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CHAPTER 10 
LINE PROFILES 

 
 
 

10.1 Introduction. 
 
Spectrum lines are not infinitesimally narrow; they have a finite width.  A graph of 
radiance or intensity per unit wavelength (or frequency) versus wavelength (or 
frequency) is the line profile.   There are several causes of line broadening, some internal 
to the atom, others external, and each produces its characteristic profile.  Some types of 
profile, for example, have a broad core and small wings; others have a narrow core and 
extensive, broad wings.  Analysis of the exact shape of a line profile may give us 
information about the physical conditions, such as temperature and pressure, in a stellar 
atmosphere.   
 
 
10.2   Natural Broadening (Radiation Damping) 
 
The classical oscillator model of the atom was described in section 9.2.1.  In this model, 
the motion of the optical electron, when subject to the varying electromagnetic field of a 
light wave, obeys the differential equation for forced, damped, oscillatory motion: 
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Because the oscillating (hence accelerating) electron itself radiates, the system loses 
energy, which is equivalent to saying that the motion is damped, and γ is the damping 
constant.   
 
Electromagnetic theory tell us that the rate of radiation of energy from an accelerating 
electron is 
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(The reader, as always, should check the dimensions of this and all subsequent 
expressions.) 
 
For an electron that is oscillating, the average rate of loss of energy per cycle is 
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Here the bar denotes the average value over a cycle. 
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If the amplitude and angular frequency of the oscillation are a and ω0, the maximum 
acceleration is 2

0ωa and the mean square acceleration is .4
0

2
2
1 ωa    The energy (kinetic plus 

potential) of the oscillating electron is 
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Thus we can write for the average rate of loss per cycle of energy from the system by 
electromagnetic radiation: 
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The energy therefore falls off according to 
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The radiated wavelength is given by 0/2 ωπ=λ c , so that equation 10.2.6 becomes 
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It will be recalled from the theory of lightly damped oscillations that the solution to 
equation 10.2.1 shows that the amplitude falls off with time as exp(− 2

1 γt), and that the 
energy falls off as exp(−γt).  Thus we identify the coefficient of W on the right hand side 
of equation 10.2.7 as the classical radiation damping constant γ: 
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Numerically, if γ is in s-1 and λ is in m, 
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We are now going to calculate the rate at which energy is transported per unit area by an 
electromagnetic wave, and also to calculate the rate at which an optically thin slab of a 
gas of classical oscillators absorbs energy, and hence we are going to calculate the 
classical absorption coefficient.  We start by recalling, from elementary 
electromagnetism, that the energy held per unit volume in an electric field is ED ⋅2

1  and 
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the energy held per unit volume in a magnetic field is HB ⋅2
1 .   In an isotropic medium, 

these become 2
2
12

2
1 and HE µε , and, in vacuo, they become .and 2
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For an oscillating electric field of the form tEE ω= cosˆ , the average energy per unit 

volume per cycle is .ˆ 2
04

12
02

1 EE µ=ε   Similarly for an oscillating magnetic field, the 

average energy per unit volume per cycle is .ˆ 2
04

1 Hµ   An electromagnetic wave consists 
of an electric and a magnetic wave moving at speed c, so the rate at which energy is 
transmitted across unit area is ( ) ,ˆˆ 2

04
12

04
1 cHE µ+ε  and the two parts are equal, so that the 

rate at which energy is transmitted per unit area by a plane electromagnetic wave is 
.ˆ 2

02
1 cEε  
 
Now we are modelling the classical oscillator as an electron bound to an atom, and being 

subject to a periodic force t
m
Ee

ωcos
ˆ

 from an electromagnetic wave.  The rate of 

absorption of energy by such an oscillator (see, for example, Chapter 12 of Classical 
Mechanics is 
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We imagine a plane electromagnetic wave arriving at (irradiating) a slab of gas 
containing N classical oscillators per unit area, or n per unit volume.   The rate of arrival 
of energy per unit area, we have seen, is  .ˆ 2

02
1 cEε  The rate of absorption of energy per 

unit area is 
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The absorptance (see Chapter 2, section 2.2) is therefore  
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and the linear absorption coefficient is 
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[A reminder here might be in order.  Absorptance a is defined in section 2.2, and in the 
notation of figure IX.1, the absorptance at wavelength λ would be  ( ) ).c(/)()c( λλλ λ− III   
Absorption coefficient α is defined by equation 5.2.1:  ./ dxIdI α=−   For a thick slice of 
gas, of thickness t, this integrates, in the notation of figure IX.1, to 

).exp()c()( tII α−=λ λλ   But for an optically thin gas, which is what we are considering, 
unless stated otherwise, in this chapter, this becomes ( ) .)c(/)()c( tIII α=λ− λλλ   Thus, 
for an optically thin gas, absorptance is just absorption coefficient times thickness of the 
gas.  And the relation between particle density n and column density N is N = nt.]  
  
We can write ( )( )ω+ωω−ω=ω−ω 00

22
0 .  Let us also write ω as 2πν.   Also, in the near 

vicinity of the line, let us make the approximation ω0 + ω = 2ω.  We then obtain for the 
absorption coefficient, in the vicinity of the line,   
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Exercise:  Make sure that I have made no mistakes in deriving equations 10.2.10,11 and 
12, and check the dimensions of each expression as you go.  Let me know if you find 
anything wrong. 
 
Now the equivalent width in frequency units of an absorption line in an optically thin 
layer of gas of geometric thickness t is (see equation 9.1.6) 
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Exercise:  (a) For those readers who (understandably) object that expression 10.2.12 is 
valid only in the immediate vicinity of the line, and therefore that we cannot integrate 
from ∞+∞− to , integrate expression 10.2.11 from 0 to ∞. 
 
       (b) For the rest of us, integrate equation10.2.11 from ∞+∞−=ν−ν to0 .  A 
substitution θγ=ν−νπ tan)(4 0  will probably be a good start. 
 
We obtain 
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where W(ν) is in Hz and N is in m-2.  Thus the classical oscillator model predicts that the 
equivalent width in frequency units is independent of the frequency (and hence 
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wavelength) of the line, and also independent of the damping constant.   If we express the 
equivalent width in wavelength units (see equation 9.1.3), we obtain: 
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This is the same as equation 9.2.2.   
 
When we discussed this equation in Chapter 9, we pointed out that the equivalent widths 
of real lines differ from this prediction by a factor f12, the absorption oscillator strength, 
and we also pointed out that N has to be replaced by N

1
, the column density of atoms in 

the initial (lower) level. Thus, from this point, I shall replace N with N1f12.  However, in 
this chapter we are not so much concerned with the equivalent width, but with the line 
profile and the actual width.  The width of an emission line in this context is commonly 
expressed as the full width at half maximum (FWHM) and the width of an absorption line 
as the full width at half minimum (FWHm).  (These are on no account to be confused 
with the equivalent width, which is discussed in section 9.1.)  Note that some writers use 
the term “half-width”.  It is generally not possible to know what a writer means by this. 
 
