
Lecture 2 Simple models of astrophysical fluids and 
their motions  

In the previous lecture we established the momentum equation (1.9), the continuity 
equation (1.5), Poisson's equation(1.13) and the energy equation (1.17). Assuming 

that the only body forces are due to self-gravity, so that in equation 
(1.9), these equations are:  

 

 

 

 

Note that these contain seven dependent variables, namely , the three components 

of , , and . The three components of (2.1), together with (2.2) - (2.4), 
provide six equations, and a seventh is the equation of state (e.g. that for an ideal 
gas) which provides a relation between any three thermodynamic state variables, so 

that (for example) the internal energy and temperature can be written in terms 

of and . ( and are assumed to be known functions of the other variables). 
Thus one might hope in principle to solve these equations, given suitable boundary 
conditions. In practice this set of equations is intractable to exact solution, and one 
must resort to numerical solutions. Even these can be extremely problematic so that, 
for example, understanding turbulent flows is still a very challenging research area. 
Moreover, an analytic solution to a somewhat idealized problem may teach one much 
more than a numerical solution. One useful idealization is where we assume that the 
fluid velocity and all time derivatives are zero. These are called equilibrium solutions 
and describe a steady state. Although a true steady state may be rare in reality, the 
time-scale over which an astrophysical system evolves may be very long, so that at 
any particular time the state of many astrophysical fluid bodies may be well 
represented by an equilibrium model. Even when the dynamical behaviour of the body 
is important, it can often be described in terms of small departures from an 
equilibrium state. Hence in this lecture we start by looking at some equilibrium 
models and then derive equations describing small perturbations about an equilibrium 
state.  

2.1 Hydrostatic equilibrium for a self-gravitating body  



If we suppose that everywhere, and that all quantities are independent of 
time, then equation (2.1) becomes  

 

the continuity equation becomes trivial; and equation (2.3) is unchanged. A fluid 
satisfying equation (2.5) is said to be in hydrostatic equilibrium. If it is self-

gravitating (so that is determined by the density distribution within the fluid), then 
equation (2.3) must also be satisfied.  

Putting and in equation (2.4), we obtain that the heat sources 

given by must be exactly balanced by the heat flux term . If this holds, 
then the fluid is also said to be in thermal equilibrium. Since we have not yet 
considered what the heat sources might be, nor the details of the heat flux, we shall 
neglect considerations of thermal equilibrium at this point. Further reading material 
on the topics of this section may be found in [2.1], [2.2], [2.4] and [2.5].  

2.1.1 Spherically symmetric case  

Mass inside a sphere of radius , centred on the origin, is  

 

Gravitational potential is only a function of ; integrating the Poisson's equation 
(2.3) over the spherical volume gives  

 

being a unit vector in the radial direction - a result which could well be anticipated. 

(NB is minus the gravitational acceleration .) Also, by equation (2.5),  

 

The vector points towards the origin, so the pressure decreases as increases.  

One can only make further progress by assuming some relation between pressure 
and density. Suppose then that the fluid is an ideal gas, so  



 

where is the universal gas constant and is the molecular weight. is known as 

the isothermal sound speed. Suppose further that the temperature , as well as , 

are both constants throughout the fluid, so is also a constant. Then equation (2.8) 
becomes  

 

which implies that  

 

Seeking a solution of the form , where and are constants, gives  

 

This is the singular self-gravitating isothermal sphere solution. It is not physically 

realistic at , where and are singular, but nonetheless it is a useful 
analytical model solution. Of course, in a real nondegenerate star, for example, the 
interior is not isothermal: the temperature increases with depth, which in turn means 
that the pressure increases and the star is prevented from collapsing in upon itself 
without recourse to infinite pressure and density at the centre.  

 
Exercise 2.1. Verify that (2.11) is a solution of (2.10). Verify also that 

has dimensions of velocity squared.  
 

2.1.2 Plane-parallel layer under constant gravity  

In modelling the atmosphere and outer layers of a star, the spherical geometry can 
often be ignored, so that such a region can be approximated as a plane-parallel layer. 

