EXERCISE 6.1

ou /ot = 8°0r / at* = —w?dr

With fand
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or Ir and VLIJD - rgD, the radial component of the

momentum equation (6.7a) reduces to (6.9a), and its horizontal component - to
(6.9b).
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the continuity equation (6.7b) gives (6.9c). With dr and
~dpg

dr , the adiabatic energy equation (6.7c) gives (6.9d).
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Now express p1in terms of I:)1and Utrom the equation (6.9d):
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and V - p1 /(pﬂw )from the equation (6.9b), and substitute into (6.9a,c) to

eliminate piand Vand to get (6.10b,a).

EXERCISE 6.2

We need to prove that the equation
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when considered as an integral equation with function (W)specified, has a solution
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which allows to infer IFlas function of ri / Ci, and hence Cas function of r.
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Take the derivative of the both sides of (6.20) with respect to w, considered as a
parameter in the integral:
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To evaluate the inner integral, simplify it by using new variable t (Just linear
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rescaling of W ) as
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We thus have
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With substitution t — SIn(B) the inner integral is
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and we arrive to the identity






