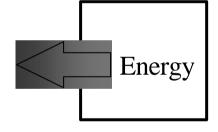
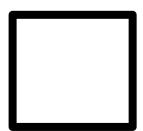

System and Surroundings

- System the part of the world in which we have a special interest.
- Surroundings where we make our observations.



surroundings


Types of Systems

- Open exchanges matter and energy with surroundings.
- Matter Energy

• **Closed** - exchanges only energy with surroundings.

• **Isolated** - no interchange with surroundings.

Walls

- Rigid vs. moveable. Rigid walls allow the system to do no work.
- Adiabatic vs. diabatic. Adiabatic walls allow no heat transfer.
- Non-permeable vs. permeable. A nonpermeable wall allows no influx of matter.

Equilibrium

- Thermal Equilibrium system and surroundings at the same temperature.
- Mechanical Equilibrium system and surroundings at the same pressure.
- Chemical Equilibrium system and surroundings at the same chemical concentrations.

GLOSSARY

Variables are classified as either extensive or intensive.

Extensive variables vary linearly with the size of the system.

Internal energy, *E*, is an example of an extensive variable.

Extensive variables exhibit the property of being **additive** over a set of subsystems. As example: if a system is composed two subsystems, one with energy E1, the second with energy E2, then the total system energy is E = E1 + E2.

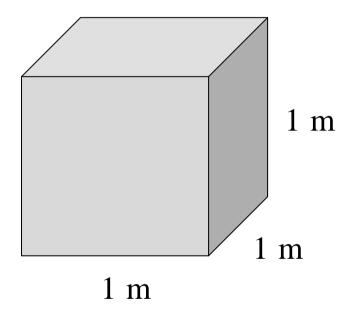
Other examples of **extensive variables** in thermodynamics are: volume, *V*, mole number, *N*, entropy, *S*.

Intensive variables are **independent of the size** of the system.

The intensive variables commonly encountered in thermodynamics are temperature, *T* and pressure, *P*

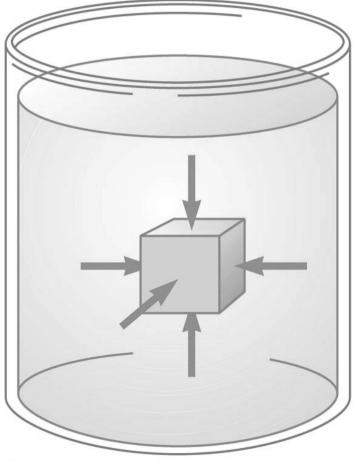
GLOSSARY

- **Equation of State** A relationship between the state variables of the system.
- Simple systems in equilibrium are fully specified by two properties such as **temperature** and **volume**; all the other functions of state are functions of these.
- For an ideal gas, the equation of state is PV = nRT.


Bulk Variables

- Volume m³
- Pressure Pa
- Temperature K
- Composition moles

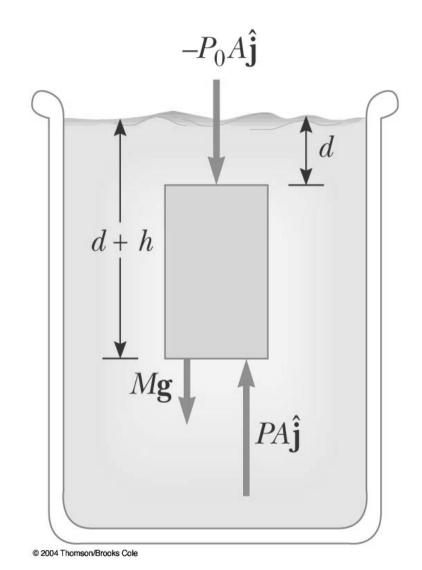
Volume


- length³
- units
 - $-m^3 \text{ or } \text{cm}^3$
 - liter = 1000 cm³

Pressure

 The pressure P of the fluid at the level to which the device has been submerged is the ratio of the force to the area

$$P \equiv \frac{F}{A}$$


© 2004 Thomson/Brooks Cole

Variation of Pressure with Depth

- Fluids have pressure that varies with depth
- If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium
- All points at the same depth must be at the same pressure
 - Otherwise, the fluid would not be in equilibrium flow

Pressure and Depth

- Examine the darker region, a sample of liquid within a cylinder
 - It has a crosssectional area A
 - Extends from depth *d* to *d* + *h* below the
 surface
- Three external forces act on the region

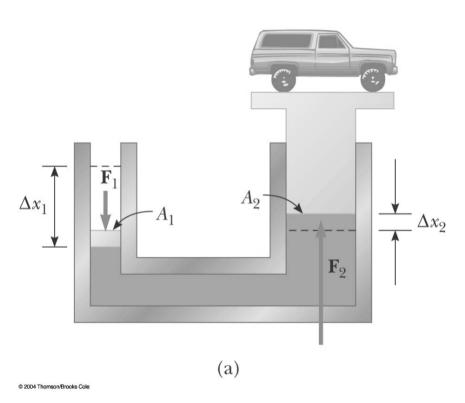
Pressure and Depth

- The liquid has a density of r
 - Assume the density is the same throughout the fluid
 - This means it is an uncompressible liquid
- The three forces are:
 - Downward force on the top, P_0A
 - Upward on the bottom, PA
 - Gravity acting downward, Mg
 - The mass can be found from the density:

$$M = \rho V = \rho A h \qquad P = P_0 + ?gh$$

Pascal's Law

- The pressure in a fluid depends on depth and on the value of P_0
- An increase in pressure at the surface must be transmitted to every other point in the fluid
- This is the basis of *Pascal's law*

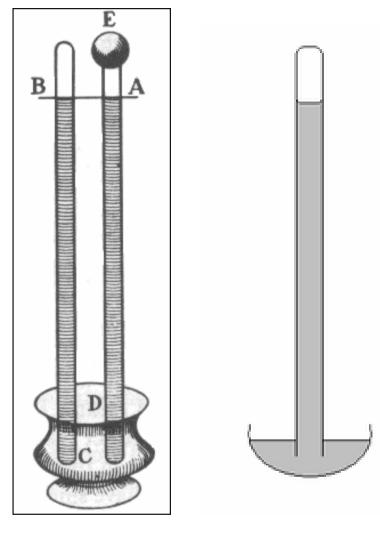

Pascal's Law

- Named for French scientist Blaise Pascal
- A change in the pressure applied to a fluid is transmitted undiminished to every point of the fluid and to the walls of the container

$$P_1 = P_2$$
$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Pascal's Law, Example

- Diagram of a hydraulic press (right)
- A large output force can be applied by means of a small input force
- The volume of liquid pushed down on the left must equal the volume pushed up on the right



Atmospheric Pressure

- If the liquid is open to the atmosphere, and P₀ is the pressure at the surface of the liquid, then P₀ is atmospheric pressure
- $P_0 = 1.00 \text{ atm} = 1.013 \text{ x} 10^5 \text{ Pa}$
 - $1 \text{ Pa} = 1 \text{ N/m}^2 = 10^{-5} \text{ bar} = 9.8692 \times 10^{-6} \text{ atm}$
 - 1 Torr = 1 <u>mmHg</u>
 - 1 Bar = 750.06 Torr

Evangelista Torricelli lived from 1608 to 1647

First barometer