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§7  – Electron Bands  
7.1 Electron Bands

The free electron gas model completely ignored the crystal, which we will now reintroduce.

We saw from the previous section that k F~
2
a ' , where a' is the typical spacing.

If there are two conducting electrons per atom, kF is even higher.

Thus, we are certain to reach the zone boundary.

An electron, like all particles is both particle-like and wave-like. Thus, like any wave it will 
undergo elastic scattering or diffraction in a periodic crystal lattice.

Recall the definition of the zone boundary. The zone boundary is a locus of points k and k '  
satisfying k−k '=G .

So all electron wavefunctions with wavevectors k  that lie on (or near) the zone boundary will 
scatter strongly into waves of wavevector k ' differing from it by  a reciprocal lattice vector.  This 
has the effect, as we shall see, of opening up a band gap in energy at the zone boundary.  This will 
be used to explain the differences between metals and insulators.

7.2 Calculation of the Band Gap Energy

In the presence of strong scattering, the two zone boundary states at k x=
±
a have equal 

amplitude in the electron wavefunction. One of the two states is reflected back on top of the other, 
and the result is a standing wave. There are two independent combinations:

(7.1)

(7.2)

The atomic cores of the lattice contribute a potential U x  , which unlike our simple free electron 
model, we  no longer neglect.

This nearly-free electron model considers the potential to be a perturbation of the free electron gas 
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+∝e
i a xe

−i a x=2cosa x

- ∝e
i a x−e

−i a x=2 i sina x



 §7  –   Electron Bands : 

model.

Let H be the perturbed Hamiltonian.The Schrödinger (energy eigenvalue) equation is then:

(7.3)

In the picture below, the energy is lower for the + wavefunction than the - 
wavefunction, because the maximum probability, ∣+∣max

2  corresponds to the regions of low 
potential of the crystal where the ion cores are located. Similarly, ∣-∣2 is at a maximum in 
between the ions.

Since U x  is the perturbing Hamiltonian, the change in energy is given by the matrix element:

(7.4)

Where: ∣ 〉 is an eigenstate corresponding to the wavefunction ψ.

This means that the band gap is given by:

(7.5)

Where: ∣+ 〉 and ∣- 〉 are eigenstates corresponding to wavefunctions + and - 
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H = −
ℏ2

2m
∇2


unperturbed Hamiltonian

 U r 
perturbation=E

E= 〈∣U∣ 〉

E g= 〈+∣U∣+ 〉−〈-∣U∣- 〉
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respectively.

In wavefunction notation, the band gap energy is given by:

(7.6)

7.3 Fourier Expansion of U(x)

The major strength in considering the reciprocal lattice is that it is the natural  basis for Fourier 
analysis of periodic functions.

This is a key tool in electronic band structure calculations.

Consider a 1-dimensional symmetric periodic function U x  . We can expand this as a Fourier 
series:

(7.7)

Note:

Since U is symmetric, we can ignore sin terms (since they will be 0). We have also ignored the
n=0 offset term.

As far as we are concerned, U n are the set of coefficients U G , where G=
2
a
n . There is one 

number for each reciprocal lattice point in 3-dimensions.

Before we continue, we need to normalise the wavefunctions in equations (7.1) and (7.2) :

∫
0

a

4cos2a xdx=4[ x2
a sin 2

a
x

4 ]
0

a

=2 a

∫
0

a

4sin2a xdx=4[ x2 −
a sin 2

a
x

4 ]
0

a

=2a

Thus, the normalised wavefunctions are:
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E g=∫
0

a

U  x[∣+∣2−∣- ∣2]dx

U x =1
2 ∑
n=−∞

∞

U n e
i n 2

a
x
=∑
n0
U n cosn 2

a
x
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(7.8)

(7.9)
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+= 2
a

cos
a
x

- =i 2
a

sin
a
x
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Substituting equations (7.7), (7.8) and (7.9) into equation (7.6) gives the band gap energy as:

(7.10)