In terms of the notation of figure IX.1 (in which “c” denotes “continuum”), but using a 
frequency rather than a wavelength scale, the absorptance at frequency ν is 
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The profile of an absorption line is thus given by 
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For radiation damping we have 
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The maximum value of the absorptance (at the line centre) is  
 

       .)(
0

2
121

0 γεmc
efa N

=ν      10.2.19 

 



 6

This quantity is also 
)c(

)()c( 0

ν

νν ν−
I

II and it is also known as the central depth d of the 

line.  (Be sure to refer to figure IX.1 to understand its meaning.)  I shall use the symbol d 
or a(ν0) interchangeably, according to context. 
 
It is easy to see that the value of ν−ν0 at which the absorptance is half its maximum value 
is γ/(4π).  That is to say, the full width at half maximum (FWHM) of the absorptance, 
which I denote as w, is, in frequency units: 
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(In wavelength units, it is λ2/c times this.) This is also the FWHm of the absorption 
profile. 
 
Equation 10.2.18 can be written 
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The absorption line profile (see equation 10.2.1) can be written 
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Notice that at the line centre, Iν(ν0)/Iν(c) = 1 minus the central depth; and a long way 
from the line centre, Iν(ν) = Iν(c), as expected.  This type of profile is called a Lorentz 
profile. 
 
From equations 10.2.14 (but with N1f12 substituted for N), 10.2.19 and 10.2.20, we find 
that 

       Equivalent width = ×
π
2

 central depth × FWHm    

 
             1.571 × central depth × FWHm.  10.2.23 
 
This is true whether equivalent width and FWHm are measured in frequency or in 
wavelength units.  (It is a pity that, for theoretical work, frequency is more convenient 
that wavelength, since frequency is proportional to energy, but experimentalists often 
(not invariably!) work with gratings, which disperse light linearly with respect to 
wavelength!)  
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Indeed the equivalent width of any type of profile can be written in the form 
 
       Equivalent width = constant ×  central depth × FWHm,  10.2.24 
 
the value of the constant depending upon the type of profile. 
 
In photographic days, the measurement of equivalent widths was a very laborious 
procedure, and, if one had good reason to believe that the line profiles in a spectrum were 
all lorentzian, the equivalent with would be found by measuring just the FWHm and the 
central depth.  Even today, when equivalent widths can often be determined by computer 
from digitally-recorded spectra almost instantaneously, there may be occasions where 
low-resolution spectra do not allow this, and all that can be honestly measured are the 
central depths and equivalent widths.  The type of profile, and hence the value to be used 
for the constant in equation 10.2.14, requires a leap of faith. 
 
It is worth noting (consult equations 10.2.4,19 and 20) that the equivalent width is 
determined by the column density of the absorbing atoms (or, rather, on N1f12), the 
FWHm is determined by the damping constant, but the central depth depends on both.  
You can determine the damping constant by measuring the FWHm. 
 
The form of the Lorentz profile is shown in figure  X.1 for two lines, one with a central 
depth of 0.8 and the other with a central depth of 0.4.  Both lines have the same 
equivalent width, the product wd being the same for each.  Note that this type of profile 
has a narrow core, skirted by extensive wings. 

  

)(ννI  

Frequency→ 
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Of course a visual inspection of a profile showing a narrow core and extensive wings, 
while suggestive, doesn’t prove that the profile is strictly lorentzian.  However, equation 
10.2.22 can be rearranged to read 
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This shows that if you make a series of measurements of Iν(ν) and plot a graph of the left 
hand side versus (ν−ν0)2, you should obtain a straight line if the profile is lorentzian, and 
you will obtain the central depth and equivalent width (hence also the damping constant 
and the column density) from the intercept and slope as a bonus.  And if you don’t get a 
straight line, you don’t have a Lorentz profile. 
 
 
It will be recalled that the purely classical oscillator theory predicted that the equivalent 
widths of all lines (in frequency units) of a given element is the same, namely that given 
by equation 10.2.14.  The obvious observation that this is not so led us to introduce the 
emission oscillator strength, and also to replace N by N1.    Likewise, equation 10.2.20 
predicts that the FWHm (in wavelength units) is the same for all lines.  (Equation 10.2.20 
gives the FWHm in frequency units.  To understand my caveat “in wavelength units”, 
refer also to equations 10.2.8 and 10.2.9.  You will see that the predicted FWHm in 

wavelength units is 2
0

2

3 mc
e

ε
 = 1.18 × 10-14 m, which is exceedingly small, and the core, at 

least, is beyond the resolution of most spectrographs.)  Obviously the damping constants 
for real lines are much larger than this.  For real lines, the classical damping constant 
γ has to be replaced with the quantum mechanical damping constant Γ.   
 
At present I am describing in only a very qualitative way the quantum mechanical 
treatment of the damping constant.  Quantum mechanically, an electromagnetic wave is 
treated as a perturbation to the hamiltonian operator.  We have seen in section 9.4 that 
each level has a finite lifetime – see especially equation 9.4.7.  The mean lifetime for a 
level m is 1/Γm.  Each level is not infinitesimally narrow.  That is to say, one cannot say 
with infinitesimal precision what the energy of a given level (or state) is.  The uncertainty 
of the energy and the mean lifetime are related through Heisenberg’s uncertainty 
principle.  The longer the lifetime, the broader the level.  The energy probability of a 
level m is given by a Lorentz function with parameter Γm, given by equation 9.4.7 and 
equal to the reciprocal of the mean lifetime.  Likewise a level n has an energy probability 
distribution given by a Lorentz function with parameter Γn.  When an atom makes a 
transition between m and n, naturally, there is an energy uncertainty in the emitted or 
absorbed photon, and so there is a distribution of photons (i.e. a line profile) that is a 
Lorentz function with parameter Γ = Γm  + Γn.   This parameter Γ must replace the 
classical damping constant γ.  The FWHm of a line, in frequency units, is now Γ/(2π), 
which varies from line to line. 
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Unfortunately it is observed, at least in the spectrum of main sequence stars, if not in that 
of giants and supergiants, that the FWHms of most lines are about the same!  How 
frustrating!  Classical theory predicts that all lines have the same FWHm.  We know 
classical theory is wrong, so we go to the trouble of doing quantum mechanical theory, 
which predicts different FWHms from line to line.  And then we go and observe main 
sequence stars and we find that the lines all have the same FWHm (admittedly much 
broader than predicted by classical theory.) 
 
The explanation is that, in main sequence atmospheres, lines are additionally broadened 
by pressure broadening, which also gives a Lorentz profile, which is generally broader 
than, and overmasks, radiation damping.  (The pressures in the extended atmospheres of 
giants and supergiants are generally much less than in main sequence stars, and 
consequently lines are narrower.)  We return to pressure broadening in a later section.  
 
