
Section 1

The Equations of Stellar structure

1.1 Introduction: motivation

In this part of the course, we consider aspects of the internal operation of (principally) single

stars: their structure and evolution. Our overarching aim in this is to interpret observations

such as the Hertzsprung�Russell diagrams shown in Fig. 1.1

For the present purposes, we use a working de�nition of a star as an isolated body that is

bound by self-gravity, and which radiates energy supplied by an internal source. Self-gravity

ensures that the star is approximately spherical (rotation introduces centrifugal forces which,

for su�ciently fast rotation, may introduce distortions); the internal source of energy is nuclear

fusion for most of the stellar lifetime (although for, e.g., white dwarfs, stored thermal energy is

responsible for the observed luminosity).

The essence of stellar structure is the competition between the force of gravity, which always

wants to make a star collapse, and the outward force of pressure. For almost the entire lifetime

of a star, these forces are in balance; the star is in (or very close to) hydrostatic equilibrium,

but as internal energy is released, the internal composition, and hence structure, must evolve.

Thus `stellar structure' and `evolution' are intimately linked.

1.2 Review: Basic Equations of Stellar Structure

For reference, we remind ourselves of the basic equations of stellar structure, introduced in

PHAS 2112 and Dr. Zane's notes:
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Figure 1.1: Hertzsprung�Russell (colour�magnitude) diagrams. Left, Hipparcos volume-limited

sample (stars of di�erent ages); right, HST observations of the globular cluster 47 Tuc (coeval

sample).

1.2.1 Hydrostatic equilibrium; equations of state

dP (r)
dr

=
−Gm(r)ρ(r)

r2
= −ρ(r) g(r) (1.1)

or

dP (r)
dr

+ ρ(r) g(r) = 0

[In the supplementary 2112 notes, eqtn. 12.1; this numbering may well di�er from that in use

when you took in PHAS 2112].

The principal sources of pressure throughout a normal star are gas pressure, and radiation

pressure.1 We will take the corresponding equations of state to be, in general,

PG = nkT ;

= (ρkT )/(µm(H)) (1.2)

PR =
1
3
aT 4 (1.3)

for number density n at temperature T , density ρ; µ is the mean molecular weight, and m(H)

the hydrogen mass; a is the radiation constant, a = 4σ/c; with σ the Stefan-Boltzmann

constant, and k Boltzmann's constant.

1Electron degeneracy pressure is important in white dwarfs, and neutron degeneracy pressure in neutron stars.
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1.2.2 Mass Continuity

dm
dr

= 4πr2ρ(r); (1.4)

[PHAS 2112 eqtn. 12.3] this form holds in the case of hydrostatic equilibrium.

1.2.3 Energy continuity

dL
dr

= 4πr2 ρ(r)ε(r) (1.5)

[PHAS 2112 eqtn. 12.7].

where

• r is radial distance measured from the centre of the star

• P (r) is the total pressure at radius r

• ρ(r) is the density at radius r

• g(r) is the gravitational acceleration at radius r

• m(r) is the mass contained with radius r

• L(r) is the total energy transported through a spherical surface at radius r

• ε(r) is the energy generation rate per unit mass at radius r

The stellar radius is R∗, the stellar mass is M∗ ≡ m(R∗), and the emergent luminosity

L∗ ≡ L(R∗) (dominated by radiation at the stellar surface).

1.2.4 Energy transport

We suppose that the Sun is hotter inside than outside, so there must be an energy �ow. We are

familiar with three basic mechanisms of energy transport:

� radiation

� convection

� conduction

In the context of stellar astrophysics, conduction is important only under the degenerate

conditions found in white dwarfs and neutron stars (since gases in general are poor conductors).

For `normal' stars, the key processes transporting energy are radiation and convection.
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Radiative transport: Energy is transported by photons. In stellar interiors the opacities are

high, and the mean free path correspondingly low � about 1 mm in the case of the Sun

(Section 14.4). In this sense, the radiation doesn't �ow outwards, but rather di�uses outwards.