Using the identity cos2−sin2=cos 2 and separating the first-order correction gives:

(7.11)

Now, we can simplify the first integral using the identity cos2=1
2
1cos2 :

∫
0

a

cos22
a
xdx=1

2∫0
a 1cos 4

a
xdx=1

2 [ x a
4

cos 4
a
x]0

a

=1
2 [a a

4− a
4 ]=a2

Thus, we can write the energy gap as:

(7.12)

Although it is not necessarily obvious, the other terms cancel. This can be seen by using various 
trigonometric identity substitutions. Doing so, and performing the integration yields:

(7.13)

Thus, the sum cancels since for all n∈ℤ ; n1 , sinn=0 .

Thus, the final solution to the energy gap is:

(7.14)

Thus, the energy gap is simply the first Fourier coefficient of the potential.
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E g=
2
a∫0
a

∑
n0
U n cosn 2

a x[cos2a x−sin2a x]dx

E g=
2
a∫0
a

U 1 cos22
a
xdx2

a∫0
a

∑
n1
U n cosn 2

a
xcos 2

a
xdx

E g=U 1
2
a∫0

a

∑
n1
U ncosn 2

a
xcos 2

a
xdx

E g=U 1∑
n1
U n

2 ncos nsin n
n2−1

E g=U 1
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This result is completely general, but it is only true at the zone boundary. Elsewhere, we need to 
consider all the coefficients.

We can generalise this argument: the magnitude of the energy gap at the reciprocal lattice vector
G is U G .

7.4 Kronig-Penney Model

In this model the potential is approximated by a periodic array of square wells. In the limit of 
infinitely narrow wells we can obtain an exact solution easily.

Let U x  be a Dirac-delta function, with weight U 0 .

(7.15)

We can show by this model that U G are simply U 0 . This result is true for all the Fourier 
coefficients

Under this model, all the band gaps are the same size.

7.5 Bloch Model

This is a very important theorem in physics, and is invaluable in solid state physics.  Bloch's 
theorem concerns a general solution of the Schrödinger equation for a periodic potential:

(7.16)

Where: uk r  is a periodic function satisfying uk rT =uk r  .

There is a simple proof for this form for a non-degenerate case.

Assume that a 1-dimensional wavefunction satisfies periodic boundary conditions:

(7.17)

This 1-dimensional case is easily generalised. We can make the case general by considering the 
limit N ∞ .

We want to look for solutions of equation (7.17) that factorise to separate their lattice periodicity:
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U x =U 0a∑
s

x−sa 

r =uk r e
ik⋅r

 xN a =x 
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(7.18)

This is a general solution, since the choice of C x  is arbitrary.

Applying the periodic boundary condition from equation (7.17):

(7.19)

Thus, we have C x N=1 , which means that C x =N1 . Since we have not made any 
assumption on C x  , then we can write C x  as the complex equation:

(7.20)

Where s∈{0,1 ,2 ,⋯, N−1}

Now, let us choose a periodic function u x  such that:

(7.21)

Now, check that this satisfies periodicity:

(7.22)

So, equation (7.22) has the form of equation (7.18), as expected.

This type of wavefunction is called a Bloch function.

In the limit of N ∞ , we can consider the discrete variable 2 s
N a to be a continuous 

variable k.

Thus, we can write the wavefunction in equation (7.21) as:

(7.23)
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 xa =C x x 

 xN a =C x Nx = x

C x =e
2 i sN

 x=u xe
2i sN a x

 xa =u xae
2 i sN a xa 

=e
2 i sN
C  x

u x e
2 i sN a x

x

 x=u xe i k x
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For a three dimensional case, we return to the form of equation (7.16).

We have generally considered k to be of this form when we have attempted to model a crystal with 
periodic boundary conditions.

Note:

These Bloch functions are considerably more general than  strictly periodic functions.

We can consider a Bloch function as a wavefunction with a periodic component modulated by a 
continuously varying phase that represents the wave.

In three dimensions, the wave has 3 components.

