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CHAPTER 5 

ABSORPTION, SCATTERING, EXTINCTION 
AND THE EQUATION OF TRANSFER 

 
 

5.1   Introduction 
 
As radiation struggles to make its way upwards through a stellar atmosphere, it may be 
weakened by absorption and scattering.  The combined effect of absorption and scattering is 
called extinction.   Scattering may simply be by reflection from dust particles.  If the radiation 
interacts with an atom, the atom may be excited to a higher energy level and almost immediately 
(typically on a time-scale of nanoseconds) the atom drops down to its original level and emits a 
photon of the same frequency as the one it absorbed.  Such a process - temporary absorption 
followed almost immediately by re-emission without change in wavelength - is probably best 
described in the present context as scattering.  Individual atoms in a stellar atmosphere generally 
radiate dipole radiation; however, since many randomly oriented atoms take place in the process, 
the scattering can be regarded as isotropic.  If, however, the excited atom collides with another 
atom before re-emission, the collision may be super-elastic; as the atom falls to a lower state, the 
energy it gives up, instead of  being radiated as a photon, goes to kinetic energy of the colliding 
atoms.  The radiation has been converted to kinetic energy.  This process is absorption. 
 
 
5.2    Absorption   
 
To start with, let us suppose that the predominating mechanism is absorption with no scattering.  
We can define a linear absorption coefficient α as follows.  Let the specific intensity at some 
level in an atmosphere be I.  At a level in the atmosphere higher by a distance dx,  the  specific 
intensity has dropped, as a result of absorption, to I  +  dI .  (Here dI, by the convention of 
differential calculus, means the increase in I, and it is in this case negative.  The quantity −dx, 
which is positive, is the decrease in I.)  The linear absorption coefficient α is defined such that 
the fractional decrease in the specific intensity over a distance dx is given by 
 

 dx
I

dI
α=−  5.2.1 

 
The coefficient is of dimension L-1 and the SI unit is m-1. In general, α will depend on frequency 
or wavelength, and, at a particular wavelength, the equation would be written 
 

 dx
I

dI )(να=−
ν

ν  5.2.2 

 
If equation 5.2.1 is integrated over a finite distance, for a slab of atmosphere, say, between x = 0 , 
where the specific intensity is I 0, and x = X, where the specific intensity is I, it becomes 
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0

0 )(exp  5.2.3 

 
And if  α is uniform and not a function of x, this becomes 
 
             I = I 0 exp(−αX)  5.2.4 
 
Now let αa = α/n, so that equation 5.2.1 becomes -dI/I = αandx and equation 5.2.4   becomes I 
= I 0exp (−αanX), where n is the number of atoms per unit volume.  Then αa is the atomic 
absorption coefficient, or atomic absorption cross-section.  It is of dimension L2 and the SI unit 
is m2. 
 
In a similar manner, we can define αm = α/ρ, where ρ is the mass density, as the mass absorption 
coefficient, with corresponding modifications in all the other equations.  It is of dimension L2M-1 
and the SI unit is m2 kg-1. 
 
We might also mention here that in laboratory chemistry, one comes across the word absorbance 
of a solution.  This is the linear absorption coefficient divided by the concentration of the solute.  
While this word in not usually encountered in stellar atmosphere theory, it is mentioned here 
partly because it is very similar in concept to the several concepts discussed in this section, and 
also because of the similarity of the word to the rather different absorptance defined in Chapter 
2.  In chemical texts, the exponential decrease of intensity with distance is often referred to as the 
Lambert-Beer Law, or simply as Lambert's Law.  This is mentioned here merely to point out that 
this is not at all related to the Lambert's Law discussed in Chapter 1. 
 
 
 
5.3   Scattering, Extinction and Opacity 
 
If the predominating mechanism is scattering with no absorption, we can define in a similar 
manner  linear, atomic and mass scattering coefficients, using the symbol σ rather than α.  For 
the physical distinction between absorption and scattering, see section 5.1.  And if both 
absorption and scattering are important, we can define linear, atomic and mass extinction 
coefficients, using the symbol κ, where κ = α + σ. 
 