 
10.3    Thermal Broadening. 
 
Let us start with an assumption that the radiation damping broadening is negligible, so 
that, for all practical purposes the spread of the frequencies emitted by a collection of 
atoms in a gas is infinitesimally narrow.  The observer, however, will not see an 
infinitesimally thin line.  This is because of the motion of the atoms in a hot gas.  Some 
atoms are moving hither, and the wavelength will be blue-shifted; others are moving yon, 
and the wavelength will be red-shifted.  The result will be a broadening of the lines, 
known as thermal broadening.   The hotter the gas, the faster the atoms will be moving, 
and the broader the lines will be.  We shall be able to measure the kinetic temperature of 
the gas from the width of the lines. 
 
First, a brief reminder of the relevant results from the kinetic theory of gases, and to 
establish our notation.   
 
Notation: c  = speed of light 
  V = velocity of a particular atom = zyx ˆˆˆ wu ++ v  

  V = speed of that atom = ( )2
1

222 wu ++ v  
 

        Vm = modal speed of all the atoms 
m
kT

m
kT 414.12

==  

 

  V  = mean speed of all the atoms   
m
kT

m
kT 596.18

=
π

= = 1.128Vm 

 
  VRMS  = root mean square speed of all the atoms    

                                                                     =
m
kT

m
kT 732.13

= =  1.225Vm 
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The Maxwell distribution gives the distribution of speeds.  Consider a gas of N atoms, 
and let NVdV be the number of them that have speeds between V and V + dV.  Then  
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More relevant to our present topic is the distribution of a velocity component.  We’ll 
choose the x-component, and suppose that the x-direction is the line of sight of the 
observer as he or she peers through a stellar atmosphere.  Let Nudu be the number of 
atoms with velocity components between u and du.   Then the gaussian distribution is 
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which, of course, is symmetric about u = 0. 
 
Now an atom with a line-of-sight velocity component u gives rise to a Doppler shift 

ν − ν0, where (provided that u2  <<  c2)  .
0

0

c
u

=
ν

ν−ν   If we are looking at an emission 

line, the left hand side of equation 10.3.2 gives us the line profile )(/)( 0νν νν II  (provided 
the line is optically thin, as is always assumed in this chapter unless specified otherwise).  
Thus the line profile of an emission line is  
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This is a gaussian, or Doppler, profile.  
 
It is easy to show that the full width at half maximum (FWHM) is 
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This is also the full width at half minimum (FWHm) of an absorption line, in frequency 
units.   This is also the FWHM or FWHm in wavelength units, provided that λ0 be 
substituted for ν0. 

The profile of an absorption line of central depth d ( = 
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)()c( 0

ν

νν ν−
I

II ) is 
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which can also be written 
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(Verify that when ν − ν0 = ,2

1 w the right hand side is .1 2
1 d−   Do the same for equation 

10.2.22.) 
 
In figure X.2, I draw two gaussian profiles, each of the same equivalent width as the 
lorentzian profiles of figure X.1, and of the same two central depths, namely 0.4 and 0.8.  
We see that a gaussian profile is “all core and no wings”.   A visual inspection of a profile 
may lead one to believe that it is probably gaussian, but, to be sure, one could write 
equation 10.3.6 in the form  
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and plot a graph of the left hand side versus (ν − ν0)2.  If the profile is truly gaussian, this 
will result in a straight line, from which w and d can be found from the slope and 
intercept. 
 
Integrating the Doppler profile to find the equivalent width is slightly less easy than 
integrating the Lorentz profile, but it is left as an exercise to show that 
 

   Equivalent width =   
16ln
π

× central depth × FWHm 

 
          =  1.064  × central depth × FWHm. 10.3.8 
 
Compare this with equation 10.2.23 for a Lorentz profile. 
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Figure X.3 shows a lorentzian profile (continuous) and a gaussian profile (dashed), each 
having the same central depth and the same FWHm.  The ratio of the lorenzian equivalent 

width to the gaussian equivalent width is .476.12ln
16ln2

=π=
π

÷
π  
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10.4    Microturbulence 
 
In the treatment of microturbulence in a stellar atmosphere, we can suppose that there are 
many small cells of gas moving in random directions with a maxwellian distribution of 
speeds.  The distinction between microturbulence and macroturbulence is that in 
microturbulence the size of the turbulent cells is very small compared with the optical 
depth, so that, in looking down through a stellar atmosphere we are seeing many cells of  
gas whose distribution of velocity components is gaussian.   In macroturbulence the size 
of the cells is not very small compared with the optical depth, so that , in peering through 
the haze of an atmosphere, we can see at most only a very few cells. 
 
If the distribution of velocity components of the microturbulent cells is supposed 
gaussian, then the line profiles will be just like that for thermal broadening, except that, 
instead of the modal speed Vm = mkT /2  of the atoms we substitute the modal speed ξm 
of the microturbulent cells.   Thus the line profile resulting from microturbulence is 
 

Frequency→ 

Iν(ν) 
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The FWHm in frequency units is 
c

16ln0mνξ  or, in wavelength units, 
c

16ln0mλξ .    

 
If the thermal and microturbulent broadening are comparable in size, we still get a 
gaussian profile, except that for Vm or ξm we must substitute ./2 2

m
2
m

2
m ξ+=ξ+ mkTV   

(This actually requires formal proof, and this will be given as an exercise in section 5.) 
 
Since either thermal broadening or microturbulence will result in a gaussian profile, one 
might think that it would not be possible to tell, from a spectrum exhibiting gaussian line 
profiles, whether the broadening was caused primarily by high temperature or by 
microturbulence.  But a little more thought will show that in principle it is possible to 
distinguish, and to determine separately the kinetic temperature and the modal 
microturbulent speed.  Think about it, and see if you can devise a way. 
 
 
 
 
 
 
 
 
 
************************************************************************ 

THINKING 
************************************************************************ 
 
 
The key is, in purely thermal broadening, the light atoms (such as lithium) move faster 
than the heavier atoms (such as cadmium), the speeds being inversely proportional to the 
square roots of their atomic masses.  Thus the lines of the light atoms will be broader than 
the lines of the heavy atoms.  In microturbulence all atoms move en masse at the same 
speed and are therefore equally broad.  We have seen, beneath equation 10.3.7, that the 
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FWHm, in frequency units, is ( ) 16ln/2 2
m

0 ξ+
ν

= mkT
c

w .  If we form the quantity 

16ln2
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22

ν
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cwX  for a lithium line and for a cadmium line, we will obtain 
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from which T and ξm are immediately obtained. 
 
Problem.  A Li line at 670.79 nm has a gaussian FWHm = 9 pm (picometres) and a Cd 
line at 508.58 nm has a gaussian FWHm = 3 pm.  Calculate the kinetic temperature and 
the modal microturbulent speed.    
 