Convective transport: If the radiation is unable to escape a layer at a rate that matches the

energy input, then `something's got to give'. What gives is the static nature of the layer:

convection is initiated and starts to transport energy. This suggests that hydrostatic

equilibrium breaks down, but the dynamical timescale is short compared to the �ow timescale

(Section 14), so in practice HSE continues to be an excellent approximation.

The nett energy �ux is, under most circumstances, simply the sum of radiative and convective

terms,

L(r) = Lrad(r) + Lcnv(r)

1.3 Radiative energy transport in stellar interiors

1.3.1 The equation of radiative transfer in stellar interiors

In optically thick environments � in particular, stellar interiors � radiation is often the most

important transport mechanism, but for large opacities the radiant energy doesn't �ow directly

outwards; instead, it di�uses slowly outwards.

To express this transport quantitatively, the same general principles may be applied as led to

the equation of radiative transfer in plane-parallel stellar atmospheres

µ
dIν
dτν

= Iν − Sν . (1.6)

[PHAS 2112 eqtn. (5.6), and Dr. Zane's lectures]; there is no azimuthal dependence of the

radiation �eld, and the photon mean free path is (very) short compared to the radius. The

conditions appropriate to `local thermodynamic equilibrium' (LTE; PHAS 2112 Sec. 13.1)

apply, and so the radiation �eld is very well approximated by black-body radiation.
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Box 1.1. It may not be immediately obvious that the radiation �eld in stellar interiors

is, essentially, isotropic; after all, outside the energy-generating core, the full stellar

luminosity is transmitted across any spherical surface of radius r. However, if this

�ux is small compared to the local mean intensity, then isotropy is justi�ed.

The �ux at an interior radius r (outside the energy-generating core) must equal the

�ux at R (the surface); that is,

πF = σT 4
eff

R2

r2

while the mean intensity is

Jν(r) ' Bν(T (r)) = σT 4(r).

Their ratio is

F

J
=
(
Teff

T (r)

)4(R
r

)2

.

Temperature rises rapidly below the surface of stars, so this ratio is always small; for

example, in the Sun, T (r) ' 3.85 MK at r = 0.9R�, whence F/J ' 10−11. That is,

the radiation �eld is isotropic to better than 1 part in 1011.

Equivalently, the temperature gradient from the centre of the Sun (for example) to

the surface is

∆T
∆r

=
Tc − Teff

R�
' 10−2 K m−1 (1.7)

The photon mean free path is ` = 1/κν ' 1 mm (from detailed models), so the

temperature change over this distance is of order 10−5 K. The radiant energy density

is U = aT 4, so the relative anisotropy ∆U/U = 4∆T/T ' 10−11 at 106 K.

Although the anisotropy is very small, the nett out�ow is large � in fact, equal to the

stellar luminosity.

We recall that, in general, the intensity Iν is direction-dependent; i.e., is Iν(θ, φ) (although the

explicit angular dependence is generally dropped for economy of nomenclature). Multiplying

eqtn. (1.6) by µ ≡ cos θ and integrating over solid angle, using dΩ = sin θ dθ dφ = dµ dφ, then

d
dτν

∫ 2π

0

∫ +1

−1
µ2Iν(µ, φ) dµ dφ =

∫ 2π

0

∫ +1

−1
µIν(µ, φ) dµ dφ−

∫ 2π

0

∫ +1

−1
µSν(µ, φ) dµ dφ;

The radiation �eld is axially symmetric, so

d
dτν

∫ +1

−1
µ2Iν(µ) dµ =

∫ +1

−1
µIν(µ) dµ−

∫ +1

−1
µSν(µ) dµ. (1.8)
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The �rst two terms should be familiar as moments of the radiation �eld,

Fν = 4πHν

= 2π

+1∫
−1

Iν(µ)µ dµ. (1.9)

[where Hν is the Eddington �ux, or �rst-order moment of the radiation �eld; PHAS 2112

eqtn. (3.9)], and

Kν =
1
2

+1∫
−1

Iν(µ)µ2 dµ (1.10)

[the second-order moment, or K integral; PHAS 2112 eqtn. (3.14)]. Since the radiation �eld is

locally isotropic to a very good approximation we can take Iν out of this integral, so

Kν =
1
2
µ3

3
Iν

∣∣∣∣+1

−1

=
1
3
Iν

[
≡ 1

3
Jν for isotropy

]
(1.11)

[PHAS 2112 eqtn. (3.15)].