All the foregoing equations are valid, whether we use linear, atomic or mass absorption, 
scattering or extinction coefficients, and whether we refer to radiation integrated over all 
frequencies or whether at a particular wavelength or within a specified wavelength range. 
 
The mass extinction coefficient is generally referred to as the opacity. 
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5.4   Optical depth 
 
The product of linear extinction coefficient  and distance, or, more properly, if  the extinction 
coefficient varies with distance, the integral of the extinction coefficient with respect to distance, 

dxx)(∫ κ , is the optical depth, or optical thickness, τ.  It is dimensionless.  Specific intensity falls 

off with optical depth as τ−= eII 0 .  Thus optical depth can also be defined by ln (I0/I).   While 
the optical depth ln (I0/I) is generally used to describe how opaque a stellar atmosphere or an 
interstellar cloud is, when describing how opaque a filter is, one generally uses log10 (I0/I), which 
is called the density d of the filter.  Density is 0.4343 times optical depth.  If a star is hidden 
behind a cloud of optical depth τ it will be dimmed by 1.086τ magnitudes.  If it is hidden behind 
a filter of density d it will be dimmed by 2.5d magnitudes.  The reader is encouraged to verify 
these assertions. 
 
 
5.5   The Equation of  Transfer. 
 
The equation of transfer deals with the transfer of radiation through an atmosphere that is 
simultaneously absorbing, scattering and emitting.   
 
      dx 
  
                α(ν) 
                        σ(ν)              
                  jν                 
 
 
 FIGURE V.1 
 
Suppose that, between x and x + dx  the absorption coefficient and the scattering coefficient at 
frequency ν  are α(ν) and σ(ν), and the emission coefficient per unit frequency interval is .ννdj   
In this interval, suppose that the specific intensity per unit frequency interval increases from νI  
to νν + dII  (d νI  might be positive or negative). The specific intensity will be reduced by 
absorption and scattering and increased by emission.  Thus: 
 
       [ ] .)()()( dxjIIdI ν−νσ+να−= νννν     5.5.1 
   
This is one form - the most basic form - of the equation of transfer.  Notice that α and σ  do not 
have a subscript. 
 
 
5.6   The Source Function  (Die Ergiebigkeit) 
 
This is the ratio of the emission coefficient to the extinction coefficient.  A review of the 
dimensions of these will show that the dimensions of source function are the same as that of 

νI νν + dII



 4
specific intensity, namely W m-2 sr-1 (perhaps per unit wavelength or frequency interval).  The 
usual symbol is S.   Thus 
 

 
)()()( νκ

=
νσ+να

= νν
ν

jj
S  5.6.1 

 
Imagine a slice of gas of thickness dx.  Multiply the numerator and denominator of  the right 
hind side of equation 5.6.1 by dx.  Observe that the numerator is now the specific intensity 
(radiance) of the slice, while the denominator is its optical thickness.  Thus an alternative 
definition of source function is specific intensity per unit optical thickness.  Later, we shall 
evaluate the source function in an atmosphere in which the extinction is pure absorption, in 
which it is purely scattering, and in which it is a bit of each. 
 
 
 
5.7   A Series of Problems 
 
I am now going to embark upon a series of  problems that at first sight may appear to be not very 
relevant to stellar atmospheres, but the reader is urged to be patient and look at them, partly 
because they make use of many of the ideas encountered up to this point, and also because they 
culminate in determining how the flux and the mean specific intensity in an atmosphere increase 
with optical depth in terms of the source function. 
 
 
Problem 1 
 
An infinite plane radiating surface has a uniform specific intensity (radiance) I.  What is the flux 
(irradiance) at a point P, situated at a height h above the surface? 
 
