
Chapter 1

Magnetic Materials

1.1 Preliminaries

1.1.1 Required Knowledge

• Magnetism

• Electron spin

• Atom

• Angular momentum (quantum)

• Statistical mechanics

1.1.2 Reading

• Hook and Hall 7.1-7.3, 8.1-8.7

1.2 Introduction

• Magnet technology has made enormous advances in recent years – without
the reductions in size that have come with these advances many modern
devices would be impracticable.
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• The important quantity for many purposes is the energy density of the
magnet.

1.3 Magnetic properties - reminder
• There are two fields to consider:

– The magnetic field H which is generated by currents according to
Ampère’s law. H is measured in A m−1 (Oersteds in old units)

– The magnetic induction, or magnetic flux density, B, which gives the
energy of a dipole in a field, E = −m.B and the torque experienced
by a dipole moment m as G = m×B. B is measured in Wb m−2 or
T (Gauss in old units).
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• In free space, B = µ0H.

• In a material

B = µ0(H+M)
= µ0µrH

where µr is the relative permeability, χ is the magnetic susceptibility,
which is a dimensionless quantity.

• Note, though, that χ is sometimes tabulated as the molar susceptibility

χm = Vmχ,

where Vm is the volume occupied by one mole, or as the mass susceptibility

χg =
χ

ρ
,

where ρ is the density.

• M, the magnetisation, is the dipole moment per unit volume.

M = χH.

• In general, µr (and hence χ) will depend on position and will be tensors
(so that B is not necessarily parallel to H).

• Even worse, some materials are non-linear, so that µr and χ are field-
dependent.

• The effects are highly exaggerated in these diagrams.
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1.4 Measuring magnetic properties

1.4.1 Force method
• Uses energy of induced dipole

E = −1
2
mB = −1

2
µ0χVH2,

so in an inhomogeneous field

F = −dE

dx
=

1
2
µ0V χ

dH2

dx
= µ0V χHdH

dx
.

• Practically:

– set up large uniform H;

– superpose linear gradient with additional coils

– vary second field sinusoidally and use lock-in amplifier to measure
varying force

1.4.2 Vibrating Sample magnetometer

• oscillate sample up and down

• measure emf induced in coils A and B
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• compare with emf in C and D from known magnetic moment

• hence measured sample magnetic moment

1.5 Experimental data

• In the first 60 elements in the periodic table, the majority have negative
susceptibility – they are diamagnetic.

1.6 Diamagnetism
• Classically, we have Lenz’s law, which states that the action of a magnetic

field on the orbital motion of an electron causes a back-emf which opposes
the magnetic field which causes it.

• Frankly, this is an unsatisfactory explanation, but we cannot do better
until we have studied the inclusion of magnetic fields into quantum me-
chanics using magnetic vector potentials.

• Imagine an electron in an atom as a charge e moving clockwise in the x-y
plane in a circle of radius a, area A, with angular velocity ω.

• This is equivalent to a current

I = charge/time = eω/(2π),

so there is a magnetic moment

µ = IA = eωa2/2.

• The electron is kept in this orbit by a central force

F = meω
2a.
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• Now if a flux density B is applied in the z direction there will be a Lorentz
force giving an additional force along a radius

∆F = evB = eωaB

• If we assume the charge keeps moving in a circle of the same radius it will
have a new angular velocity ω′,

meω
′2a = F −∆F

so
meω

′2a = meω
2a− eωaB,

or
ω′2 − ω2 = −eωB

me
.

• If the change in frequency is small we have

ω′2 − ω2 ≈ 2ω∆ω,

where ∆ω = ω′ − ω. Thus

∆ω = − eB
2me

.

where eB
2me

is called the Larmor frequency.

• Substituting back into
µ = IA = eωa2/2,

we find a change in magnetic moment

∆µ = −e2a2

4me
B.

• Recall that a was the radius of a ring of current perpendicular to the field:
if we average over a spherical atom

a2 = 〈x2〉+ 〈y2〉 =
2
3

[
〈x2〉+ 〈y2〉+ 〈z2〉

]
=

2
3
〈r2〉,

so

∆µ =
e2〈r2〉
6me

B,

• If we have n atoms per volume, each with p electrons in the outer shells,
the magnetisation will be

M = np∆µ,

and

χ =
M
H

= µ0
M
B

= −µ0npe2〈r2〉
6me

.
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• Values of atomic radius are easily calculated: we can confirm the p〈r2〉
dependence.