Using these equations for the �rst two terms in eqtn. (1.8), and supposing that the emissivity

has no preferred direction (as is true to an excellent aproximation in stellar interiors; Box 1.1)

so that the source function is isotropic (and so the �nal term is zero), we obtain

dKν

dτν
=
Fν
4π

or, from eqtn. (1.11),

1
3
dIν
dτν

=
Fν
4π
.

In LTE we may set Iν = Bν(T ), the Planck function; and dτν = −kν dr (where again the minus

arises because the optical depth is measured inwards, and decreases with increasing r). Making

these substitutions, and integrating over frequency,∫ ∞
0

Fν dν = −4π
3

∫ ∞
0

1
kν

dBν(T )
dT

dT
dr

dν (1.12)

To simplify this further, we introduce the Rosseland mean opacity, kR (= κRρ),2,3 de�ned by

1
kR

∫ ∞
0

dBν(T )
dT

dν =
∫ ∞

0

1
kν

dBν(T )
dT

dν.

2Recall that opacity may be expressed in several ways, most commonly as `per unit mass' or `per unit volume'.

We use k to denote opacity per unit volume, and κ where reference is made to opacity per unit mass; clearly,

then, k = κρ.
3The Rosseland mean opacity represents the harmonic mean of kν , weighted by dBν(T )/dT . This weighting

factor is small for very low and very high frequencies, and peaks at νp = 4kT/h.
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Recalling that∫ ∞
0

πBν dν = σT 4 (PHAS 2112, eqtn. (3.21))

we also have∫ ∞
0

dBν(T )
dT

dν =
d
dT

∫ ∞
0

Bν(T )dν

=
4σT 3

π

(at given T ) so that eqtn. (1.12) can be written as∫ ∞
0

Fν dν = −4π
3

1
kR

dT
dr

acT 3

π
(1.13)

where a is the radiation constant, 4σ/c; that is, the total radiant energy �ux is

F = −4π
3

1
kR

dT
dr

acT 3

π
(1.14)

[This shows that radiative di�usion is completely analogous to conduction;

F ∝ dT
dr
,

which is equivalent to Fourier's law of thermal conduction.]

This is our adopted form for the transport of radiative �ux. It may be applied in environments

where the photon mean free path is short compared to the scales over which physical

parameters (notably temperature) change; it therefore becomes inappropriate as the stellar

surface is approached, where a more detailed approach to radiative transfer is required.

Box 1.2. The radiative energy density is U = aT 4 [PHAS 2112, eqtn. (3.27)], so that

dU/dT = 4aT 3, and we can express eqtn. (1.13) as

F =
∫ ∞

0
Fν dν

= − c

3kR

dT
dr

dU
dT

= − c

3kR

dU
dr

This `di�usion approximation' shows explicitly how the radiative �ux relates to the

energy gradient; the constant of proportionality, c/3kR, is called the di�usion coef-

�cient. The larger the opacity, the less the �ux of radiative energy, as one might

intuitively expect.
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1.3.2 Radiative temperature gradient

The stellar luminosity at some radius r is given by

L(r) = 4πr2

∫ ∞
0

Fν dν

so, �nally,

L(r) = −16π
3

r2

kR

dT
dr
acT 3, (1.15)

We can simply rearrange eqtn. (1.15) to express the temperature gradient where energy

transport is radiative:

dT
dr

= − 3
16π

kR

r2

L(r)
acT 3

= − 3
16π

κRρ(r)
r2

L(r)
acT 3

. (1.16)

Combining this result with hydrostatic equilibrium,

dP (r)
dr

=
−Gm(r)ρ(r)

r2
, (1.1)

we obtain

dT
dP

= − 3κRL(r)
16π acT 3Gm(r)

(1.17)

or equivalently, in a form that will be of use later,

d lnT
d lnP

= − 3κRL(r)P
16π acT 4Gm(r)

(1.18)

1.3.3 Von Zeipel's law

From eqtn. (1.13),

F ∝ T 3

κR ρ

dT
dr

(1.19)