We have already answered that question in equation1.15.3, and the answer, which, 
unsurprisingly since the plane is infinite in extent, is independent of  h, is πI, so let's get on with  
 
 
Problem 2 
 
Same as Problem 1, except that this time the space between the radiating plane and the point P is 
filled with a uniform gas of absorption coefficient α.  The specific intensity (radiance) of the 
surface, we are told, is, following astrophysical custom, I. Unfortunately I shall also be 
compelled to make use of "intensity" in the "standard" sense of Chapter 1, and for that I shall use 
the symbol  I. 
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The elemental area is r dr dφ, or, since r = h tan θ, it is h2 tan θ sec2θ dθdφ. 
The intensity of the elemental area towards P is the specific intensity (radiance) times the 
projected area: 
 
 dI = Ih2 tan θ sec2 θ dθ dφ cos θ 
 
If there were no absorption, the irradiance of P by the elemental area would be  
 
 dI cos θ  / (h2sec2θ), 
 
which becomes   I sin θ cos θ dθ dφ. 
 
But it is reduced by absorption by  a factor e−τsec θ , where τ = αh.  Therefore the irradiance of P 
by the elemental area is 
 
 Ie−τsecθsin θ cos θ dθ dφ.   
 
For the irradiance at P (or "flux" in the astrophysics sense) by the entire infinite plane  
we integrate from φ  = 0 to 2π  and θ  = 0 to π/2, to obtain 
 

 θθθπ θτ−
π

∫ deI cossin2 sec
2/

0

  

 
If we now write x = sec θ, this becomes 
 
 Irradiance at P = 2πIE3(τ), 
 

P 

θ

τ = αh 

dφ

FIGURE  V.2 
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and we hope that the reader has not forgotten the meaning of E3  -  if you have, as the game of 
snakes and ladders would say, Go back to Chapter 3.  Note that, at τ  = 0,  this becomes πI, as 
expected. 
 
 
Problem 3 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
A point P is situated at a height h above an infinite plane slice of gas of optical thickness δτ and 
source function S.  There is nothing between P and the slice of gas. What is the flux (irradiance) 
at P?   
 
At first glance this appears to be identical to Problem 1, except that the specific intensity of the 
slice is Sδt.  However, a more careful look at the diagram will reveal that the specific intensity of 
the slice is by no means uniform.  It is darkest directly below P, and, when P looks farther from  
his nadir, the slice gets brighter and brighter, being S sec θ δt  at an angle θ.  The upwards flux 
("irradiance") at P is therefore 
 

 F+ = 2πSδt ∫
2/

0

π

sec θ cos θ sin θ dθ  = 2π Sδt 

 
 
Problem 4 
 
Same as Problem 3, except that this time we'll place an absorbing gas of optical thickness t 
between P and the slice δt.   
 
 
 
 
 
 

S Radiance S δt Ssec θ δt 

P 

θ

FIGURE V.3 
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In that case the flux (irradiance) at P from an element at an angle θ is reduced by e-t sec θ and 
consequently the flux at P from the entire slice is 
 

 ∫
π

+ δπ=θθθθδπ=
2/

0
.2sincossec2 tSdtSF  

 
If we write  x = sec θ, we very soon see that this is  
 
 Flux (irradiance) at P = 2πSδtE2(t) 
 
 
Problem 5  (an important result in atmosphere theory) 
 
Now consider a point P at an optical depth τ in a stellar atmosphere. (The use of the word 
"depth" will imply that τ is measured downwards from the surface towards the centre of the star.)  
We shall assume a plane parallel atmosphere i.e. a shallow atmosphere, or one than is shallow 
compared with the radius of the star, or we are not going to go very deep into the atmosphere.  
The point P is embedded in an absorbing, scattering, emitting gas.  The flux coming up from 
below is equal to contributions from all the slices beneath P, from t = τ to t = ∞: 
 

 dttEtSF )()(2 2 τ−π= ∫
∞

τ
+  

The flux pouring down from above is the contribution from all the slices above, from t = 0 to t = 
τ : 
 

t 

Radiance  S δt secθ e-tsecθ 

t secθ 

Radiance S δt e-t

FIGURE V.4 

θ
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 dttEtSF )()(2
0

2 −τπ= ∫
τ

−  

 
The net upward flux at a point P at an optical depth τ in an absorbing, scattering, emitting 
atmosphere is 
 

 ]dttEtSdttEtSF )()()()(2)(
0

22 −τ−τ−



π=τ ∫∫

τ∞

τ

 5.7.1 

 
The integral H is just 1/(4π) times this. 
 