We can assemble the Bloch waves into “wave packets”, just as with plane waves.

Bloch waves account for the fact that the wavefunction varies quickly inside the atomic core, but 
still keeps its long-range coherence.

a) Illustration of Bloch Waves

The wavefunction of the Bloch wave does not have to be an exact solution of the Schrödinger 
equation inside every core, just within a multiple of the phase factor.

This can be seen as a hybrid solution. Near the atomic cores, the wavefunction is atomic-like, 
whereas between the cores, the function behaves more like a wave.

We can use this information to explain why electrons do not appear to “see” the nuclei in the metal:

1. Every nucleus has a large, localised potential that strongly influences the wave;
2. At the same time, every nucleus behaves the same, so the phase shift in ψ is the same for 

each core;
3. Summed over the entire lattice, the phase shifts satisfy the long-range periodic constraint in 

equation (7.19).
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Figure 7.1: a) The Bloch wavefunction as a function 
of position. Near the ion cores, the wavefunction 

behaves like in an atom. b) Variation of the potential 
energy in the field of the ion cores.
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Thus, in a periodic lattice, the electrons behave as Bloch waves, in an “invisible” lattice.
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If there are any defects, such as a lattice vacancy or an atom in an interstitial site, or there is an 
impurity, or merely an atom out of position due to thermal excitation, then a strong scattering event 
will occur.

7.6 Electron Bands in 3-Dimensions

Even when we just consider a free electron case, the combined effects of the spherical energy 
contours with geometrically square reciprocal space lead to a very complicated picture.

The reduced zone scheme involves a linear mapping of all energy and wavevectors into the first 
Brillouin zone.

We showed before that for an umklapp process: k '=kG . We can subtract a reciprocal lattice 
vector G from some k in order to translate it into the first Brillouin zone.

In 1-dimension, we have:
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Figure 7.2: Energy-wavevector relation for free 
electrons in the reduced zone scheme. The branch AC, 
if displaced by 2π/a gives the usual curve for negative 
k in the extended zone scheme, as indicated by the 

dashed line.
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In three dimensions, we need to add more bands, corresponding to the other two dimensions:

In all cases, the band gaps open at the zone boundary and the centre of the zone, with E g=U G .

7.7 Tight Binding Method

This is one of several methods for general calculation of the band-structure.

We will start with neutral, separated atoms, and consider how the energy levels change as the 
charge-distributions of adjacent atoms overlap as the atoms are brought together to form a crystal.

Consider the s-orbitals of two adjacent neighbours.
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Figure 7.4: a) Schematic drawing of wavefunctions of electrons of two 
hydrogen atoms with large separation. b) Ground state wavefunction at 

closer separation (bonding). c) Excited state wavefunction (anti-bonding).

Figure 7.3: Reduced zone scheme for 
three-dimensions, plotted over (kx,0,0)

(1 0 0)
1 0 0

2 0 0

(0 1 0)

(1 1 0)



 §7  –   Electron Bands : 

When two atoms are brought together, their wavefunctions will overlap. The combined 
wavefunction will be of the form A±B . These are called bonding (+) and anti-bonding (-) 
orbitals.

An electron in an anti-bonding orbital has higher energy than the bonding orbital. 

An electron in the bonding orbital spends part of the time in the region midway between two nuclei, 
and in this region it feels the attractive potential of both nuclei at once, increasing its binding 
energy. 
In the anti-bonding orbital, the probability density vanishes at the midway point, so this extra 
binding does not occur.

a) Calculating Energy Bands

Suppose the ground state of an electron moving in a potential U r  of an isolated atom is given 
by r  , which is an s-orbital.

If the influence between atoms is small, we can approximate the wavefunction of an electron in the 
entire crystal as:

(7.24)

Where the summation is over all lattice points in the crystal.

We have assumed that the primitive lattices comprises one atom.