∝ T 3

κR ρ

dT
dψ

dψ
dr

(1.20)

where ψ is the gravitational potential (and hence dψ/dr is the local gravity,4 g). In hydrostatic

equilibrium (see eqtn. 1.1)

dP
dr

= −ρ(r)g(r) ∝ ρdψ
dr

(1.1)

4In circumstances where von Zeipel's law is important, gravity is, in general, not a central force, so we should

actually set g = ∇ψ; but the central-force approximation is adequate for our purposes (and the correct general

result is obtained)
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so that the pressure P is a function of the potential ψ � and hence the density must also be a

function of ψ.5 For an equation of state of the general form

T = T (P, ρ) (1.21)

we therefore see that T must also be a function of ψ,

T = T (ψ). (1.22)

The coe�ecent of dψ/dr in eqtn. (1.20) is therefore a function of ψ alone, whence

F ∝ dψ
dr
∝ g (1.23)

or, equivalently,

Teff ∝ g0.25 (1.24)

which is known as von Zeipel's law. Although it relies on the assumption of radiative energy

transport by di�usion, which breaks down in a stellar atmosphere, the atmosphere is usually

very thin compared to the radiative envelope, so the surface �ux can be expected to obey

eqtn. (5.18) for stars in hydrostatic equilibrium and for which energy transport through the

outer envelope is radiative.

Von Zeipel's law is of particular interest for close binary stars and rapidly rotating single stars.

In either case, the local gravity, and hence the local temperature, can vary over the stellar

surface (which is de�ned by a constant potential). Although increasing gravity results in

increasing �ux, the e�ect the practical e�ects have come to be known as gravity darkening,

because rapid rotation, or a close companion star, both serve to reduce a star's local gravity

(and hence reduce the temperature locally).

It's of interest that von Zeipel also demonstrated that a rotating star cannot be simultaneously

in strict hydrostatic and radiative equilibrium, undermining the basis of his `law'. In practice,

as shown by Eddington and by Sweet, rotation induces circulation currents in the stellar

interior; however, these currents are su�ciently slow as to not lead to signi�cant departures

from hydrostatic equilibrium (the circulation timescales are long compared to the dynamical

timescales discussed in Section 14.1.1), and gravity darkening is observed to occur in practice.

1.3.4 Mass�Luminosity Relationship

We can put together our basic stellar-structure relationships to demonstrate a scaling between

stellar mass and luminosity. From hydrostatic equilibrium,

dP (r)
dr

=
−Gm(r)ρ(r)

r2
→ P ∝ M

R
ρ (1.1)

5Since ρ is a scalar, the gradients of P and ψ are everywhere parallel.
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but our (gas) equation of state is P = (ρkT )/(µm(H)), so

T ∝ µM

R
.

For stars in which the dominant energy transport is radiative, we have

L(r) ∝ r2

kR

dT
dr
T 3 ∝ r2

κRρ(r)
dT
dr
T 3 (1.15)

so that

L ∝ RT 4

κRρ
.

From mass continuity (or by inspection) ρ ∝M/R3, giving

L ∝ R4T 4

κRM

∝ R4

κRM

(
µM

R

)4

;

i.e.,

L ∝ µ4

κR
M3.

This simple dimensional analysis yields a dependency which is in quite good agreement with

observations; for solar-type main-sequence stars, the empirical mass�luminosity relationship is

L ∝M3.5.

1.4 Convection in stars

1.4.1 Schwarzschild criterion

For convection to occur, there must be some temperature gradient (in the case of stars, a radial

temperature gradient). We have seen that the temperature gradient where energy transport is

radiative is given by

dT
dr

= − 3
16π

kR

r2

L(r)
acT 3

; (1.16)

that is, high opacity leads to large temperature gradients (as we might expect intuitively; the

opacity block sthe �ow of radiant energy from hotter to coller regions). If the energy �ux isn't

contained by the temperature gradient, we have to invoke another mechanism � convection �

for energy transport (recall, conduction is negligible in ordinary stars.) Under what

circumstances will this arise? Karl Schwarzschild (1906) developed a standard criterion for
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Figure 1.2: A (potentially) convective `blob' in a stellar envelope, de�ning the terminology used

in Section 1.4.

determining if convection occurs or not. (Here we'll derive it as a criterion for stability,

although we could equally well establish a criterion for instability.)