The reader is now asked to find the integrals J(τ) and K(τ).  These should be given in the form of 
integrals that include a source function S(t) and an exponential integral function  E(t − τ) or      
E(τ − t).  It is important to get the argument the right way round.  One way is right; the other is 
wrong. 
 
Problem 6 
 
This is an easier problem, though the result is nevertheless important. 
 
 
 
   
 
 
 
 
         
 
 
 
 
Figure V.5 shows a slab of gas of optical thickness τ.  The observer is supposed to be to the right 
of the slab, and optical depth is measured from the right hand face of the slab towards the left.  
At an optical depth t within the slab is a slice of optical thickness dt.  The slab is supposed to 
have a uniform source function S throughout.  Source function is specific intensity per unit 
optical thickness, so the specific intensity of the slice is Sdt.  The emergent intensity from this 
slice, by the time that it reaches the right hand surface of the slab, is Se dtt− .  The emergent 
specific intensity of the entire slab is the sum of the contributions of all such slices throughout 

the slab; that is dtSe t∫
τ −

0
.  If the source function is uniform throughout the slab, so that S is not a 

function of t, we find that the emergent specific intensity of the slab is 
 

( )τ−−= eSI 1  5.7.2 

τ dt t 

Sdt Se-tdt FIGURE V.5 
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Problem.  A quantity of hot gas is held in a box 50 cm long.  The emission coefficient of the gas 
is 0.06 W sr−1 m−3 and the extinction coefficient is 0.025 cm−1.  What is the emergent specific 
intensity (radiance)?    (I make it 1.71 × 10−2 W m−2 sr−1.) 
 
5.8   Source function in scattering and absorbing atmospheres.   
 
Suppose that at some point in a stellar atmosphere the mean specific intensity per unit frequency 
interval surrounding it is Jν.   If all of the radiation arriving at that point is isotropically scattered, 
the emission coefficient jν  will simply be σ(ν)Jν .  But from equation 5.6.1 we see that in a 
purely scattering atmosphere, the ratio of jν  to σ(ν) is the source function.  Thus we see that, for 
an atmosphere in which the extinction is due solely to scattering, the source function is just 

 
νν = JS . 5.8.1 

 
If on the other hand the extinction is all due to absorption, we have Sν = jν/α(ν).  If we multiply 
top and bottom by dx, the numerator will be dIν , the increase in the specific intensity in a 
distance dx , while the denominator is the absorptance in a layer of thickness dx.  Thus the source 
function in a purely absorbing atmosphere is the ratio of the specific intensity to the absorptance.  
But this ratio is the same for all surfaces, including that of a black body, for which the 
absorptance is unity.  Thus in an atmosphere in which the extinction is due solely to absorption, 
the source function is equal to the specific intensity (radiance) of a black body, for which we 
shall use the symbol B. For a purely absorbing atmosphere, we have 
 
     .νν = BS       5.8.2 
 
In an atmosphere in which extinction is by both scattering and absorption the source function is a 
linear combination of equations 5.8.1 and 5.8.2, in proportion to the relative importance of the 
two processes: 
 

 ννν νσ+να
νσ

+
νσ+να

να
= JBS

)()(
)(

)()(
)(  5.8.3 

 
 
5.9   More on the equation of transfer. 
 
Refer to equation 5.5.1.  We see from what had been subsequently discussed that  
[α(ν) + σ(ν)]dx = dτ(ν)  and that jν dx = dτ(ν).  Therefore 
 

 νν
ν −=
ντ

IS
d
dI

)(
, 5.9.1 

 
and this is another form of the equation of transfer. 
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Now consider a spherical star with a shallow atmosphere ("plane parallel atmosphere").  In figure 
V.6, radial distance r is measured radially outwards from the centre of the star.  Optical depth is 
measured from outside towards the centre of the star.  The thickness of the layer is dr.  The 
coordinate z is measured from the centre of the star towards the observer, and the path length 
through the atmosphere in that direction at angle θ  is dz = drsecθ.  The equation of transfer can 
be written 
 