• Diamagnetic susceptibility :

– Negative
– Typically −10−6 to −10−5

– Independent of temperature
– Always present, even when there are no permanent dipole moments

on the atoms.

1.7 Paramagnetism
• Paramagnetism occurs when the material contains permanent magnetic

moments.

• If the magnetic moments do not interact with each other, they will be
randomly arranged in the absence of a magnetic field.

• When a field is applied, there is a balance between the internal energy
trying to arrange the moments parallel to the field and entropy trying to
randomise them.

• The magnetic moments arise from electrons, but if we they are localised
at atomic sites we can regard them as distinguishable, and use Boltzmann
statistics.
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1.7.1 Paramagnetism of spin-1
2

ions

• The spin is either up or down relative to the field, and so the magnetic
moment is either +µB or −µB, where

µB =
e~

2me
= 9.274× 10−24 Am2.

• The corresponding energies in a flux density B are −µBB and µBB, so the
average magnetic moment per atom is

〈µ〉 =
µBeµBB/kBT − µBe−µBB/kBT

eµBB/kBT + e−µBB/kBT

= µB tanh
(

µBB
kBT

)
.

• For small z, tanh z ≈ z, so for small fields or high temperature

〈µ〉 ≈ µ2
BB

kBT
.

• If there are n atoms per volume, then,

χ =
nµ0µ

2
B

kBT
.

• Clearly, though, for low T or large B the magnetic moment per atom sat-
urates, as it must, as the largest magnetisation possible saturation mag-
netisation has all the spins aligned fully,

Ms = nµB.
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1.7.2 General J ionic paramagnetism

• An atomic angular momentum J , made of spin S and orbital angular
momentum quantum number L, will have a magnetic moment gJµBJ ,
where gJ is the Landé g-factor

gJ =
3
2

+
S(S + 1)− L(L + 1)

2J(J + 1)
.

• If we write x = gJµBB/kBT , the average atomic magnetic moment will be

〈µ〉 =
∑J

m=−J mgJµBemx∑J
m=−J emx

.

• If we assume that T is large and/or B is small, we can expand the expo-
nential, giving

〈µ〉 ≈ gJµB

∑J
m=−J m(1 + mx)∑J

m=−J(1 + mx)
.

• We can evaluate this if we note that

J∑
m=−J

1 = 2J + 1

J∑
m=−J

m = 0

J∑
m=−J

m2 =
1
3
J(J + 1)(2J + 1)

then

〈µ〉 ≈ gJµB
xJ(J + 1)(2J + 1)

3(2J + 1)

=
g2

Jµ2
BBJ(J + 1)
3kBT

,

• This leads to a susceptibility

χ =
µ0ng2

Jµ2
BJ(J + 1)

3kBT.

• This is Curie’s Law, often written

χ =
C

T
.
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Pierre Curie

• Chromium potassium alum.
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• 1/χ is proportional to T , confirming Curie’s law.

• Of course, eventually M must saturate, as for the spin-1/2 system.

• The larger J the slower the saturation.

• A full treatment results in the Brillouin function, BJ(gJµBJB/kBT ) giv-
ing the variation of M/Ms.

• Experimental results confirm this.
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• Ionic paramagnetic susceptibility :

– Positive

– Typically 10−5 to 10−3

– Temperature-dependent

– Arises from permanent dipole moments on the atoms

– Saturates for large B or low T

1.7.3 States of ions in solids
• The ions which concern us here are those with part-filled shells, giving a

nett angular momentum.
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• Best studied are the first and second transition series, (Ti to Cu and Zr
to Hg) and the rare earths (La to Lu).

• From atomic physics we know that a free atom or ion is characterised by
quantum numbers L, S and J , and for a given L and S may take up J
values between |L− S| and L + S.

• Hund’s rules tell us that the ground state is that for which

– S is as large as possible
– L is as large as possible for that S

– J =
{

L− S if the shell is less than half full
L + S if the shell is more than half full

• These represent the effects of exchange, correlation, and spin-orbit cou-
pling respectively.

• We can deduce the magnetic moment per atom pµB from the susceptibility,
and compare with what Hund’s rules tell us.