To follow Schwarzschild's reasoning, we suppose that we start with a stellar envelope in

radiative equilibrium � in some sense, its `natural state' � and that, through some minor

perturbation, an element (or cell, or blob, or bubble) of gas is displaced upwards within a star.

Our essential assumptions are that the cell rises subsonically, so that hydrostatic equilibrium

(or, equivalently, pressure equilibrium) is maintained; and that the cell cools adiabatically (but

that the ambient temperature is determined by radiative equilibrium).

As the cell rises into a lower-pressure regime, it will expand to bring it into pressure

equilibrium with the surroundings (a process whose timescale is naturally set by the speed of

sound and the linear scale of the perturbation), but not, in general, into thermal equilibrium;

that is, its pressure, but not its density and temperature, will match conditions in the

surrounding gas. If it cell gas is less dense, then simple buoyancy comes into play; the cell will

continue to rise, and convective motion occurs.6

We obtain stability (rising cell denser than surroundings7) if

|∆ρad| < |∆ρrad|

6Another way of looking at this is that the entropy (per unit mass) of the blob is conserved, so the star is

unstable if the ambient entropy per unit mass decreases outwards.
7We could follow identical arguments for stability by requiring a descending cell to be less dense than its

surroundings
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(where the `ad', `rad' subscripts indicate adiabatic and radiative conditions), that is, if∣∣∣∣dρdr
∣∣∣∣
ad

<

∣∣∣∣dρdr
∣∣∣∣
rad

(1.25)

since

∆ρ =
(
dρ
dr

)
∆r

(and ∆r is the same for the cell and the ambient gas).

We now use our assumption of pressure equilibrium to express this result in terms of

temperature (instead of density); the change in pressure between r1 and r2 is the same inside

the cell as outside, so

∆Pad = ∆Prad;

but P ∝ ρT (equation of state, eqtn. 1.2), so

∆ρadTad = ∆ρradTrad.

In other words, an increase in density is matched by a decrease in temperature, hence∣∣∣∣dTdr
∣∣∣∣
ad

>

∣∣∣∣dTdr
∣∣∣∣
rad

(1.26)

is equivalent to eqtn. (1.25) � i.e., is the condition for stability.

Finally, we invoke the equation of hydrostatic equlibrium

dP (r)
dr

= −ρ(r) g(r) (1.1)

and the (gas-pressure) equation of state,

P = (ρkT )/(µm(H)) (1.2)

to write∣∣∣∣dTdr
∣∣∣∣ =

∣∣∣∣dTdP dP
dr

∣∣∣∣
=
∣∣∣∣dTdP gρ

∣∣∣∣
=
∣∣∣∣dTdP

∣∣∣∣ gµm(H)
kT

P

=
∣∣∣∣d lnT
d lnP

∣∣∣∣ gµm(H)
k

(1.27)
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Substituting this into eqtn. (1.26) we obtain∣∣∣∣d lnT
d lnP

∣∣∣∣
ad

>

∣∣∣∣d lnT
d lnP

∣∣∣∣
rad

which is frequently written in the more compact notation

∇ad > ∇rad (1.28)

which is the Schwarzschild criterion for stability. It tells us that if the temperature gradient in

the stellar envelope is larger than the adiabatic temperature gradient, convection occurs.

1.4.2 What does this mean in practice?

Since large temperature gradients arise in (initially) radiative envelopes if the opacity is high

(eqtn. 1.16), we interpret this as meaning that convection occurs when the opacity is too high

for radiative transport to be e�cient; but how do we evaluate |d(lnT )/d(lnP )|? We appeal to

thermodynamics.