 
10.5   Combination of Profiles 
 
Several broadening factors may be simultaneously present in a line.  Two mechanisms 
may have similar profiles (e.g. thermal broadening and microturbulence) or they may 
have quite different profiles (e.g. thermal broadening and radiation damping).  We need 
to know the resulting profile when more than one broadening agent is present.)  Let us 
consider an emission line, and let x = λ − λ0.  Let us suppose that the lines are broadened, 
for example, by thermal broadening, the thermal broadening function being f(x).  
Suppose, however, that, in addition, the lines are also broadened by radiation damping, 
the radiation damping profile being g(x).  At a distance ξ from the line centre, the 
contribution to the line profile is the height of the function f(ξ) weighted by the function 
g(x − ξ).  That is to say the resulting profile h(x) is given by 
 

    ∫
∞

∞−
ξξ−ξ= .)()()( dxgfxh     10.5.1 

 
The reader should convince him- or herself that this is exactly the same as 
 

    ∫
∞

∞−
ξξξ−= .)()()( dgxfxh     10.5.2 

 
 
 
This profile is called the convolution of the two constituent profiles, and is often written 
symbolically 
 
       h  =  f & g .      10.5.3 
 
Let us consider, for example, the convolution of two gaussian functions, for example the 
convolution of thermal and microturbulent broadening.   
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Suppose one of the gaussian functions is 
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Here .0λ−λ=x  The area under the curve is unity,  the HWHM is g1 and the peak is 

.2ln1

1 πg
  (Verify these.)  Suppose that the second gaussian function is 
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It can now be shown, using equation 10.5.1 or 10.5.2, that the convolution of G1 and G2 
is 
    

  ,2lnexp2ln.1)()()( 2

2

21 







−

π
=∗=

g
x

g
xGxGxG    10.5.6 

        
where    .2

2
2
1

2 ggg +=      10.5.7 
 
We used this result already in section 10.4 when, in adding microturbulent to thermal 
broadening, we substituted 2

m
2

m ξ+V   for Vm.  In case you find the integration to be 
troublesome, I have done it in an Appendix to this Chapter. 
 
Now let’s consider the combination of two lorentzian functions.  Radiation damping 
gives rise to a lorentzian profile, and we shall see later that pressure broadening can also 
give rise to a lorentzian profile.  Let us suppose that the two lorentzian profiles are  
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and    2
2

2
2

2
1.)(

lx
lxL

+π
= .     10.5.9 

Here .0λ−λ=x  The area under the curve is unity, the HWHM is l1 and the peak is 

1/(πl).  (Verify these.)  It can be shown that 
 

   ,1.)()()( 222 lx
lxLxLxL

+π
=∗=     10.5.10 
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where     l  =  l1  +  l2 .      10.5.11 
 
Details of the integration are in the Appendix to this Chapter. 
 
Let us now look at the convolution of a gaussian profile with a lorentzian profile;  that is, 
the convolution of 
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with    .1.)( 22 lx
lxL

+π
=      10.5.13 

 
We can find the convolution from either equation 10.5.1 or from equation 10.5.2, and we 
obtain either 
 

   ( )
ξ
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The expression 10.5.14 or 10.5.15, which is a convolution of a gaussian and a lorentzian 
profile, is called a Voigt profile.  (A rough attempt at pronunciation would be something 
like Focht.)   
 
A useful parameter to describe the “gaussness” or “lorentzness” of a Voigt profile might 
be 
 

     ,
G lg

gk
+

=      10.5.16 

 
which is 0 for a pure lorentz profile and 1 for a pure gaussian profile.  In figure X.4 I 
have drawn Voigt profiles for kG = 0.25, 0.5 and 0.75 (continuous, dashed and dotted, 
respectively).  The profiles are normalized so that all have the same area.  A nice exercise 
for those who are more patient and competent with computers than I am would be to 
draw 1001 Voigt profiles, with kG going from 0 to 1 in steps of  0.001, perhaps 
normalized all to the same height rather than the same area, and make a movie of a 
gaussian profile gradually morphing to a lorentzian profile.  Let me know if you succeed! 
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As for the gauss-gauss and lorentz-lorentz profiles, I have appended some details of the 
integration of the gauss-lorentz profile in the Appendix to this Chapter. 
 
 
The FWHM or FWHm in wavelength units of a gaussian profile (i.e. 2g) is  
 

  ( ) ( ) ./2665.116ln/2 0
2
m0

2
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mkTw λξ+

=
λξ+

=   10.5.17 

 
 
The FWHM or FWHm in frequency units of a lorentzian profile is  
 
    ,1592.0)2/(L Γ=πΓ=w     10.5.18 
 
Here Γ is the sum of the radiation damping constant (see section 2) and the contribution 
from pressure broadening t/2  (see section 6).  For the FWHM or FWHm in wavelength 
units (i.e. 2l), we have to multiply by c/2

0λ . 
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Integrating a Voigt profile.    
 
The area under Voigt profile is ∫

∞

0
)(2 dxxV , where V(x) is given by equation 10.5.14, 

which itself had to be evaluated with a numerical integration.   Since the profile is 
symmetric about x = 0, we can integrate from 0 to ∞ and multiply by 2.  Even so, the 
double integral might seem like a formidable task.  Particularly troublesome would be to 
integrate a nearly lorentzian profile with extensive wings, because there would then be 
the problem of how far to go for an upper limit. However, it is not at all a formidable 
task.  The area under the curve given by equation 10.5.14 is unity!  This is easily seen 
from a physical example.  The profile given by equation 10.5.14 is the convolution of the 
lorentzian profile of equation 10.5.13 with the gaussian profile of equation 10.5.12, both 
of which were normalized to unit area.  Let us imagine that an emission line is broadened 
by radiation damping, so that its profile is lorentzian.  Now suppose that it is further 
broadened by thermal broadening (gaussian profile) to finish as a Voigt profile.  
(Alternatively, suppose that the line is scanned by a spectrophotometer with a gaussian 
sensitivity function.)  Clearly, as long as the line is always optically thin, the additional 
broadening does not affect the integrated intensity.   
 
Now we mentioned in sections 2 and 3 of this chapter that the equivalent width of  an 
absorption line can be calculated from c %  central depth % FWHm, and likewise the area 
of an emission line is c %  height % FWHM, where c is 1.064 ( = 16ln/π ) for a gaussian 
profile and 1.571  (= π/2) for a lorentzian profile.  We know that the integral of  V(x) is 
unity, and it is a fairly straightforward matter to calculate both the height and the FWHM 
of V(x).  From this, it becomes possible to calculate the constant c as a function of the 
gaussian fraction kG.  The result of doing this is shown in figure X.4A. 
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This curve can be fitted with the empirical equation 
 
    ,3

G3
2
G2G10 kakakaac +++=    10.5.19 

 
where a0  =  1.572,  a1  =  0.05288,   a2  =  −1.323  and a3  =  0.7658.  The error incurred 
in using this formula nowhere exceeds 0.5%; the mean error is 0.25%. 
 
 
The Voigt Profile in Terms of the Optical Thickness at the Line Center. 
 
