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Introduction
• Our primary task of electrostatics is to find the electric 

field of a given stationary charge distribution.
• In principle we can calculate this using Coulomb’s lawIn principle we can calculate this using Coulomb s law

• Unfortunately, the above integral can be difficult to 
calculate for arbitrary charge distribution also the problem 
increases since we need to worry about the direction of 
the field
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the field.
• Occasionally, for problem with high symmetry, we can use 

Gauss’ Law
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Introduction
• A better strategy is to calculate the electric potential which 

is somewhat easier integral
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and the electric field can be calculated from the gradient 
of this electric potential.

• However, in some problem, we only know the total 
charge, while the charge distribution is not known (for 
example in a conductor)
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example in a conductor).
• Or in some cases, we only know the potential at certain 

boundary.
• For this kind of problem, recasting the above integral 

equation into a differential equation is a better choice.
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Introduction
• The differential equation of the potential problem is the 

Poisson’s equation
2 ρ

∇ V

with appropriate boundary conditions, the solution of this 
problem can be obtained.

• When, the region of interest contains no charge 
distribution (the charge distribution that resulted the 
electric potential we are looking for is located outside the

0

2

ε
ρ

−=∇ V

Electromagnetism

electric potential we are looking for is located outside the 
region of interest), then the above equation reduces to 
Laplace’s equation

• In Cartesian coord. system :
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Laplace’s Equation in 1D
• In 1D problem, the Laplace’s equation simplifies into
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• With a general solution given as

i.e. an equation of a straight line and it contains two 
undetermined constants, just as what we expected from a 
second-order differential equation.
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• These undetermined constants are fixed by the given 
boundary condition.
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Laplace’s Equation in 1D
• Two features of this solution are

For any a, V(x) is the average of V(x + a) and V(x – a)
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1

Laplace’s equation tolerates no local maxima or minima, extreme 
value of V must occur at the boundary (end) points. This is a 
consequences of the first property above.

[ ])ax(V)ax(V)x(V −++=
2

ElectromagnetismAlexander A. Iskandar 7

Laplace’s Equation in 2D
• In 2D problem, the Laplace’s equation becomes into
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• For this partial differential equation, we cannot write a 
closed form general solution.

• However, the two features of the solution are the same
For any point (x,y), V(x,y) is the average of those potential on a 
circle with radius R around it
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Laplace’s equation tolerates no local maxima or minima, extreme 
value of V must occur at the boundary points.

• Functions with these properties (i.e. solution to the 
Laplace’s equation) are called a harmonic function.
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Laplace’s Equation in 3D
• Two features of the solution remains the same

The value of            at point    , is the average value of            over 
a spherical surface of radius R centered at

)r(V r rr )r(V r
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Laplace’s equation tolerates no local maxima or minima, extreme 
value of V must occur at the boundary (end) points. This is a 
consequences of the first property above.

• The proof of the second property above is as follows, 
consider a point charge q and we want to find the
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consider a point charge q and we want to find the 
potential a distance away from this charge. For simplicity, 
we put the point charge at the z axis and calculate the 
potential at the origin through averaging around a sphere.
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Laplace’s Equation in 3D
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Boundary Conditions and Uniqueness
• To solve for the potential, we need boundary conditions.
• For the 1D problem, it is easy:

Specify the potential values at both ends, orSpecify the potential values at both ends, or
Specify the potential value at one end and the value of the 
derivatives of the potential at the other end

• But we cannot use the following boundary conditions:
Specify just one boundary the value or the value of the derivative 
of the potential.
Specify the value of the derivative of the potential at both ends 
( d d if h l i i if h diff )

Electromagnetism

(redundant if they are equal, inconsistent if they are different)

• For the 2D and 3D problem, which boundary condition 
should we use ?
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Boundary Conditions and Uniqueness
The First Uniqueness Theorem
• The solution to Laplace’s equation in some volume  V is 

uniquely determined if the potential is specified on theuniquely determined if the potential is specified on the 
boundary surface S.

• Proof: suppose we have V1 and V2 two solutions of the 
same boundary condition, then both of them satisfy 
Laplace’s equation

• The difference V = V V also satisfies Laplace’s eqn
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• The difference V3 = V1 – V2, also satisfies Laplace s eqn.
• But V3 is zero at the boundary, and Laplace’s equation 

admits no local extrema in the volume of interest (extrema 
only at the boundary), hence V3 is zero everywhere, thus
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Boundary Conditions and Uniqueness
• In other words, the First Uniqueness theorem also states 

that, no matter how you got your results for the potential, 
as long as they satisfy Laplace’s equation and has the 
correct value at the boundary, then you result is correct.

• The uniqueness theorem can also include the problem 
when there are some charge distribution on the volume of 
interest.

• Suppose we have V1 and V2 two solutions of the Poison’s 
equation with the same boundary condition,

Electromagnetism

q y ,
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Boundary Conditions and Uniqueness
• Then the difference will satisfies Laplace’s equation 

and hence by the same argument as before it follows that
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and hence by the same argument as before, it follows that 
on the boundary V3 is zero, hence
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Boundary Conditions and Uniqueness
• For problems with charged conductors, although we do 

not know how these charges is distributed in the 
conductor, but the following uniqueness theorem 
guarantee that the electric field is uniquely determined.

Second Uniqueness Theorem
• In a volume  V, which may contain some charge density ρ, 

surrounding some charged conductors, the electric field is 
uniquely determined if the total charge on each

Electromagnetism

uniquely determined if the total charge on each 
conductors is given.

• Proof: see textbook.
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Laplace’s Equation in Cartesian Coord.
• To solve the 3D Laplace’s equation, we apply the method 

of separation of variables: we look for solutions that are 
product of functions, each of which depends on only one 
of the coordinates.

• For this method to be applicable, the boundary conditions 
should also be written as product of boundary conditions, 
i.e. the boundary condition does not mixed the 
coordinates of the problem.

• This method is applicable to problems where potential or

Electromagnetism

pp p p
the surface charge density σ on the boundary is given.

• Example 3.3
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Complete and Orthonormal functions
• The set of trigonometric functions sine and cosine forms a 

complete set of function.
• The set of functions fn(x) is said to be complete if anyThe set of functions  fn(x) is said to be complete if any 

other function  f(x) can be expressed as a linear 
combination of these complete set of functions

In other words, the complete set of functions are basis 
function in the functional space.
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• A more useful complete set of functions are the complete 
set of orthogonal functions, with its orthogonality is 
defined by an inner product operation
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Laplace’s Equation in Cartesian Coord.
• Example 3.5
• (see also Example 3.4)
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