Molecular Interpretation of

Temperature

 We can take the pressure as it relates to the
Kinetic energy and compare it to the pressure
from the equation of state for an ideal gas

3V J\ 2

 Therefore, the temperature is a direct measure
of the average molecular kinetic energy



Temperature and kinetic energy

o Simplifying the equation relating
temperature and kinetic energy gives

lm p? = 3kBT
2 2
e This can be applied to each direction,
lmg = l/cBT
2 2

with similar expressions for v, and v,

e Each translational degree of freedom contributes
an equal amount to the energy of the gas



Total Kinetic Energy

* The total kinetic energy is just N times the kinetic
energy of each molecule

K., =N L 2z\kaT _ 3 R7
2 2 2

 |f we have a gas with only translational energy,
this is the internal energy of the gas

* This tells us that the internal energy of an ideal
gas depends only on the temperature



Root Mean Square Speed

 The root mean square (rms) speed Is the
sguare root of the average of the squares
of the speeds

—Square, average, take the square root
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M is the molar mass and M = mN, in Kg/mol

m is the molecular mass in kg

e m = atomic mass(periodic table)xamu

¢Atomic mass unit (amu)=1.66" 1027 kg



Some Examples v, . Values

Table 21.1
A : Molar mass Urms
Lagiven Gas (g/mol) at 20°C(m/s)
tgmperature, Ho 2.02 1 902
lighter molecules He 4.00 1352
HoO 18.0 637
move faster, on . e i
the average, than NoorCO 280 511
heavier molecules ¢ 20 £
Oy 32.0 478
COy 44.0 408

SO9 64.1 338

& 2004 Thomson/Brooks Cole



Degrees of freedom

 Each translational degree of freedom
contributes an equal amount to the energy
of the gas

* In general, a degree of freedom refers to
an independent means by which a
molecule can possess energy



Degrees of freedom

o With complex 2
molecules, other
contributions to internal
energy must be taken
Into account

 One possible energy Is
the translational
motion of the center of  «
mass (a)

2004 Thomson/Brooks Cale



Degrees of freedom

 Rotational motion
about the various axes
also contributes \
— We can neglect the

rotation around the y W
axis since it is negligible | S i

compared to the x and z

axes e - <




Degrees of freedom

e The molecule can Z
also vibrate

 There Is kinetic
energy and potential
energy associated
with the vibrations

@ 2004 Thomson/Brooks Cole



Theorem of Equipartition of Energy

 Each degree of freedom contributes
1/2k ;T to the energy of a system, where
possible degrees of freedom In addition to
those associated with translation arise
from rotation and vibration of molecules



Mean Free Path

* A molecule moving through Q)
a gas collides with other |

molecules in a random M O
fashion O A XY

 This behavior is sometimes A
referred to as a random- /
walk process B

 The mean free path O O
increases as the number of ()
molecules per unit volume
decreases \J
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Mean Free Path

 The molecules move with constant
speed along straight lines between
collisions

 The average distance between
collisions Is called the mean free path

 The path of an individual molecule is
random

— The motion is not confined to the plane of
the paper



Mean Free Path

 The mean free path is related to the
diameter of the molecules and the
density of the gas

e We assume that the molecules are
spheres of diameter d

* No two molecules will collide unless
their paths are less than a distance d
apart as the molecules approach each
other



Mean Free Path

The mean free path, £ , equals the

average distance vDt traveled in a time
interval Dt divided by the number of
collisions that occur in that time interval:
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Collision Frequency

e The number of collisions per unit time is
the collision frequency:

f=nrd’vn,

e The Inverse of the collision frequency Is
the collision mean free time