Another way to write the Voigt profile that might be useful is  
 
 

         .]/2ln)(exp[)0()( 22
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−∫ d
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gxClx   10.5.20 

 
Here x =  λ  −  λ0 and ξ is a dummy variable, which disappears when the definite integral 
is performed.  The gaussian HWHM is ,/2lnm0 cg Vλ=  and the lorentzian HWHM is 

).4/(2
0 cl πΓλ=  The optical thickness at  λ  −  λ0  = x is τ(x), and the optical thickness at 

the line centre is τ(0).  C is a dimensionless coefficient, whose value depends on the 
gaussian fraction )./(G lggk +=   C is clearly given by 
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−∫ d
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gCl     10.5.21 

 
If we now let 2ln/'2ln/' gandgll ξ=ξ= , and also make use of the symmetry of 
the integrand about ξ  =  ξ'  =  0, this becomes 
 

       .1'
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)'exp('2
22

2
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=ξ

+ξ
ξ−∞

∫ d
l

Cl     10.5.22 

 

On substitution of 21
'2'
t
tl

−
=ξ  (in order to make the limits finite), we obtain 

 

        ,1
1

])}1/('2{exp[4 2

221

0
=

+
−−∫ dt

t
ttlC    10.5.23 

 
which can readily be numerically integrated for a given value of l'. Recall that 

1/1/ G −= kgl  and hence that .2ln)1/1(' G −= kl   The results of the integration are as 
follows.  The column Capprox is explained following  figure X.4B. 
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      kG         C            Capprox 
 
    0.05  8.942 417 9.325 6 
    0.10  4.264 473 4.288 9 
    0.15  2.719 106     2.716 4 
    0.20  1.957 257 1.956 6 
    0.25  1.508 719 1.511 1 
    0.30  1.216 486 1.219 6 
    0.35  1.013 114 1.015 3 
    0.40  0.864 815 0.865 5 
    0.45  0.752 806 0.751 9 
    0.50  0.665 831 0.663 9 
    0.55  0.596 758 0.594 3 
    0.60         0.540 859 0.538 6 
    0.65  0.494 893 0.493 4 
    0.70  0.456 569 0.456 2 
    0.75  0.424 227 0.425 1 
    0.80  0.396 642 0.398 5 
    0.85  0.372 889 0.375 3 
    0.90  0.352 263 0.354 2 
    0.95  0.334 214 0.334 5 
    1.00  0.318 310 0.315 3 
 
The last entry, the value of C for kG = 1, a pure gaussian profile, is 1/π.  These data are 
graphed in figure X.4B.   
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The empirical formula ,3
G3

2
G2G10Gapprox kckckccakC b ++++= −    10.5.24 

 
where  a = +0.309 031     b = +1.132 747     c0 = +0.165 10 
           c1 = −0.829 99      c2 = +1.217 82      c3 = −0.546 65 
 
fits the curve tolerably well within (but not outside) the range kG = 0.15 to 1.00 . 
     
 
10.6     Pressure Broadening 
 
This is a fairly difficult subject, and I am no expert in it.  The reader will forgive me if I 
accordingly treat it rather briefly and descriptively. 
 
The phenomena of pressure broadening (also known as collisional broadening) are often 
divided into effects resulting from the short time interval between atomic collisions, and 
effects resulting at the moment of collision.  I shall begin by describing the first of these 
phenomena. 
 
The only possible absolutely monochromatic unbroadened infinitesimally narrow line 
with a single, uniquely defined frequency is a sine wave of infinite extent.  A sine wave 
of finite length is not a true sine wave of a single frequency, but it has a spread of 
component frequencies, which can be determined by Fourier analysis.  This, by the way, 
is the reason behind Heisenberg’s uncertainty principle (Unsicherheitsprinzip).  If the 
wavefunction that describes a particle is very limited in extent, then the position of the 
particle is relatively well determined.  On the other hand, the limited extent of the 
wavefunction means that it has a correspondingly broad Fourier spread of constituent 
wavelengths, and hence the momentum is correspondingly uncertain.  
 
The atmospheres of giant and supergiant stars are relatively thin; pressure broadening is 
slight and lines tend to be narrow.  In the atmospheres of main sequence stars, however, 
collisions between atoms are frequent.  The frequent occurrence of collisions interrupts 
the wave trains and divides them into short wave-packets, with a corresponding spread of 
component frequencies.  Thus the spectrum lines are broadened. 
 
The Fourier distribution of amplitudes of component frequencies of a sine wave that is 
truncated by a box function is the same as the Fourier distribution of amplitudes of a light 
wave that is diffracted by a single slit.  That is to say it is a sinc function of the form 

ν∆ν∆ /)(sin and the intensity distribution is the square of this.  The shorter the 
intercollision time, the wider the spread of constituent frequencies, just as a narrow slit 
produces a wide diffraction pattern.   Thus one might expect the profile of a pressure 
broadened line to resemble a single slit diffraction pattern, which, it will be recalled, 
looks like figure X.5. 
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The profile would indeed look like that if all intercollision times were exactly equal and 
all wave-train fragments were of exactly the same length.  There is, however, a Poisson 
distribution of intercollision times, and so the above profile has to be convolved with this 
Poisson distribution.  While I don’t do the calculation here, the resulting profile is a 
Lorentz profile except that the damping constant Γ is replaced by tt where,/2 is the 
mean time between collisions.  The mean time between collisions is given, from kinetic 
theory of gases, by 
 

    .
16
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2 kT

m
nd

t
π

=       10.6.1 

 
Here m, d and n are, respectively, the masses, diameters and number density of the atoms. 
Hence, if the kinetic temperature is independently known, the number density of the 
particles can be determined from the FWHm of a pressure-broadened line. 
 
It will be recalled that classical radiation damping theory predicts the same FWHm for all 
lines, with a classical damping constant γ.  Quantum mechanical theory predicts a 
damping constant Γ and hence FWHm that differs from line to line.  Yet in the spectrum 
of a main sequence star, one quite often finds that all lines of a given element have the 
same FWHm and hence the same effective damping constant. This is because the width 
of a Lorentz profile is determined more by pressure broadening than by radiation 
damping. 
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There are further broadening effects caused by interactions that take place at the moment 
of collision.  If an atom is approached by an electron or an ion, it will temporarily be in 
an electric field, and consequently the lines will be broadened by Stark effect, which may 
be either linear (proportional to the electric field E) or quadratic (} E2), or neutral-neutral 
reactions give rise to interactions between temporarily induced dipole moments (van der 
Waals forces), and these all have different dependences on interatomic distance.  Neutral 
magnesium is very sensitive to quadratic Stark effect, and hydrogen is sensitive to linear 
Stark effect.  The entire subject is quite difficult, and I leave it here except to point out 
two small details.  Very often the broadening is not symmetric, lines typically having 
wider wings to the long wavelength side than on the short wavelength side.  This is 
because the effect of the interactions is to lower and broaden the energy levels of a 
transition, the lower energy level generally being lowered more than the upper.  A second 
point is that the hydrogen Balmer lines are often much broadened by linear Stark effect, 
and this can be recognized because the Stark pattern for the Balmer series is such that 
there are no undisplaced Stark components for even members of the series – Hβ, Hδ, Hζ, 
etc.   Thus results in a central dip to these lines in an emission spectrum or a central bump 
in an absorption line. 
 
