seen in young, open clusters; 
and (3) infrared observations reveal young stellar objects (YSOs) obscured by gas.  

3.1 Jeans instability 

The linearized equations for small perturbations are equations (2.19). We shall 
consider the simplest possible system, which is a homogeneous cloud, infinite in all 

directions, so and are independent of position, as too is by virtue of the 
hydrostatic equation. Thus equation (1.19a) becomes 

 

Taking the divergence of this equation, and using (2.19c) to eliminate gives 

 

In a uniform medium, for any quantity . Suppose that the gas is ideal 

and isothermal, so . Hence 

 

where is the isothermal sound speed. Also in a uniform medium 
(19.b) becomes 

 

Hence, using equations (3.3) and (3.4) to eliminate and from (3.2), we 
obtain 



 

This is a linear PDE for , with coefficients that are independent of position and 

time. Hence we seek solutions . In this case 

and . Hence, equation (3.5) implies 

 

where ; and so for a nontrivial solution ( ) we obtain the 
dispersion relation 

 

If and are real, this represents an oscillation. However, if the right-hand side of 

(3.7) is negative, as it will be for sufficiently small , then will be negative and 

so the cloud will be unstable because there will be a solution where 

grows exponentially with time. Thus the cloud is unstable to 

fluctuations of wavenumber if 

 

i.e. if  

 

Now a real cloud is of finite size, so one cannot have arbitrarily large wavelengths , 

i.e. arbitrarily small wavenumbers. If the cloud is roughly sperical with radius , one 

must have . So such a cloud is unstable to density perturbations if 



 

If the density grows unstably, it is because mass is falling in to some region from 
surrounding regions. So put another way, the cloud collapses if its mass exceeds the 
critical Jeans mass 

 

Note the crucial role of the perturbation to the gravitational potential in this 
instability. If this had been neglected in equation (3.1), equation (3.7) would have 

reduced to , the dispersion relation for isothermal sound waves (cf 
equation (2.32)), which would give stable oscillatory solutions always. 

For a typical HI region, (the number of hydrogen atoms per cubic 

centimetre), so the density is about . The temperature is 

about 100K. Hence, using with mean molecular weight , one 

gets that (about 100 light years) and 

solar masses. But this is very much greater than the 
mass of the most massive known stars. Hence it cannot simply be that a cloud 
exceeding its Jeans mass collapses under its own self-gravity to form a single star 
[3.1]. 

If we suppose that the collapse continues isothermally (i.e. remains constant) 

then and similarly . Hence, as the cloud collapses 
and the density grows, the Jeans mass decreases. One can therefore envisage that 
subcondensations form in the cloud as smaller and smaller masses start to collapse in 
upon themselves. This picture is known as fragmentation. However, fragmentation 
must not continue indefinitely, as we wish eventually to form stars with observed 
stellar masses. Now in the later stages of collapse, the cloud presumably becomes too 
opaque for radiation to smooth out temperature fluctuations, so that isothermal 
collapse is no longer a good assumption. If we assume that we enter the opposite 
regime, of adiabatic collapse, then 

 



so . Instead of the isothermal sound speed we use the adiabatic sound 

speed , with . From (3.8) and (3.9) we then have 

and . E.g., for 

. Hence the Jeans mass is no longer decreasing with 
increasing cloud density, and fragmentation halts.  

The problem with the fragmentation picture as propounded above is that dispersion 

relation (3.7) implies that is most negative for the smallest values of . Thus, 
the cloud collapses fastest at the largest scales. Although the cloud becomes unstable 
on smaller scales as the density increases, these smaller-scale perturbations would 
get overwhelmed by the faster overall collapse of the cloud. 

 

Exercise 3.1 You should be at least a little concerned as to whether the infinite 
homogeneous cloud obeys the equilibrium equations (2.15). Think about this. 

 

Obviously, although the model of a homogenous cloud has led us to a useful criterion 
(the Jeans mass) for the collapse of a cloud under its own self-gravity, the model is 
too simplistic to explain in detail the formation of real stars. The Galaxy, and virtually 
everything within it, rotates. Unless it loses angular momentum by some mechanism, 
a rotating cloud will rotate faster as it collapses. Indeed, the centrifugal force will 
eventually balance self-gravity so that the cloud can no longer collapse 
perpendicularly to the rotation axis. (It can still collapse along the rotation axis.) Thus 
the cloud tends to flatten into a disk. This could lead ultimately to the formation of 
planetary systems such as our own solar system. 

3.2 Bernoulli's theorem 

The problem of how material falls radially onto a central object is sometimes called 
the Bondi problem, after [3.3] (see also [3.2]). 

As a preliminary, we prove a standard result in fluid dynamics, Bernoulli's theorem for 
steady inviscid flow. A standard identity from vector calculus gives 

 

where . Neglecting viscosity and setting time derivatives to zero, and using 
equation (3.10), the equation of motion becomes 



 

Suppose that the flow is baratropic - so the pressure is a known function of density, 

. (This is a common simplification in astrophysical fluid dynamics - by 
assuming a given relation between pressure and density, we can often avoid needing 
to give specific consideration to the energy equation). Define the enthalpy 

 

so . Then equation (3.11) becomes 

 

from which it follows by taking the dot product with that 

 

This result shows that is constant along a streamline, i.e. a line 

everywhere parallel to . For a simple physical derivation of the Bernoulli's theorem, 

press .  