Under adiabatic conditions

PV γ = constant

where γ = CP /CV , the ratio of speci�c heats at constant pressure and constant volume. Thus,

for a gas cell of constant mass (V ∝ ρ−1),

P ∝ ργ ; but also

P ∝ ρT, so that (1.2)

P γ−1 ∝ T γ

and so∣∣∣∣d(lnT )
d(lnP )

∣∣∣∣
ad

=
γ − 1
γ

(1.29)

The Schwarzschild criterion for stability can therefore be written as∣∣∣∣d(lnT )
d(lnP )

∣∣∣∣
rad

<

∣∣∣∣d(lnT )
d(lnP )

∣∣∣∣
ad

=
γ − 1
γ

≡ ∇rad < ∇ad <
γ − 1
γ

(1.30)

or, in terms of temperature gradient (cp. eqtn. 1.27)∣∣∣∣dTdr
∣∣∣∣
rad

<

∣∣∣∣dTdr
∣∣∣∣
ad

=
γ − 1
γ

∣∣∣∣TP dP
dr

∣∣∣∣ . (1.31)
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We know the radiative temperature gradient (eqtn. 1.16); whence, by reference to eqtns (1.18)

and (1.29). the Schwarzschild criterion for stability can be written as

3κRL(r)P
16πacT 4Gm(r)

<
γ − 1
γ

(1.32)

Finally, yet another version can be obtained by noting that the equation of state

P = nkT = (ρkT )/(µm(H)) gives

d ln ρ
d lnP

= 1 +
d lnµ
d lnP

− d lnT
d lnP

(1.33)

whence the Schwarzschild criterion for stability is

d lnT
d lnP ad

<
γ − 1
γ

+
d lnµ
d lnP

(1.34)

(demonstrating explicitly that compositional changes can in�uence whether or not convenction

occurs).

1.4.3 Physical conditions for convection

From equations 1.30�1.34 we can see several ways in which convection may, in principle be

induced, but eqtn. (1.30) argues that the essential requirements are either:

∇rad becomes large (compared to ∇ad), or

∇ad becomes small (compared to ∇rad). Alternatively, from eqtn. (1.32), we can see what this

means in terms of luminosity, opacity, and the adiabatic exponent γ.

In nature, convectively unstable regions occur:

(i) In the cores of massive stars, where the radiation �ux L(r)/4πr2 can be very large,

driving convection. The opacity is too great to allow the radiation to �ow at an

equilibrium rate (the κ e�ect).

(ii) In the outer regions of cool stars, where the adiabatic exponent γ can approach unity

(and hence (γ − 1)/γ can become very small; the γ e�ect).

For a monatomic ideal gas (representative of stellar interiors),8 γ = 5/3 and so

(d lnT/d lnP )ad = 0.4, but under changing conditions of ionization this exponent changes. For

a simple pure-hydrogen composition it can be shown that∣∣∣∣d lnT
d lnP

∣∣∣∣ =
2 +X(1−X) ((5/2) + E1/(kT ))
5 +X(1−X) ((5/2) + E1/(kT ))2 (1.35)

8Radiation obeys a `gas law' with γ = 4/3
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where

X =
ne

nP + n(H0)
(1.36)

is the degree of ionization, and E1 is the ionization potential. For X = 0 or 1, this recovers

(d lnT/d lnP )ad = 0.4, but in regions of partial ionization lower values apply, with a minimum

at X = 0.5 [(d lnT/d lnP )ad = 0.07] which occurs (e.g.) near the base of the solar photosphere.

The switch from radiative core/convective envelope to convective core/radiative envelope

occurs on the main sequence at masses only very slightly more than the Sun's. This is related

to the core energy-generation mechanism, as the principal hydrogen-burning process switches

from proton-proton chains (which generate energy at a rate that can be transported

radiatively) to CNO processing.

1.4.4 Convective energy transport: mixing-length `theory'

So far, we have only tested whether or not convection is likely to occur; we have not addressed

the convective �ux. Unfortunately, convection is a complex, hydrodynamic process. Although

much progress is being made in numerical modelling of convection over short timescales, it's

not feasible at present to model convection in detail in stellar-evolution codes routinely,

because of the vast disparities between convective and evolutionary timescales. Instead, we

appeal to simple parameterizations of convection, of which mixing-length `theory' is the most

venerable, and the most widely applied.

We again suppose that the envelope becomes convectively unstable at some radius r0, and that

the cell then rises through some characteristic distance ` - the mixing length;

the excess thermal energy of the cell is released into the ambient medium; and

the cooled cell sinks back down.