 
 
10.7   Rotational Broadening 
 
The lines in the spectrum of a rotating star are broadened because light from the receding 
limb is redshifted and light from the approaching limb is blueshifted.  (I shall stick to 
astronomical custom and refer to a “redshift” as a shift towards a longer wavelength, 
even though for an infrared line a “redshift” in this sense would be a shift away from the 
red!  A “longward” shift doesn’t quite solve the problem either, for the following reason.  
While it is true that relativity makes no distinction between a moving source and a 
moving observer, in the case of the Doppler effect in the context of sound in air, if the 
observer is moving, there may be a change in the pitch of the perceived sound, but there 
is no change in wavelength!)  It may be remarked that early-type stars (type F and earlier) 
tend to be much faster rotators than later-type stars, and consequently early-type stars 
show more rotational broadening.  It should also be remarked that pole-on rotators do not, 
of course, show rotational broadening (even early-type fast rotators). 
 
We shall start by considering a star whose axis of rotation is in the plane of the sky, and 
which is of uniform radiance across its surface.  We shall then move on to oblique 
rotators, and then to limb-darkened stars.  A further complication that could be 
considered would be non-uniform rotation.  Thus, the Sun does not rotate as a solid body, 
but the angular speed at low latitudes is faster than at higher latitudes – the so-called 
“equatorial acceleration”. 
 
In figure X.6, on the left hand we see the disc of a star as seen on the sky by an observer.  
PQ is the axis of rotation, supposed to be in the plane of the sky,  and AB is the equator.  
X is a point on the surface of the star at coordinates (x, y), latitude θ.   The star is 
supposed to be rotating with an equatorial speed ve.  What we are going to show is that 
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all points on the chord LMN have the same radial velocity away from or towards the 
observer, and consequently all light from points on this chord has the same Doppler shift. 
 
The right hand part of the figure shows the star seen from above the pole P.  The small 
circle is the parallel of latitude CD shown on the left hand part of the figure. 
 
M is a point on the equator and also on the chord LMN.  Its speed is ve and the daial 
component of its velocity is ve sin α.   The speed of the point M is ve cos θ, and its radial 
velocity is ve cos θ sin OPX.   But x  = PM sin α =  a sin α   and  x  =  PX sin OPX  
= a cos θ sin OPX.   Therefore cos θ sin OPX  = sin α.  Therefore the radial velocity of X 
is ve sin α, which is the same as that of M, and therefore all points on the chord LMN 
have radial velocity ve sin α  =   vex/a.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore all points on the chord x = constant are subject to the same Doppler shift 
 

    
ac

xev=
λ
λ∆ .      10.7.1 

 
The ordinate of an emission line profile at Doppler shift ∆λ compared with its ordinate at 
the line centre is equal to the ratio of the length of the chord x = constant to the diameter 
2a of the stellar disk: 
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In the above, we have assumed that the axis of rotation is in the plane of the sky, or that 
the inclination i of the equator to the plane of the sky is 90o.  If the inclination is not 90o, 
the only effect is that all radial velocities are reduced by a factor of sin i, so that equation 
10.7.2 becomes 
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and this is the line profile.  It is an ellipse, and if we write  ( ) X
I

I
=

λ∆

λ
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 and Y=

λ
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equation 10.7.3 can be written 
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The basal width of the line (which has no asymptotic wings) is 
c

isin2 ev  and the FWHM 

is .sin3 e

c
iv   The profile of an absorption line of central depth d is 
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It is left as an exercise to show that 
 

Equivalent width   =   ×
π
12

  central depth  ×   FWHm   =   0.9069 dw.  10.7.6 

From the width of a rotationally broadened line we can determine  ve sin i, but we cannot 
determine ve and i separately without additional information.  Likewise, we cannot 
determine the angular speed of rotation unless we know the radius independently. 
 
It might be noted that, for a rotating planet, visible only by reflected light, the Doppler 
effect is doubled by reflection, so the basal width of a rotationally broadened line is 

c
isin4 ev . 
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Now let us examine the effect of limb darkening.  I am going to use the words intensity 
and radiance in their strictly correct senses as described in Chapter 1, and the symbols I  
and L respectively.  That is, radiance = intensity per unit projected area.  For spectral 
intensity and spectral radiance – i.e. intensity and radiance per unit wavelength interval, I 
shall use a subscript λ.  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We suppose that the spectral radiance at a distance r from the centre of the disc is Lλ(r).  
The intensity from an elemental area dA on the disc is dIλ  =  Lλ(r)dA.  The area between 
the vertical strip and the annulus in figure X.7 is a little parallelogram of length dy and 

width dx, so that dA  =  dxdy.  Here y2  =  r2  −  x2, so that .
22 xr

rdr
y

rdrdy
−

==   

 

Therefore  .
22 xr

rdrdxdA
−

=   The total intensity from the strip of width dx, which is 

dIλ(∆λ), where 
ac

ix sinev=
λ
λ∆ , is 

 

Lλ(r) 

dIλ = Lλ(r)dA 

FIGURE X.7 
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The (emission) line profile is  
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which is the line profile.  As an exercise, see if you can find an expression for the line 
profile if the limb=darkening is given by )],cos1(1)[0( θ−−=θ uLL  and show that if the 
limb-darkening coefficient u = 1, the profile is parabolic. 
 
Equation 10.7.8 enables you to calculate the line profile, given the limb darkening.  The 
more practical, but more difficult, problem, is to invert the equation and, from the 
observed line profile, find the limb darkening.  Examples of this integral, and its 
inversion by solution of an integral equation, are given by Tatum and Jaworski,  J. Quant. 
Spectr. Rad. Transfer, 38, 319, (1987). 
 
Further pursuit of this problem would be to calculate the line profile of a uniform star that 
is rotating faster at the equator than at the poles, and then for a star that is both limb-
darkened and equatorially accelerated – and then see if it is possible to invert the problem 
uniquely and determine both the limb darkening and the equatorial acceleration from the 
line profile.  That would be quite a challenge. 
 