Moreover, in the rarified outer layers of a star the gravitational acceleration may be 

approximated as a constant vector. Thus, in Cartesian coordinates , , we have 
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a region in which everything is a function of alone and (taking pointing 

downwards), , where is constant. Hence (2.5) becomes  

 

Since self-gravity is being ignored, equation (2.3) is not used.  

In the isothermal case ( constant), equation (2.12) can be integrated to 
give  

 

where the constant is the density at . The density scale height is 
defined by  

 

Hence, in this case, and is constant. Thus .  

 

Exercise 2.2. Derive the solution (2.13).  
 

2.2 Small perturbations about equilibrium 

In many interesting instances, such as the oscillations of a Cepheid, the motion of a 
fluid body can be considered to be small disturbances about an equilibrium state. 
Suppose that in equilibrium the pressure, density and gravitational potential are given 

by (all possibly functions of position, but 

independent of time) and of course . Using equations (2.5) and (2.3), the 
equilibrium quantities satisfy 
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Suppose now that the system undergoes small motions about the equilibrium state, 
so  

 

so for example is the difference between the 
actual pressure and its equilibrium value at position . Substituting these 
expressions into equations (2.1) - (2.3) yields 

 

We suppose that the perturbations (the primed quantities and the velocity) are small; 
hence we neglect the products of two or more small quantities, since these will be 
even smaller. This is known as linearizing, because we only retain equilibrium terms 
and terms that are linear in small quantities. This simplifies equations (2.17) to: 

 

Subtracting equations (2.15) leaves a set of equations all the terms of which are 
linear in small quantities (e.g. [2.3]): 

 



Equations (2.19) give 5 equations (counting the vector equation as three) for 6 

unknowns ( ). We need another equation to close the system: that 
equation comes from energy considerations. 

In full generality, we should perturb the energy equation (2.4) in the same manner as 
equations (2.1) - (2.3). But there are two limiting cases which are sufficiently 
common to be very useful and are simpler than using the full perturbed equation 

(2.4) because they don't involve a detailed description of how and are perturbed. 

Adiabatic fluctuations 

Let the typical time scale and length scale on which the perturbations vary be and 

, respectively. If is much shorter than the timescale on which heat can be 

exchanged over a distance , then we can say that over a timescale the heat 

gained or lost by a fluid element is zero: . In the previos lecture we 
established the adiabatic relation between the material derivatives if pressure and 
density (equation 1.22): 

 

The linearized form of this equation is 

 

(In the last equation, the adiabatic exponent is also an equilibrium quantity 
because we have linearized, but for clarity the zero subscript has been omitted). 

Isothermal fluctuations  

The converse situation is where the timescale for heat exchange between 
neighbouring material is much shorter than the timescale of the perturbations. Since 
heat tends to flow from hotter regions to cooler ones, efficient heat exchange will 
eliminate any temperature fluctuations. Assuming an ideal gas, perturbing equation 
(2.9) gives 

 

For isothermal fluctuations, . Hence . In terms of 
material derivatives, 



 

Linearizing this gives an equation of the same form as equation (2.21) but without 

the factor . 

2.3 Lagrangian perturbations 

We have previously considered perturbations evaluated at a fixed point in space, so 

for example is the difference between the 
actual pressure and the value it would take in equilibrium at that same point in space. 
One can also evaluate perturbations as seen by a fluid element (cf. the material 

derivative). Such a perturbation will be denoted , for example. Now is the 
displacement of a fluid element from the position it would have been at in equilibrium. 

 

where is the equilibrium position of the fluid element; in the second equation, the 

first two terms of a Taylor expansion of have been taken: strictly we 

should have , but is correct up to terms linear in small 
quantities. Equation (2.24) can be written 

 

where the argument on the left is written (rather than ) and this is again correct 
in linear theory. Of course, equation (2.25) holds for any quantity, not just pressure. 