Because we are moving energy from deeper to shallower regions, the temperature gradient is

shallower for the cell than the pure radiative case.

From hydrostatic equilibrium (eqtn. 1.1) and the perfect gas equation (eqtn. 1.2) we have

dP
dr

= −gP µm(H)
kT

, or

dP
P

= −gµm(H)
kT

dr,≡ −dr
H
. (1.37)

The solution of eqtn. 1.37 is

P = P0 exp (−r/H)

so H, the pressure scale height, is the vertical distance over which the pressure drops by a

factor e. The mixing length is conveniently expressed in terms of this scale height; typically, we
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expect ` ' H, but since the detailed physics is not well understood ascale factor is usually

introduced, whereby

` = αH,

with α ∼ 0.5�1.5.

For simplicity (justi�ed given the weakness of other assumptions), we suppose that ` is the

same for all cells, and that the velocity of all cells is also the same.

Now, the excess temperature of the cell (compared to the ambient gas) is, in general,

∆T =
{∣∣∣∣dTdr

∣∣∣∣
rad

−
∣∣∣∣dTdr

∣∣∣∣
ad

}
× ∆r (1.38)

For a cell moving with velocity v the �ux of energy across unit area is given by the mass �ux

times the heat energy per unit mass:

πFconv = ρv × dQ

= ρv × CP∆T (1.39)

where CP is the speci�c heat at constant pressure; so we need an estimate of v. We obtain this

by considering the buoyancy force,

fb = −g∆ρ (1.40)

where ∆ρ is the density di�erence between the cell and ambient gas. Then from the equation of

state, eqtn. 1.2,

∆P
P

=
∆ρ
ρ

+
∆T
T
− ∆µ

µ
(1.41)

but in pressure equlibrium ∆P = 0, whence

∆ρ
ρ

=
∆µ
µ
− ∆T

T

or (taking a limit)

∆ρ = −ρ∆T
T

(
1− d lnµ

d lnT

)
(1.42)

so the buoyancy force, eqtn. 1.40, is

fb = gρ
∆T
T

(
1− d lnµ

d lnT

)
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but force equals mass (per unit volume) times acceleration,

= ρ
dv
dt

(1.43)

so

dv
dt

= g
∆T
T

(
1− d lnµ

d lnT

)
(1.44)

For constant acceleration,

v '

√{
dv
dt
`

}
(1.45)

so, substituting eqtn. 1.38 for ∆T in eqtn. 1.44 (setting ∆r = `), the required velocity is

v =
{
g

T

∣∣∣∣1− d lnµ
d lnT

∣∣∣∣}1/2 {∣∣∣∣dTdr
∣∣∣∣
rad

−
∣∣∣∣dTdr

∣∣∣∣
ad

}1/2

× ` (1.46)

We can now rewrite eqtn. 1.39 as

πFconv = ρCP

{
g

T

∣∣∣∣1− d lnµ
d lnT

∣∣∣∣}1/2 {∣∣∣∣dTdr
∣∣∣∣
rad

−
∣∣∣∣dTdr

∣∣∣∣
ad

}3/2

× `2. (1.47)

Rearranging the equation of state, eqtn. (1.2),∣∣∣∣dTdr
∣∣∣∣ =

gµm(H)
k

∣∣∣∣d lnT
d lnP

∣∣∣∣
=
T

H

∣∣∣∣d lnT
d lnP

∣∣∣∣ (1.48)

and

πFconv = ρCP α
2T

{
gH

∣∣∣∣1− d lnµ
d lnT

∣∣∣∣}1/2{∣∣∣∣d lnT
d lnP

∣∣∣∣
rad

−
∣∣∣∣d lnT
d lnP

∣∣∣∣
ad

}3/2

(1.49)

In calculating actual temperature structures in stellar envelopes, we require the total energy

�ux to obey

πF = πFrad + πFconv = σT 4
eff (1.50)

The initial temperature structure is calculated on the basis of radiative transfer only

(πFrad = σT 4
eff), then a correction ∆T (r) computed iteratively, for given α, if the Schwarzschild

criterion indicates convective transport.
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