 
10.8      Instrumental Broadening 
 
Even if the radiation damping profile of a line is negligible and if it is subject to 
negligible thermal, pressure and rotational broadening, it still has to suffer the indignity 
of instrumental broadening.  Almost any type of spectrograph will broaden a line.  The 
broadening produced by a prism is inversely proportional to the size of the prism, and the 
broadening produced by a grating is inversely proportional to the number of grooves in 
the grating.  After a spectrum is produced (and broadened) by a spectrograph, it may be 
scanned by a further instrument such as a microphotometer, or even if it is recorded 
digitally, it is still further broadened by the point spread function.  The instrumental 
broadening can in principle be determined experimentally by measuring the 
instrumentally-produced profile of an intrinsically very narrow line.  Then, when the 
instrument is used to examine a broad line, the observed profile is the convolution of the 
true profile and the instrumental profile.  We can write this symbolically as  
 
    O  =  T  &  I .        10.8.1 
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Here O, T and I are respectively the observed, true and instrumental profiles, and the 
asterisk denotes the convolution.  The mathematical problem is to deconvolve this 
equation so that, given the instrumental profile and the observed profile it is possible to 
recover the true profile.  This is done by making use of a mathematical theorem known as 
Borel’s theorem, which is that the Fourier transform of the convolution of two functions 
is equal to the product of the Fourier transforms of each.  That is 
 
    ,ITO ×=        10.8.2 
 
where the bar denotes the Fourier transform.  Numerical fast Fourier transform computer 
programs are now readily available, so the procedure is to calculate the Fourier 
transforms of the observed and instrumental profile, divide the former by the latter to 
obtain T  , and then calculate the inverse Fourier transform to obtain the true profile.  
This procedure is well known in radio astronomy, in which the observed map of a sky 
region is the convolution of the true map with the beam of the radio telescope, though, 
unlike the one-dimensional spectroscopic problem the corresponding radio astronomy 
problem is two-dimensional. 
 
 
 
10.9   Other Line-broadening mechanisms 
 
I just briefly mention here one or two additional sources of line-broadening.    
  
Lines may be broadened by unresolved or smeared Zeeman splitting, particularly for 
lines involving levels with large Landé g-factors.  By “smeared” I mean the situation that 
arises if there is a large range of magnetic field strength through the line of sight or 
because (as is always the case with stars other than the Sun) you are looking at a whole-
disc spectrum.  Since the splitting depends on the field strength, the lines will obviously 
be smeared rather than cleanly divided into a number of discrete Zeeman components.  
Zeeman smearing is often large in the spectrum of white dwarf stars, where magnetic 
fields can be large and the observer looks through a large range of magnetic field 
strength. 
 
Different Zeeman components are plane or circularly polarized according to the direction 
of the magnetic field.  Thus in principle one should be able to recognize Zeeman effect, 
even if smeared or not fully resolved, by its changing appearance in different polarization 
directions.  However, this will be true only if the magnetic field is uniform in direction, 
as it may mostly be in, for example, a sunspot.  For a whole-disc spectrum there will be a 
variety of different directions of the magnetic field, and so the polarization information 
will be lost.  
 
Broad lines are sometimes the result of unresolved hyperfine structure in elements with a 
large nuclear spin such as vanadium, or unresolved isotopic lines in elements with several 
isotopes of comparable abundance such as tin, copper or chlorine. 
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Another source of line broadening is autoionization (in absorption spectra) or dielectronic 
recombination (in emission spectra) in elements such as copper.  These mechanisms were 
described in section 8.8. 
 
One last remark might be made, namely that line broadening, whether instrumental, 
thermal, rotational, etc., does not change the equivalent width of a line, provided that the 
line is everywhere optically thin.  This does not apply, however, if the line is not 
everywhere optically thin. 
   
 
 
 

APPENDIX A 
Convolution of Gaussian and Lorentzian Functions 

 
Equation 10.5.6 is 
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The integration is straightforward, if taken slowly and carefully, provided you know the 
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We have now completed the integration, except that we now have to remember what a, C 
and B were.  When we do this, after a bit more careful algebra we arrive at the result 
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In a similar manner, equation 10.5.10 is 
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Resolve the integrand into partial fractions:  
 

        .
)()(

)(
)(
11

2
2

22
2

22
1

22
1

22
2

22
1

2 lx
D

lx
xC

l
B

l
A

lxl +−ξ
+

+−ξ
−ξ

+
+ξ

+
+ξ
ξ

=
+−ξ+ξ

 10.A.9 

 
Evaluation of the constants is straightforward, if slightly tedious, by the usual method of 
partial fractions: 
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From symmetry considerations, this is: 
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We have now completed the integration, except that we now have to remember what B 
and D were.  When we do this, after a bit more careful algebra we arrive at the result 
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where    l  =  l1  +  l2 . 
 
 

___________________________________ 
 
 
The Voigt profile is given by equation 10.5.14: 
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For short, I am going to write the ratio l/g as a.  The relation between this ratio and the 
gaussian fraction kG is a = (1 − kG)/ kG ,  kG =  1/(1 + a).  In the above equation, x = 
λ − λ0, and I am going to choose a wavelength scale such that g = 1; in other words 
wavelength interval is to be expressed in units of g.  Thus I shall write the equation as  
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The integration has to be done numerically, and there is a problem in that the limits are 
infinite.  We can deal with this with the change of variable ξ  =  a tan θ, when the integral 
becomes 
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The limits are now finite, and the integrand is zero at each limit. Computing time will be 
much diminished by the further substitution ,tan 2

1 θ=t  when the expression becomes 
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This is faster than the previous expression because one avoids having to compute the 
trigonometric function tan. It could also have been arrived at in one step by means of the 

substitution ,
1

2
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=ξ though such a substitution may not have been immediately 

obvious.  Like the previous expression, the limits are finite, and the integrand is zero at 
each end.  Numerical integration would now seem to be straightforward, although there 
may yet be some difficulty.  Suppose one is integrating, for example, by Simpson’s 
method.  A question might arise as to how many intervals should be used.  Simpson’s 
method is often very effective with a remarkably small number of intervals, but, for high 
precision, one may nevertheless wish to use a fine interval.  If one uses a fine interval, 
however, as one approaches either limit, the expression  t/(1 − t2) becomes very large, 
and, even though the integrand then becomes small, a computer may be reluctant to 
return a value for the exp function, and it may deliver an error message.  The best way to 
deal with that difficulty is to set the integrand equal to zero whenever the absolute value 
of the argument of the exp function exceeds some value below which the computer is 
happy. 
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this is not correct, for, while the Voigt profile is symmetric about x = 1, the integrand is 
not symmetric about t = 0. However, if  
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it is true that ,)()(and)()()( 2121 xVxVxVxVxV −=+=  and hence that 
,)()()( 11 xVxVxV −+=  and this can be used to economise to a small extent.  It is still 

necessary to calculate V1(x) for all values of x, both positive and negative, but the number 
of integration steps for each point can be halved. 
 