Ion State Term g
√

J(J + 1) Experimental p
Ce3+ 4f15s2p6 2F5/2 2.54 2.4
Pr3+ 4f25s2p6 3H4 3.58 3.5
Nd3+ 4f35s2p6 4I9/2 3.62 3.5
Pm3+ 4f45s2p6 5I4 2.68 -
Sm3+ 4f55s2p6 6H5/2 0.84 1.5
Eu3+ 4f65s2p6 7F0 0.00 3.4
Gd3+ 4f75s2p6 8S7/2 7.94 8.0
Tb3+ 4f85s2p6 7F6 9.72 9.5
Dy3+ 4f95s2p6 6H15/2 10.63 10.6
Ho3+ 4f105s2p6 5I8 10.60 10.4
Er3+ 4f115s2p6 4I15/2 9.59 9.5
Tm3+ 4f125s2p6 3H6 7.57 7.3
Yb3+ 4f135s2p6 2F7/2 4.54 4.5

• All look fine except for Sm and Eu, where higher J levels are very close
to the ground state which means they are partly occupied above 0 K.

• Now look at the first transition series.

Ion State Term g
√

J(J + 1) Experimental p
Ti3+, V4+ 3d1 2D3/2 1.55 1.8

V3+ 3d2 3F2 1.63 2.8
Cr3+, V2+ 3d3 4F3/2 0.77 3.8

Mn3+, Cr2+ 3d5 5D0 0.00 4.9
Fe3+, Mn2+ 3d5 6S5/2 5.92 5.9

Fe2+ 3d6 5D4 6.70 5.4
Co2+ 3d7 4F9/2 6.63 4.8
Ni2+ 3d8 3F4 5.59 3.2
Cu2+ 3d9 2D5/2 3.55 1.9
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• The agreement is very poor.

• The problem is crystal field splitting. Look at the electronic d states in a
cubic crystal.

• Two states point directly towards neighbouring ions, three states point
between neighbours.

• These states have different electrostatic energies.

• So the d states are ‘locked’ to the crystal, and no longer behave like an
l = 2 state with 2l + 1 degenerate m values.

• This is called quenching of the orbital angular momentum.

• In the first transition series, the magnetic moments arise almost entirely
from spin.

Ion State Term g
√

S(S + 1) Experimental p
Ti3+, V4+ 3d1 2D3/2 1.73 1.8

V3+ 3d2 3F2 2.83 2.8
Cr3+, V2+ 3d3 4F3/2 3.87 3.8

Mn3+, Cr2+ 3d5 5D0 4.90 4.9
Fe3+, Mn2+ 3d5 6S5/2 5.92 5.9

Fe2+ 3d6 5D4 4.90 5.4
Co2+ 3d7 4F9/2 3.87 4.8
Ni2+ 3d8 3F4 2.83 3.2
Cu2+ 3d9 2D5/2 1.73 1.9

• Magnetism in transition metal ions arises almost entirely from spin.
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• The rare earths behave differently because the 4f electrons are in smaller
orbits than the 3d ones, and because spin-orbit coupling is larger in the
4f ions.

1.8 Interacting magnetic moments

• So far we have no explanation for the existence of ferromagnetism.

• By measuring the magnetic moment of a specimen of a ferromagnet, we
can see that the magnetisation must be near saturation.

• A quick look at the Brillouin function
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• shows that at room temperature this needs

gJµBB
kBT

≈ 1,

• At room temperature, taking gJ ≈ 2, B ≈ 200 T.

1.8.1 Direct magnetic interaction

• Where can such a large field come from?

• Can it be direct interactions between spins a lattice spacing (say 0.25 nm)
apart?

• The field from one Bohr magneton at a distance r is of order

B =
µ0µB

4πr3
≈ 0.06 T,

• So direct magnetic interations are irrelevant (though they are significant
in, for example, limiting the temperatures that can be reached by adiabatic
demagnetisation).

1.8.2 Exchange interaction

• The interaction is quantum mechanical, a form of exchange interaction.

• Recall Hund’s rules: there exchange favoured parallel spins.

• We write the Hamiltonian for the interaction between two spins on differ-
ent sites i and j as

Hspin
ij = −2JijSi.Sj ,

where Jij , the exchange integral, depends on the overlap between wave-
functions on different sites.

• Positive J favours parallel spins, negative J favours antiparallel spins.

