
Lecture 6 Linear adiabatic nonradial oscillations. 
Helioseismology 

6.1 Nonradial modes of oscillations of a star 

In the last lecture we considered stellar oscillations where the motion was wholly in 
the radial direction. In this lecture we shall consider more general motions. The 
equilibrium structure about which the oscillations take place is still presumed to be 
spherically symmetric, but the velocity will now have a horizontal as well as a radial 

component, and the velocity and other perturbations will depend not only on but 

also on and , where are spherical polar coordinates. 

A well-studied star in which nonradial oscillations are observed is the Sun. For this 
reason, we shall draw upon the example of the Sun frequently in this lecture. 
However, it should not be forgotten that other pulsating stars are known to exhibit 
nonradial oscillations (e.g. ZZ Cetis, Delta Scutis and Ap stars). 

As a preliminary, we list some few mathematical expressions which will be used later 

in this Lecture. In spherical coordinates , the gradient, divergence and 
Laplacian operators can be written as 

 

As we will see below, it will be possible to separate out the angular dependences and 
to reduce the oscillation equations to ordinary differential equations with one 



independent variable . For variable separation, we will use normalized spherical 
harmonics 

 

where are the associated Legendge polynomials 

 

The degree of the spherical harmonic takes any integer value ; 

at each , the azimuthal order can take value, . 
Spherical harmonics satisfy the second-order partial differential equation 

 

6.2 Linear adiabatic wave equations in Cowling approximation 

As with radial oscillations, we assume that the oscillations are adiabatic, and start 
with the same equations for linear perturbations (2.19, 2.21). To simplify the 
analysis, we will neglect in this lecture the effects of gravity perturbations; in stellar 
pulsation theory this approximation is known as Cowling approximation. This 
approximation is not very restrictive and can in general be easily relaxed; we adopt it 
here with the only reason to make mathematical derivations more transparent. In 
Cowling approximation, our starting equations are 

 



We now seek the solutions of these equations with sinusoidal time dependence and 
with angular dependence specified by a particular spherical harmonic as 

 

with . The expressions (6.8) allow to separate the 
angular dependences in equations (6.7), reducing them to the system of ordinary 
differential equations 

 

using and . The 
first of the equations (6.9) comes from the radial component of the momentum 

equation (6.7a), the second - from its horizontal component. Eliminating and in 
equations (6.9), we arrive to 

 

where stands for the Brunt-V�is�l� frequency defined earlier by equation (5.5). 



 
Exercise 6.1 Fill in the missing steps to derive the oscillation equations (6.10), 

starting with variable separation in (6.7) by using equations(6.1-6.6).  
 

6.3 Boundary conditions 

The boundary conditions are derived in a manner similar to radial equations. At 

, the second-order system of linear differential equations (6.10) has a regular 
singular point; one of the two linearly-independent solutions is regular, another is 
singular. Near the origin, the physically relevant regular solution behaves as 

 

At the stellar surface, with Lagrangian pressure perturbation set to zero, the outer 
boundary condition is 

 

the same as for radial modes. 

6.4 Mode classification in degree . 

As with radial oscillations, the boundary-value problem specified by the differential 
equations (6.10) and boundary conditions (6.11, 6.12) has non-trivial solutions only 

for certain values of , called eigenvalues. The major difference is that we now 

have a separate set of eigenfrequencies for each particular value of degree . The 

spherical harmonic determines the angular dependence of the 
eigenfunctions, and hence the surface distribution of the oscillation amplitudes as 

seen by an observer. Radial oscillations is just a particular case with . 

Oscillations with are called dipole oscillations, - quadrupole, etc. The 

surface amplitudes of modes are shown schematically below. Dark and light 

areas correspond to positive and negative (e.g. when dark areas move 
upwards, light areas move downwards): 
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The degree is the total number of the node lines on the solar 

surface. The azimuthal order is the number of the node lines going along a 

meridian; there are node lines parallel to the equator. Note that does not 

enter the oscillation equations (6.10), which means that modes of the same but 

with different have the same frequencies. This degeneracy comes from the 
spherical symmetry of the equilibrium solar configuration. 

6.5 Local dispersion relation. Mode classification in radial order . 

Assume that we have solutions of the wave equations (6.10) which oscillate rapidly in 
radial direction, 

 

with amplitudes and varying much slower than the exponents ( is 
large). The analysis similar to that of radial modes now leads to the dispersion 
relation 

 

We observe that when , there are now two possibilities of having large 

and positive: shall be either very large, when we have approximately 

 

or very small, when we have approximately 

 

The physics behind this result is that we now have two different types of waves which 
can propagate in the solar interior. The last relation (6.16) refers to internal gravity 
waves, with restoring forces provided by buoyancy. These waves are known in the 
oceans, and in the Earth's atmosphere. The gravity waves can be "trapped" to form 
the low-frequency standing waves, called gravity modes, or g-modes. 



At high frequencies, we have (6.15) as a proper dispersion relation, which can be 
rewritten as 

 

Here can be interpreted as a horizontal wavenumber, i.e. the horizontal 

component of the total wavevector . We have nothing else but the dispersion 

relation of the sound waves . When , we have radial 
waves. A non-radial wave propagation and trapping of 
the acoustic wave in solar interior are shown 
schematically below. When travelling downwards,the 
acoustic wave suffers the refraction because of the 
larger temperature, and hence larger sound speed 
deeper in the Sun, reflects back after approaching the 
surface, and so on. If after a closed path the wave 
returns back in a proper phase, a standing wave is 
formed. This standing wave represents a particular 
mode of solar oscillations. These high-frequency modes 
are called acoustic modes, or p-modes. At given degree 

, different p modes are classified according to the 

number of nodes in their radial displacement function ; the number of nodes is 

called the radial order . Mode p1 has one node in , mode p2 has two nodes, 
etc. 

The frequencies of p modes increase when the radial order increases; frequencies 
of g modes decrease when their radial order increases. Between the two frequency 
domains of the high-frequency p modes and the low-frequency g modes there is 
usually an extra mode, which physical nature is that of a surface gravity wave: this is 
the so-called fundamental, or f-mode. A more comprehensive discussion of the 
classification of nonradial oscillations can be found in [6.1]. 

6.6 Inversion of the sound speed in solar interior 

In solar seismology we have precise measurements of a large number of p-mode 

frequencies of different degree (from zero to few thousands) and of different radial 

oreder . These observational data allow to address the inverse problem of solar 
seismology - the reconstruction of the internal structure of the Sun from its oscillation 
frequencies. 

Using the local dispersion analysis of the previous section, the resonant frequencies 
must satisfy 



 

where is an inner turning point with . Equation (6.18) states that at 

frequencies of acoustic resonances, integer number of half-waves in shall fit 

within the acoustic cavity ; this number is radial order . An additional 

phase shift , which we will not specify explicitly here, accounts for a proper 
boundary conditions at the top and at the bottom of the acoustic cavity. 

With radial wavenumber specified by equation (6.15), we have 

 

where 

 

The oscillation frequencies provide the right-hand side of the equation (6.19), and 

thus function is available from the observations. From its definition (6.20), 

is determined by the sound-speed profile only. The integral relation 

(6.20) between the two functions and can be inverted analytically. The 
result is 

 

where and . With expression (6.22), we obtain as a 

function of , and hence as a function of . 



 

Exercise 6.2 Prove the equation (6.22). [Hint: differentiate as given by 
(6.20), substitute the resulted integral into (6.22), and change the order of 
integration]. This exercise is an optional one: try it only if you feel yourself confident 

with double integrals.  
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