
Lecture 1 Basic fluid equations  

The material in sections 1.1, 1.2 and 1.3 can be found in many texts on 
hydrodynamics or fluid mechanics. Good treatments can be found in references [1.1] 
and [1.2]. A different approach is followed by [1.3].  

1.1 The material derivative  

will denote the rate of change of some physical quantity with respect to time 
at a fixed position in space.  

(the material derivative) will denote the rate of change of some quantity 
with respect to time but travelling along with the fluid.  

Let be any quantity (e.g. temperature). Then  

 

where is the velocity of the fluid at position and time .  

 
Exercise 1.1 Convince yourself that if the temperature of the fluid varies with 
position, but that the temperature of any particular parcel of fluid does not change 
with time, then the rate of change of temperature with time as seen by an observer 

at a fixed point in space is , in agreement with equation (1.1) when 

. Conversely, convince yourself also that equation (1.1) gives the 

correct result for the change as seen by the fluid when . If you need 

help, press .  
 

1.2 The continuity equation  

Consider a volume , which is fixed in space. The total mass of fluid in is 

, where is the density of the fluid. The time derivative of the mass 

in is the mass flux into across its surface , i.e.  

 

http://www.maths.qmul.ac.uk/~svv/MTH707U/ex11.htm�


where is the outward normal to the surface . Hence, using the divergence 

theorem , we obtain 

 

Since this holds for arbitrary , it follows that  

 

This is the continuity (or mass conservation) equation. Using equation (1.1) this can 
also be written as  

 

   

1.3 The momentum equation  

One can similarly derive a momentum equation, or equation of motion, for the fluid 
by considering the rate of change of the total momentum of the fluid inside a volume 

. It turns out to be easiest to consider a volume moving with the fluid, so that no 

fluid is flowing across its surface into or out of . The momentum of the fluid in is 

, and the rate of change of this momentum is equal to the net force 

acting on the fluid in volume . These are of two kinds. First there are body forces, 

such as gravity, which act on the particles inside : their net effect is a force  

 

where is the body force per unit mass. (Nb force per unit mass has dimensions of 

acceleration.) E.g., could be the gravitational acceleration . The second kind of 

forces acting are surface forces - forces exerted on the surface of by the 
surrounding fluid. In an inviscid fluid, such as we mostly generally be considering, the 
surface force acts normally to the surface and its net effect is  
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being the pressure. Equating force to change of momentum we obtain  

 

Since , the mass of a fluid element, is invariant following the motion,  

 

and hence, applying the divergence theorem to the surface integral in equation (1.6) 

, we obtain  

 

Since this holds for arbitary material volume , it follows that  

 

This is the momentum equation for an inviscid fluid.  

Taking into account the viscous forces would add the right-hand side of the 

momentum equation with an additional term , where 

is dynamic viscosity - a result which we quote here without derivation. Note that 
the viscous forces can play a key role in some astrophysical applications which we will 
not consider in these lectures (in particular, accretion discs).  

1.4 Newtonian gravity  

A mass at position exerts on any other mass at position an attractive 

force ; the gravitational acceleration can be written as the 

gradient of a potential function, , where  
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Let be a spherical surface of radius centered at . With 

, we have  

 

the result which does not depend on . It can also be verifyed directly that 
the gravitational potential of our point mass (equation 1.10) satisfyes 

(the Laplace equation) everywhere exept of just one point, 

. Using the divergence theorem, we observe that the surface in 
the equation (1.11) can in fact be any (not necessary spherical) surface surrounding 

.  

The gravitational field due to a fluid can be written as a potential, namely the sum of 
the potentials due to all the fluid elements. Summing over all the fluid elements 

inside , and applying the divergence theorem once more, we get  

 

where is volume inside . Since is arbitrary, this equation can be rewritten as 
a partial differential equation, Poisson's equation:  

 

1.5. The mechanical and thermal energy equations  

If one takes Newton's third law, and multiplies by 

velocity , one obtains that rate of work of the forces, , is equal to the rate of 

change of kinetic energy, .  

Similarly, taking the dot product of the equation of motion for a fluid, (1.9), with the 

fluid velocity yields  

 

Equation (1.14) says that the rate of change of the kinetic energy of a unit mass of 
fluid is equal to the rate at which work is done on the fluid by pressure and body 
forces. This is sometimes called the mechanical energy equation.  
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Exercise 1.2. Prove equation (1.14).  

 

An equation for the total energy - kinetic and internal thermal energy - can be 
derived in the same manner as was the momentum equation in Section 1.3. Let the 

internal energy per unit mass of fluid be . Then the rate of change of kinetic plus 
internal energy of a material volume (i.e. one moving with the fluid) must be equal to 
the rate of work done on the fluid by surface and body forces, plus the rate at which 
heat is added to the fluid. Heat can be added in two ways: one is by its being 

generated at a rate per unit mass within the fluid volume (e.g. by nuclear 

reactions), while the second is by the flux of heat into the volume from the 
surroundings (e.g. by radiation). Thus  

 

In the same way as for the momentum equation, one rewrites all the surface integrals 
in this equation as volume integrals, using the divergence theorem. The resulting 

equation holds for an arbitrary volume and so one deduces that  

 

One can derive an equation for the thermal energy alone by dividing (1.16) by the 
density and then subtracting the kinetic energy equation (1.14):  

 

Note that the divergence of has been replaced by using the 
continuity equation (1.5).  

Noting that the volume per unit mass is just the reciprocal of the density, i.e. 

, we recognise the thermal energy equation (1.17) as a statement of the 
first law of thermodynamics:  



 

that is, the change in the internal energy is equal to the work done (on the 

fluid) plus the heat added. Note that are properties of the fluid (in fact 
they are thermodynamic state variables) and we denote changes in them with the 

symbol . In contrast, there is no such property as the heat content and so we 
cannot speak of the change of heat content. Instead, we can only speak of the heat 

added, and we therefore use a different notation, i.e. . The second law of 
thermodynamics states that  

 

where is a thermodynamic state variable, the specific entropy (i.e. the entropy per 
unit mass). Combining this with the first law, equation (1.18), yields  

 

1.6. Adiabatic approximation. Ideal gases  

In practical applications, the thermal energy equation (1.17) can often be simplified. 
The most important simplification comes from the so-called adiabatic approximation. 
In the adiabatic approximation, we neglect any heat generation inside the fluid 
element and any heat exchange with the surroundings, which means setting 

(the entropy is conserved).  

For the adiabatic changes, pressure and density variations in a fluid element are 
related with each other through the so-called adiabatic exponent  

 

subscript designates that the partial derivative is taken at constant entropy. In 
terms of material derivatives, the thermal energy equation (1.17) is then equivalent 
to  

 

To evaluate the adiabatic exponent , we need to know the equation of state. The 
simplest (and often quite accurate) approximation here is the equation of state of an 
ideal gas,  



 

where is total number of particles (molecules or atoms) in volume , and is 
Boltzmann constant. In the ideal gas, interactions between particles are neglected, 
and the internal inergy is just the sum of the kinetic energies of all the free particles. 

For a single particle, the kinetic energy is times the number of degrees of 
freedom in its free motion. For a monoatomic gas (in which the particles can be 
considered as point masses) there are three degrees of freedom (three possible 
directions of translational motion), and we have  

 

This simple expression for the internal energy gives the adiabatic exponent of an ideal 
monoatomic gas as  

 

 

Exercise 1.3. Fill in the missing steps to derive equation (1.25).  
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