 
 

APPENDIX B 
Radiation Damping as Functions of Angular Frequency, Frequency and Wavelength 

 
It occurred to me while preparing this Chapter as well as the preceding and following 
ones, that sometimes I have been using angular frequency as argument, sometimes 
frequency, and sometimes wavelength.  In this Appendix, I bring together the salient 
formulas for radiation damping in terms of ∆ω  =  ω − ω0,  ∆ν = ν − ν0 and ∆λ = λ − λ0.  I 
reproduce equation 10.2.11 for the absorption coefficient for a set of forced, damped 
oscillators, except that I replace n, the number per unit volume of oscillators with n1f12, 
the effective number of atoms per unit volume in the lower level of a line, and I replace 
the classical damping constant γ with the classical damping constant Γ, which may 
include a pressure broadening component. 
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You should check that the dimensions of this expression are L−1, which is appropriate for 
linear absorption coefficient.  You may note that [e2/ε0] h ML3T−2 and [Γ] h T−1.  Indeed 
check the dimensions of all expressions that follow, at each stage. 
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Now I think it will be owned that the width of a spectrum line is very, very much smaller 
than its actual wavelength, except perhaps for extremely Stark-broadened hydrogen lines, 
so that, in the immediate vicinity of a line, ∆ω can be neglected compared with ω0; and a 
very long way from the line, where this might not be so, the expression is close to zero 
anyway. (Note that you can neglect ∆ω only with respect to ω; you cannot just put 
∆ω = 0 where it lies alone in the denominator!) In any case, I have no compunction at all 
in making the approximation 
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The maximum of the α(∆ω) curve is           
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The optical thickness at the line centre (whether or not the line is optically thin) is 
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N1 is the number of atoms in level 1 per unit area in the line of sight, whereas n1 is the 
number per unit volume.    
 
The HWHM of α(∆ω) curve is           
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As expected, the area does not depend upon Γ. 
 
 
To express the absorption coefficient as a function of frequency, we note that ω =  2πν, 
and we obtain 
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The maximum of this is (of course) the same as equation 10.B.4. 
  
The HWHM of the α(∆ν) curve is           
    
    HWHM  =   Γ/(4π)  s−1.   10.B.9 
 
The area under the α(∆ν) curve is      
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To express the absorption coefficient as a function of wavelength, we can start from 
equation 10.B.8 and use ν = c/λ, but, just to avoid any possible doubt, let’s start from 
equation 10.B.1 and put ω = 2πc/λ.  This gives 
 

  ( ) 










Γλλ+λ−λπ

λλ
ε
Γ

=α
24

0
2222

0
22

4
0

2

0

2
121

4
.

ccm
efn  m−1.                10.B.11 

  
In a manner similar to our procedure following equation 10.B.12, we write 
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The maximum of this is (of course) the same as equation 10.B.4.  (Verifying this will 
serve as a check on the algebra.) 
 
The HWHM of the α(∆λ) curve is           
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The area under the α(∆λ) curve is           
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Did I forget to write down the units after this equation? 
 
 
These results for α might be useful in tabular form.  For τ, replace n1 by N1. 
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It is to be noted that if the radiation damping profile is thermally broadened, the height of 
the absorption coefficient curve diminishes, while the area is unaltered provided that the 
line is optically thin.  The optically thick situation is dealt with in the following chapter.  
It might also be useful to note that a gaussian profile of the form  
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APPENDIX C 
Optical Thinness, Homogeneity and Thermodynamic Equilibrium 

 
It has also occurred to me while preparing these chapters that some of the equations are 
valid only under certain conditions, such as that the gas is optically thin, or is 
homogeneous or is in thermodynamic equilibrium, or some combination of these, or none 
of them.  It would be tedious to spell out all of the conditions after each equation.  Yet it 
is important to know under what conditions each is valid.  In this Appendix I try to give 
some guidance.  For example, most of the equations in this Chapter deal with line profiles 
in an optically thin gas, whereas in the next Chapter the gas is no longer optically thin.  In 
the end, however, the only way of being sure of what conditions apply to each equation is 
to understand the basic physics behind each rather than attempting to memorize which 
conditions apply to which equations. 
 
The linear absorption coefficient α at a point within a gas is proportional to the local 
number density n1 of absorbers.  (The subscript 1 refers to “atoms in the lower level of 
the line concerned”.)The optical thickness of a slab of gas of thickness D is related to the 
absorption coefficient (which may or may not vary throughout the slab) by 

∫ α=τ
D

dxx
0

)( .   This is so whether or not the gas is optically thin or whether it is 
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homogeneous.  Likewise, the column density N1 of absorbers is related to the number 
density by ∫=

D
dxxn

0 11 )(N .  If the gas is homogeneous in the sense that n1 is not a 

function of x, and consequently α is not a function of x either, then these equations 
become simply τ = αD  and N1 = n1D, and this is so whether or not the gas is optically 
thin. 
 
Whether optically thin or thick, and whether homogeneous or not, the optical thickness is 
proportional to the column density N, just as the absorption coefficient is proportional to 
n1. 
 
If a layer of gas of thickness D is not homogeneous, the optical thickness is related to the 

absorption coefficient and the thickness of the gas by ∫ α=τ
D

dxx
0

)( .  If the gas is 

homogeneous so that α is independent of x, then the relation is merely τ  =  αD.  Neither 
of these equations requires the gas to be optically thin.  That is, they are valid whether the 
gas is optically thin or thick.  The absorption coefficient at a point within the gas is 
proportional to the local density (number of absorbers per unit volume there.)  The 
optical thickness is proportional to the column density of absorbers along the line of 
sight, whether or not the gas is optically thin and whether or not it is homogeneous. 
  
 
However, the equivalent width and central depth of an absorption line, or the intensity or 
radiance, or central intensity or radiance per unit wavelength interval of an emission 
line, are proportional to the column density of atoms only if the gas is optically thin.  
Indeed this simple proportionality can serve as a good definition of what is meant by 
being optically thin. 
 
The equivalent width of an absorption line is given by ∫ λλτ−−= .)}](exp{1[ dW  If the 

gas is homogeneous, this becomes ∫ λλα−−= .)}](exp{1[ dDW  If, in addition, the gas 
is optically thin at all wavelengths within the line, this becomes (by Maclaurin 
expansion), merely ∫ λλα= .)( dDW   Note that, if λ and D are expressed in m and if  α 

is expressed in m−1, the equivalent width will be in m.  If, however, you choose to express 
wavelengths in angstroms and the thickness of a cloud in parsecs, that is your problem, 
and you are on your own. 
 
 
Any equations in which we have gone from n, the total number of atoms per unit volume 
in all levels to n1 via Boltzmann’s equation, implies an assumption of thermodynamic 
equilibrium.  An example would be going from equation 9.2.4 (which does not imply 
thermodynamic equilibrium) to equations 9.2.6-10 (which do imply thermodynamic 
equilibrium).  If a gas is truly in thermodynamic equilibrium, this implies that the gas will 
be at a single, homogenous temperature – otherwise there will be heat flow and no 
equilibrium.  It is doubtful if anything in the Universe is truly in thermodynamical 
equilibrium in the very strictest use of the term.  However, even in an atmosphere in 
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which the temperature is different from point to point, we may still have local 
thermodynamic equilibrium (LTE), in the sense that, at any point, it is all right to 
calculate the distribution of atoms among their energy levels by Boltzmann’s equation, or 
the degree of ionization by Saha’s equation, or the atomic speeds by the Maxwell-
Boltzmann equation, or the radiation energy density by Planck’s equation – and you may 
even be able to use the same temperature for each.  This may be all right within a small 
volume of an atmosphere; only when considered over large ranges of space and time will 
it be evident that the atmosphere is not in true thermodynamic equilibrium. 