• For the whole crystal,

Hspin = −
∑
i,j

JijSi.Sj ,

or
Hspin = −2

∑
i<j

JijSi.Sj .
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1.8.3 Effective field model
• For a particular spin, i, we can write the interaction term as

Hspin
i = −2

∑
j 6=i

JijSi.Sj

= −

2
∑
j 6=i

JijSj

 .Si.

• Now note two points:

1. The form of the interaction, −(...).S, looks like the interaction of a
spin with a magnetic field. Write

Hspin
i = −

2
∑
j 6=i

(Jij/(gSµB))Sj

 . (gSµBSi)

= −Beff .mi,

where mi is the magnetic moment on atom i.
2. The summation suggests that we should be able to do some averaging

over the spins.

1.8.4 The mean field approximation
• Assume that each spin interacts only with its z nearest neighbours. Then

Beff =

2
z∑

j=1

J

gSµB
Sj


= 2

z∑
j=1

J

gSµB

mj

gSµB

= 2
J

gSµB

z〈mj〉
gSµB

.

• Now identify the average magnetic moment per volume with the magneti-
sation:

•
n〈mj〉 = M,

for n spins per unit volume, giving

Beff = 2
J

gSµB

zM
ngSµB

=
2zJ

ng2
Sµ2

B

M.
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• This gives the Weiss internal field model or molecular field model (not
originally derived in this way)

• The energy of a dipole in the ferromagnet is equivalent to an effective field

Beff = λM.

• Note that this is NOT a real magnetic field. The origin is quantum-
mechanical exchange, not magnetism, and as the interaction that underlies
exchange is the Coulomb interaction it can be much stronger.

1.8.5 Mean field theory of ferromagnetism
• Armed with the mean field picture, and a picture of the way M depends

on B through the Brillouin function, we have

M
Ms

= BJ

(
gJµBJ(B + λM)

kBT

)
. (1.1)

• Assume for the moment that B = 0. Then we can plot the two sides of
equation as functions of M/T :

• As T decreases the straight line M gets less steep. Thus for lower T there
is a solution to

M
Ms

= BJ

(
gJµBJλM

kBT

)
for finite M.

• Furthermore the shape of BJ , a convex curve, shows that there is a critical
temperature TC above which the M line is too steep to intersect the BJ

curve except at M = 0.
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• For small values of M/T we can use Curie’s law,

χ =
µ0ng2

Jµ2
BJ(J + 1)

3kBT

and
χ =

M
H

=
ngJJµBBJ

H
to deduce

BJ

(
gJµBJB

kBT

)
≈ gJµB(J + 1)B

3kBT
.

• In terms of x = M/T , the straight line is

M
Ms

=
Tx

Ms

and the approximation to the Brillouin function is (putting λM for B)

BJ ≈ λMgJµB(J + 1)
3kBT

= λ
gJµB(J + 1)

3kB
x.

• Equating the gradients with respect to x,

TC

Ms
= λ

gJµB(J + 1)
3kB

,

or

TC = λ
gJµB(J + 1)Ms

3kB

=
λng2

Jµ2
BJ(J + 1)
3kB

.

• The critical temperature TC is the Curie temperature – often denoted by
θ.

• Some ferromagnetic materials

Material TC (K) µB per formula unit
Fe 1043 2.22
Co 1394 1.715
Ni 631 0.605
Gd 289 7.5
MnSb 587 3.5
EuO 70 6.9
EuS 16.6 6.9

• Below TC the spontaneous magnetisation varies with temperature.
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1.8.6 Paramagnetic regime

• Above the Curie temperature, if we apply a magnetic field, we have

BJ =
M
Ms

≈ (B + λM)
gJµB(J + 1)

3kBT

• This can be rearranged to give

M =
MsBgJ (J+1)µB

3kB

T − λMsgJ (J+1)µB
3kB

,

• With Ms = ngJJµB

M =
nBg2

JJ(J+1)µ2
B

3kB

T − λng2
JJ(J+1)µ2

B
3kB

=
nBg2

JJ(J+1)µ2
B

3kB

T − TC

• This gives a susceptibility

χ ∝ 1
T − TC

,

which is the Curie-Weiss law.

• The Curie-Weiss law works quite well at high T
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• It breaks down near the Curie temperature TC or θ, where the mean field
approximation fails.