We note that, in linear theory, (where is any quantity); 
hence since the velocity of the fluid is just the rate of change of position as seen by a 
fluid element, 

 

  

Perturbations at a fixed point in space are called Eulerian; perturbations 

following the fluid are called Lagrangian. See for example [2.1]. 



2.4 Sound waves 

The linearized perturbed Poisson equation (2.19c) has formal solution 

 

the integration being over the whole volume of the fluid. What is under the itegral, is 

just the perturbation to induced by the mass perturbation in volume . In the 
integral on the right-hand side of (2.27) the positive and negative fluctuations in 

tend to cancel out, so that it is often a reasonable approximation to say that 

. Thus we will frequently drop in equation (2.19a). We shall do so in the 
remainder of this lecture, for example. The term is also absent in equation (2.19a) in 
problems where self-gravitation is ignored altogether. The term is very important, 
however, in Lecture 3 when we discuss the Jeans instability. 

Suppose now that we have a homogeneous medium, so that equilibrium quantities 

are independent of position (and hence in particular ). 
Equations (2.19a) and (2.19b) can then be rewritten 

 

so taking the divergence of the first of these equations and substituting for 

from the second gives 

 

Suppose further that the perturbations are adiabatic. Now equation (2.21) for a 
homogeneous medium becomes 

 

where is a constant. Integrating with respect to time gives 

 



which can be used to eliminate from equation (2.29): 

 

This is a wave equation (cf. the 1-D analogue ) and 

describes sound waves propagating with speed (see [2.2]). In fact, is called the 
adiabatic sound speed. (If we had instead assumed isothermal fluctuations, we would 

have obtained a wave equation with replaced by , the isothermal sound speed; 
cf. section 2.1.1). 

One can seek plane wave solutions of eq. (2.30): 

 

where the amplitude , frequency and wavenumber are constants. (Here and 
elsewhere, it is understood when writing complex quantities that the real part should 
be taken to get a physically meaningful solution.) Substituting equation (2.31) into 

(2.30), one finds that is a nontrivial solution ( ) provided 

 

This is known as the dispersion relation for the waves. It specifies the relation that 
must hold between the freqency and wavenumber for the wave to be a solution of the 
given wave equation. With a suitable choice of phase, one can deduce from (2.31) 
that 

 

Note that the adiabatic pressure and density fluctuations are in phase, while the 

displacement is out of phase. A sound wave is called longitudinal, because the 

fluid displacement is parallel to the wavenumber . 

 



Exercise 2.3. Derive the expressions (2.33). Explain physically the phase difference 
between the displacement and the other two quantities in a plane sound wave. 

 
 

2.5 Surface gravity waves 

As a second example of a simple wave solution of the linearized perturbed fluid 

equations, consider an incompressible fluid ( ) of constant density , 

occupying the region below the free surface (so is constant at the 

surface). Suppose also that gravity is uniform and points downwards, and that 
self-gravity is negligible. This is a reasonable model for ocean waves on deep water, 

for example. Equation (2.19b) implies that . Hence equation (2.19a) 
becomes 

 

and taking the divergence of this gives 

 

We seek a solution with sinusoidal horizontal variation in the direction: 

 

where is an as yet unknown function; and without loss of generality . 
Substituting this into (2.35) gives 

 

whence 

 

(see [2.2]). The fluid is infinitely deep, and the solution should not become infinite as 

; hence . 
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The boundary condition at the free surface is that the pressure at the edge of 

the fluid should be constant: hence at . Thus at  

 

Taking the dot product of (2.34) with and using (2.36) and (2.37) yields 

 

everywhere. Hence the boundary condition (2.38) can only be satisfied if and 

satisfy the dispersion relation 

 

It is clear that these are surface waves; for the perturbed quantities all decrease 
exponentially with depth. In reality, of course, the fluid cannot be infinitely deep, so 

is not identically zero. Instead, and will have to be chosen such that some 
boundary condition is satisfied at the bottom of the fluid layer. However, provided the 

depth of the layer is much greater than , it will generally be the case that has 

to be much less than . 
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