Molecular Interpretation of Temperature

• We can take the pressure as it relates to the kinetic energy and compare it to the pressure from the equation of state for an ideal gas

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{v^2} \right) = N k_{\rm B} T$$

• Therefore, the **temperature** is a direct measure of the **average molecular kinetic energy**

Temperature and kinetic energy

 Simplifying the equation relating temperature and kinetic energy gives

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_{\rm B}T$$

This can be applied to each direction,

$$\frac{1}{2}m\overline{v_x^2} = \frac{1}{2}k_{\rm B}T$$

with similar expressions for v_v and v_z

• Each translational degree of freedom contributes an equal amount to the energy of the gas

Total Kinetic Energy

• The total kinetic energy is just *N* times the kinetic energy of each molecule

$$K_{\text{tot trans}} = N\left(\frac{1}{2}m\overline{v^2}\right) = \frac{3}{2}Nk_{\text{B}}T = \frac{3}{2}nRT$$

- If we have a gas with only translational energy, this is the **internal energy** of the gas
- This tells us that the internal energy of an ideal gas depends only on the temperature

Root Mean Square Speed

- The root mean square (rms) speed is the square root of the average of the squares of the speeds
 - -Square, average, take the square root

$$v_{rms} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_N^2}{N}}$$

$$v_{\rm rms} = \sqrt{\frac{3k_{\rm B}T}{m}} = \sqrt{\frac{3RT}{M}}$$

- •*M* is the **molar mass** and $M = mN_A$ in **kg/mol**
- •m is the molecular mass in kg

m = atomic mass(periodic table)×amu

•Atomic mass unit (amu)= 1.66 ´ 10⁻²⁷ kg

Some Examples v_{rms} Values

Table 21.1

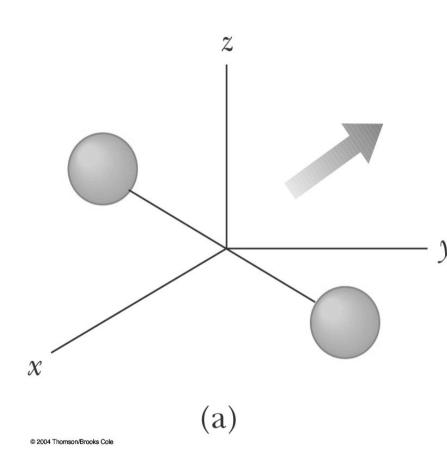
At a given temperature, lighter molecules move faster, **on the average**, than heavier molecules

Some rms Speeds		
Gas	Molar mass (g/mol)	v _{rms} at 20°C(m/s)
H_2	2.02	1 902
Не	4.00	1 352
H_2O	18.0	637
Ne	20.2	602
N_2 or CO	28.0	511
NO	30.0	494
O_2	32.0	478
CO_2	44.0	408
SO_2	64.1	338

 Each translational degree of freedom contributes an equal amount to the energy of the gas

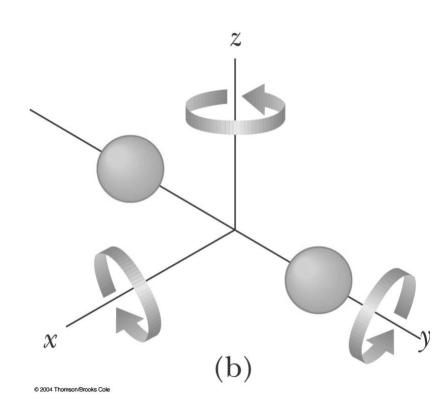
 In general, a degree of freedom refers to an independent means by which a molecule can possess energy

- With complex molecules, other contributions to internal energy must be taken into account
- One possible energy is the translational motion of the center of mass

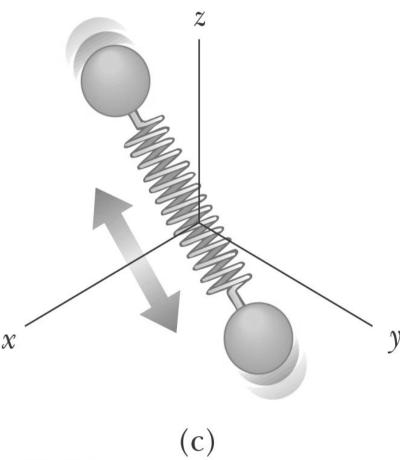


Rotational motion about the various axes also contributes

We can neglect the rotation around the *y* axis since it is negligible compared to the *x* and *z* axes



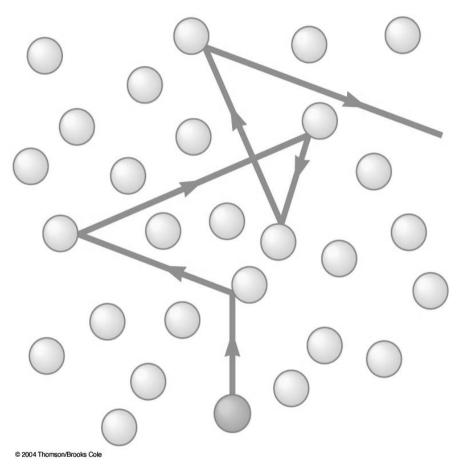
- The molecule can also vibrate
- There is kinetic energy and potential energy associated with the vibrations



Theorem of Equipartition of Energy

 Each degree of freedom contributes 1/2k_BT to the energy of a system, where possible degrees of freedom in addition to those associated with translation arise from rotation and vibration of molecules

- A molecule moving through a gas collides with other molecules in a random fashion
- This behavior is sometimes referred to as a *randomwalk process*
- The mean free path increases as the number of molecules per unit volume decreases



- The molecules move with constant speed along straight lines between collisions
- The average distance between collisions is called the mean free path
- The path of an individual molecule is random
 - The motion is not confined to the plane of the paper

- The mean free path is related to the diameter of the molecules and the density of the gas
- We assume that the molecules are spheres of diameter d
- No two molecules will collide unless their paths are less than a distance d apart as the molecules approach each other

The mean free path, l, equals the average distance vDt traveled in a time interval Dt divided by the number of collisions that occur in that time interval:

$$\ell = \frac{\overline{v}\Delta t}{\left(\pi d^2 \overline{v} \Delta t\right) n_V} = \frac{1}{\pi d^2 n_V}$$

Collision Frequency

• The number of collisions per unit time is the collision frequency:

$$f = \pi d^2 \overline{v} n_V$$

• The inverse of the collision frequency is the collision mean free time