This function will be of the form of a Bloch wave if, for a crystal comprising N atoms, the 
normalised coefficients are:

(7.25)

Thus, the (normalised)Bloch  wavefunction is given by:

(7.26)
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k r =∑
j
Ck jr−r j

Ck j=N
−1

2 e ik⋅r j

k r =N
− 1

2∑
j

expi k⋅r jr−r j
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Let us prove that equation (7.26) is of the  form of a Bloch wave by consider a translation T
between two lattice points:

k rT =N
−1

2∑
j

exp i k⋅r jrT−r j

k rT =exp i k⋅T N
−1

2∑
j

exp[ i k⋅ r j−T ] [r− r j−T ]

By definition of the translational vector T both r j  and r j−T  are lattice vectors, and so this 
is simply:

k rT =exp i k⋅T  N
− 1

2∑
j

expi k⋅r jr−r j=expi k⋅T k r 

This is exactly the Bloch condition, as we expected.

We can find the first-order energy by determining the diagonal matrix elements of the Hamiltonian 
of the crystal:

(7.27)

Where: m≡r− rm .

Let m= rm−r j . Then, using the periodicity of the lattice, we have:

(7.28)

Where:  'm≡r− m and ≡r  .

Now, we will neglect all terms except those corresponding to the same atom and those between 
nearest neighbours, connected by  .  In a symmetric crystal, all these neighbours will have the 
same matrix element.

Let  '≡r− . 
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〈k∣H∣k 〉=N−1∑
j
∑
m

exp [i k⋅ r j− rm]〈m∣H∣ j 〉

〈k∣H∣k 〉=∑
m

exp −i k⋅m 〈 ' m∣H∣〉
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We can write the matrix elements of the atom and its nearest neighbour as:

(7.29)

(7.30)

Finally, substituting equations (7.29) and (7.30) into (7.28) gives the energy bands as:

(7.31)

Note:

 are known as overlap integrals (we saw these in the 2nd year when we considered energy 
levels).

m correspond to the positions of the nearest neighbour atoms in the lattice.
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〈∣H∣〉=−

〈 '∣H∣〉=−

k=〈k∣H∣k 〉=−−∑
m

exp−k⋅m

Figure 7.5: The 1s band of a ring of 20 hydrogen 
atoms. The graph shows the one-electron energy 

calculated by the tight-binding approximation using the 
nearest-neighbour overlap integral.
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b) Special Cases of Energy Bands

Simple Cubic

This has nearest neighbours at:

m=±a ,0,0 ; 0,±a ,0; 0,0,±a

This means that the energy band is given by:

(7.32)

At the zone centre:

k 0,0,0=−−23cos 0=−−6

And at the furthest (positive) zone boundary:

k /a ,/a ,/a=−−2 3cos=−6

Thus, the bandwidth is:

(7.33)

BCC Structure

There are 8 nearest neighbours in the bcc structure.

The energy band is given by:

(7.34)

At centre of zone:

k 0,0,0=−−8cos03=−−8

At the zone boundary:

k 0,0,2/a=−−8 cos 02 cos  =−8
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k k x , k y , k z=−−2cos k xacosk y acos k z a

=12

k k x , k y , k z=−−8[cos k xa2 cos k y a2 cos k z a2 ]
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Thus, the bandwidth is:

(7.35)

FCC Structure

There are 12 nearest neighbours in the fcc lattice.

The energy band is given by:

(7.36)

Thus, the bandwidth is:

(7.37)

7.8 Pseudopotential Methods

This is especially useful for heavy elements.

Take the 5s orbital of Rb (Z = 36). This has four radial nodes. The p and d-orbitals have a strong 
angular structure with positive and negative lobes.

The resulting Bloch waves are unnecessarily complicated.

However, we can simplify this because the  cores of the ions have little  overlap between sites. 
Thus, to a very good approximation, we can replace the potential of the core region with an 
effective potential or pseudopotential that gives the same wavefunctions outside the core as are 
given by the ion cores themselves.
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=16

k=−−4[cos k y a2 cos k za2 cos k z a2 cos k xa2 cos k x a2 cos k y a2 ]

=24 
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