 [ ] .)()()( dzjIdI ννν −θνκ−=θ  5.9.2 
 
Now  κ ν θ τ ν( ) sec ( )dz d= −  and  jν = κ (ν )Sν .  Therefore 
 

 
( )
( ) ( ) νν

ν −θ=
ντ
θ

θ SI
d
dI

cos  5.9.3 

 
This is yet another form of the equation of transfer.  The quantity cosθ  is often written µ, so that 
equation 5.9.3 is often written 
 

 
( )
( ) ( ) νν

ν −θ=
ντ
θ

µ SI
d
dI  5.9.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 

 

τ 
 

dz = dτ secθ

θ
z 

   dτ

FIGURE V.6 



 11
 
 
 

Let us do ∫ ω
π

d
4
1  to each term in equation 5.9.4.  By ∫ I mean integrate over 4π steradians.  In 

spherical coordinates d d dω θ θ φ= sin .  We obtain 
 

 ( )
( ) ∫∫∫ ω

π
−ω

π
=ωθ

ντ
θ

π νν
ν dSdId

d
dI

4
1

4
1cos

4
1  5.9.5 

 
The left hand side is dHν/dτ(ν) and the first term on the right hand side is Jν.  (See the definitions 
- equations 4.5.2 and 4.7.1.)  In the case of isotropic scattering, the source function is isotropic so 
that, in this case 
 

 ( ) νν
ν −=
ντ

SJ
d
dH , 5.9.6 

 
 
and this is another form of the equation of transfer. 

On the other hand, if we do ∫ ωθ
π

dcos
4
1  to each term in equation 5.15, we obtain 

 

 
( )
( ) ωθ

π
−ωθ

π
=ωθ

ντ
θ

π ∫ ∫∫ νν
ν dSdId

d
dI

cos
4
1cos

4
1cos

4
1 2  5.9.7 

 
In the case of isotropic scattering the last integral is zero, so that 
 

 ,
)( ν

ν =
ντ

H
d
dK  5.9.8 

 
and this is yet another form of the equation of transfer. 
 
Now Hν is independent of optical depth (why? - in a plane parallel atmosphere, this just 
expresses the fact that the flux (watts per square metre) is conserved), so we can integrate 
equation 5.9.8 to obtain 
 
 .constant)( +ντ= νν HK  5.9.9 
 
Note also that Hν = Fν /(4π), and, if the radiation is isotropic, K Jν ν= / ,3  so that 
 

 
( )

)0(
4

3
ν

ν +
π

ντ
= JFJv  5.9.10 

 



 12
where Jν(0) is the mean specific intensity (radiance) at the surface, which is half the specific 
intensity at the surface (since the radiance of the sky above the surface is zero).  Thus 
 
 ( ) ( ) ( )π== ννν 2/00 2

1 FIJ  5.9.11 
 

Therefore ( )( )ντ+
π

= ν
ν 2

31
2
FJ  5.9.12 

 
This shows, to this degree of approximation (which includes the approximation that the radiation 
in the atmosphere is isotropic - which can be the case exactly only at the centre of the star) how 
the mean specific intensity increases with optical depth. 
 
Let T  be the temperature at optical depth τ. 
 
Let T0 be the surface temperature. 
 
Let Teff be the effective temperature, defined by 4

eff)0( TF σ= , 
 
We also have π σ π σJ T and J T F= = =4

0
4 1

20( ) .  
From these we find the following relations between these temperatures: 
 
 
 ( ) ( ) 4

eff2
3

2
14

02
34 11 TTT τ+=τ+=  5.9.13 

 

 4
eff

44
0 2

1
32

2 TTT =
τ+

=  5.9.14 

 

 4
0

44
eff 2

32
4 TTT =

τ+
=  5.9.15 

  
Note also that  T = Teff at τ = 2/3, and T = T0  at τ = 0. 
 
 