1.8.7 Effect of magnetic field on ferromagnet

• At low temperatures, the magnetisation is nearly saturated, so a B field
has little effect:
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• As we increase the temperature, we reach a regime where the field has a
large effect on the magnetisation:

• At high temperature we are in the Curie-Weiss regime than we described
above:
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• Overall, then, the effect of a field is:

1.8.8 Anisotropy in magnetic systems

• The quenching of orbital angular momentum in a crystal is one effect of
the crystal field (the electrostatic potential variation in the solid).

• But as spin-orbit coupling links the spins to the spatial variation of the
wavefunctions, the spins tend to align more readily along certain directions
in the crystal: the easy directions of magnetisation.
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1.9 Magnetic domains
• In general, a lump of ferromagnetic material will not have a nett magnetic

moment, despite the fact that internally the spins tend to align parallel
to one another.

1.9.1 Magnetic field energy
• The total energy of a ferromagnetic material has two components:

1. The internal energy (including the exchange energy) tending to align
spins

2. The energy
∫
B.HdV in the field outside it.

• The external field energy can be decreased by dividing the material into
domains.

• The internal energy is increased because not all the spins are now aligned
parallel to one another.
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1.9.2 Domain walls
• What is the structure of the region between two domains (called a domain

wall or a Bloch wall)?

• The spins do not suddenly flip: a gradual change of orientation costs
less energy because if successive spins are misaligned by δθ the change in
energy is only

δE = 2JS2(1− cos(δθ)),

where J is the exchange integral.

• For small δθ, expanding the cosine,

δE = 2JS2(1− cos(δθ)) ≈ 2JS2 1
2
(δθ)2

• If we extend the change in spin direction (total angle change of π) over N
spins, δθ = π/N , and there are N such changes of energy δE, the total
energy change is

∆E = JS2 π2

N
.

• This favours wide walls, but then there are more spins aligned away from
easy directions, providing a balance. Bloch walls are typically about 100
atoms thick.

• In very small particles, the reduction in field energy is too small to balance
the domain wall energy. Thus small particles stay as single domains and
form superparamagnets.

• Small magnetic particles are found in some bacteria (magnetotactic bac-
teria) which use the angle of dip of the Earth’s magnetic field to direct
them to food.
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1.10 Other types of magnetic ordering

• The three easiest types of magnetic ordering to visualise are

1. ferromagnetic (all spins aligned parallel)

2. antiferromagnetic (alternating spins of equal size)

3. ferrimagnetic (alternating spins of different size, leading to nett mag-
netic moment)

• As the exchange integral J can have complicated dependence on direction,
other orderings are possible, for example:
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• Helical ordering (spins parallel within planes, but direction changing from
plane to plane) – e.g. Dy between 90 and 180 K. Conical ordering – e.g.
Eu below 50 K. Polarised neutron scattering reveals these structures.

1.11 Magnetic properties of metals

1.11.1 Free electron paramagnetism
• In a metal, the free electrons have spins, which can align in a field. As the

electrons form a degenerate Fermi gas, the Boltzmann statistics we have
used so far are inappropriate.

• The field B will shift the energy levels by ±µBB.

• Thus the number of extra electrons per unit volume with spin up will be

∆n↑ =
1
2
g(EF)µBB

and there is a corresponding change in the number with spin down,

∆n↓ = −1
2
g(EF)µBB.

• The magnetisation is therefore

M = µB(n↑ − n↓) = g(EF)µ2
BB,

• This gives a susceptibility of

χ =
M
H

= µ0µ
2
Bg(EF) =

3nµ0µ
2
B

2EF
.
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• This is a temperature-independent paramagnetism, typically of order 10−6.

• The free electrons also have a diamagnetic susceptibility, about − 1
3 of the

paramagnetic χ.

1.11.2 Ferromagnetic metals

• If we look at the periodic table we find that the ferromagnetic elements
are metals.

• This causes some complication in the magnetic properties.

• They can be treated in a simplified way by Stoner theory.

• The exchange interaction splits the narrow d bands: the wide free-electron-
like s bands are relatively unaffected.
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• The Fermi surface is determined by the total number of electrons: this can
lead to apparently non-integer values of the magnetic moment per atom
(e.g. 2.2 in Fe, 0.6 in Ni).