An everyday application of Bernoulli's theorem (3.14) is to consider flow from a 

kitchen tap. In this case is essentially uniform, so . Bernoulli's theorem 
says that 

 

is constant along streamlines, being measured downwards. In particular, along a 

surface streamline the pressure is everywhere equal to the atmospheric pressure 

(constant). Therefore as the flow falls from the tap, (3.15) implies that increases. 
Now suppose that the stream from the tap has horizontal cross-sectional area 
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. The direction of is essentially vertical, and the flow is incompressible. Thus 

mass conservation implies that , the mass flow per unit time 

through a horizontal plane, is independent of . Thus, as the water falls, increases 

and decreases. 

Note, however, that for sufficiently small , the surface tension cannot be ignored. 
Also the flow is not stable: a Kelvin-Helmholtz instability sets up an oscillatory 
disturbance on the surface.  

3.3 The de Laval nozzle 

We consider now how the picture of incompressible-type flow from a tap will be 
modified in a situation where the compressibility of the fluid is important. We still take 
the flow to be steady, baratropic and one-dimensional. As an example, consider the 

flow from a jet engine. The spatial variation of the cross-section is given (by the 
walls of the combustion chamber), and we can neglect gravity. Bernoulli and mass 
conservation imply 

 

The spatial variation of induces variations in the other quantities. The first of 
equations (3.16) implies that 

 

where ( is thus the sound speed). This equation, relating 
changes in density and in velocity, can be rewritten 

 

where is the Mach number.  

Note that if , fractional changes in density are negligible compared with 

fractional changes in . Thus we can generally neglect compressibility if . 
On the other hand, supersonic flight past obstacles involves substantial compressions 
and expansions. Also, equation (3.18) and the second of equations (3.16) together 
give 



 

 

Exercise 3.2 Derive equation (3.19).  

 

We now consider equation (3.19) for three cases. If (subsonic flow), an 

increase in corresponds to a decrease in . This was the situation for the running 
tap. 

If (supersonic flow), an increase in requires an increase in the area of 
the nozzle! The explanation for this is that the density decreases faster than the 
velocity increases (equation 3.18); thus mass conservation requires an increase in 

. 

For , the sonic transition between subsonic and supersonic flow, for a 

smooth transition ( finite) equation (3.19) implies that must be zero at the 
transition point. This is important for jet design. The nozzle needs to converge ( 

decreasing) to provide the necessary acceleration from subsonic speeds, but 
should smoothly stop converging and start to diverge where the flow gets to 
supersonic speeds. In astrophysical situations, the same acceleration can be achieved 
by external body forces, such as gravity. 

3.4 The Bondi problem 

We consider the steady, spherically symmetric accretion of gas onto a gravitating 

point mass . We assume a baratropic flow, so . Also we neglect the 
self-gravity of the infalling gas, which is a good approximation if its total mass is 
much less than that of the central point mass. 

The velocity is wholly in the inward radial direction. Since the flow is steady, 
integrating the continuity equation over the region between concentric spherical 
surfaces and using the divergence theorem gives the mass conservation equation 

 

where is a positive constant. Bernoulli's theorem yields 
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where 

 

being the density at infinity. Note that Bernoulli's theorem applies to a given 
radial streamline, and following a streamline out to infinity shows that the constant on 

the right-hand side of (3.21) is zero: for at infinity , and there by 
equation (3.22). Since every point in space is on some radial streamline, and the 
constant is zero on each one of them, equation (3.21) holds not just on a single 
streamline but everywhere in space. 

In the particular case of isothermal flow, where is a constant. 
Evaluating equation (3.22) gives 

 

A characteristic length is 

 

This is called the Bondi radius.  

We may define a dimensionless radial variable, speed and density by 

 

and a dimensionless accretion rate by measuring in units of a mass flux 

across an area : 

 



The governing equations (3.20), (3.21) can then be written in dimensionless form as 

 

and 

 

where for isothermal flow. Equations (3.27) and (3.28) imply that 
changes in the different dimensionless variables are related by 

 

 

and eliminating between these gives a relation between and : 

 

 

Exercise 3.3 Derive equations (3.27) - (3.31) for yourself.  

 

The sonic transition ( ) occurs when . At this point, equation 

(3.28) implies that and (3.27) gives 

. This implies that 

 

and so this is the rate at which mass will be accreted (steadily) onto a point mass, 
assuming spherical symmetry and isothermal flow.  
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3.5 The Parker solar-wind solution 

Parker's model for a thermally-driven solar wind is closely related mathematically to 
the Bondi problem. It is discussed in detail in [3.4]. There are some differences since 
the material is now being accelerated from rest at the central object to a large 
velocity far away, and the conditions at infinity are no longer specified a priori. You 
are encouraged to look at Q. 3f of Problem Set 2 of [3.2]. For a review on the subject 
of the solar wind, see [3.5]. 
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