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§5  – Thermal Properties  
5.1 Thermal Excitation of Phonons

Phonons are created and destroyed by thermal excitation and make a significant contribution to the 
heat capacity:

C=Cphonon
all solids

C electrons
metals only

 Cmagnetic
magnets only

Thus, a non-magnetic insulator has only the phonons contributing to its thermal properties.

We define the heat capacity at constant volume as CV≡∂U
∂T V , where U is the internal energy. 

For a solid, this is almost the same as Cp:  the heat capacity at constant pressure. 

The total energy of photons at a temperature T can be written as a sum over all phonon modes, 
which  is specified by a wavenumber K and polarisation p:

(5.1)

Where: nK , p is the number of phonons in the branch p with wavenumber K.

Here,  pK  is the frequency  from the dispersion relation. 

In thermal equilibrium, since phonons are bosons, 〈n〉 is given by the Planck distribution, as for 
black body radiation:

(5.2)

We now need to count up the phonons in the crystal.

A large crystal has many modes, so we can replace the sum by an integral:

(5.3)

Where: D p is a weighting factor known as the density of (frequency) states, which is derived 
from the dispersion relation.
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U=U lattice=∑
K
∑

p
〈 nK , p 〉ℏ p K 

〈n〉= 1
exp ℏ/k B T −1

U= ∑
p all bands

∫ D p
ℏ 

exp ℏ/ k B T −1
d
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Since, D does not depend on T, we can perform the T-differentiation first, so CV is simply:

CV=
∂U
∂T
= ∑

p all bands
∫ D p

ℏexp ℏ/k B T 

exp ℏ/k BT −1 2
ℏ 

k B T 2 d

(5.4)

Where: x≡ ℏ
k B T .

5.2 Einstein Model

This is the earliest model of the heat capacity of the lattice. It bypasses the specific details of the 
density of states.

The Einstein model is a reasonable approximation for a molecular crystal with numerous optical 
modes.

If there are N atoms in a crystal, then for a crystal with 3 unconstrained dimensions, there are 3N 
degrees of freedom. We will assume that all vibrations have the same frequency E .

This Einstein frequency is typically an optical frequency of the order 1012 Hz.

The Einstein model assumes that the density of frequency states is simply a Dirac delta function
E  , which is zero everywhere, except at =E , where it is infinite.

Thus, the heat capacity becomes:

(5.5)

We can take the high-temperature limit ( T ∞ ). This means that x0 , e x1x and
e x−12 x2 .

Finally, this gives a high-temperature heat capacity as:

(5.6)
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CV=k B∑
p
∫ D p 

x 2e x

e x−12
d

CV=k B ℏk B T 
2 exp ℏE /k BT 

exp ℏE /k B T −12
⋅ 3N

from summation

CV=3N k B
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This agrees with the Dulong and Petit law, which states that all substances have the same specific 
heat per mole.

5.3 Density of States in 1-Dimension

As illustrated in Fig. 5.1, the Einstein model fails at low temperatures, although it works relatively 
well at large temperatures. So, we need a better method for counting the 3N vibrational modes and 
determining their frequencies.

This is a two-stage process:

1. Find the allowed K values;

2. Look up the frequencies K  .

We said that the Einstein frequency is usually in the optical part of the phonon spectrum.

Thus, the main failings of the Einstein model come mainly from its not accounting for the acoustic 
modes.

Let us consider the following a boundary-value problem: a finite crystal with fixed ends, 
comprising N identical atoms with spacing a.

The length L of the crystal is therefore, L=N a .

Alternatively, we could consider an open-ended string, or a periodic boundary condition. These all 
yield the same result.

As in section 4, we will have a wave solution of the form: us=ue i K sa− t .
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Figure 5.1: Comparison of experimental values for 
diamond with those predicted by the Einstein model,using 
the characteristic temperature E=x T=ℏ/kB T=1320 K. . 

At low temperatures the model predicts an exponential 
decay, whereas experiment shows a T3 relation. 
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To satisfy the boundary conditions, we can either use a superposition of positive and negative 
wavenumber states, or we can write the solution of the wave equation as:

us '= 1
2 i usK −us −K =ue−it sin K s a

This will be zero at s=0 , by construction. We also need to define that value at s=N , which 
must be equal to zero.

This gives the boundary condition:

sin K N a=0

⇒ K N a=m where: m∈ℤ

Thus, the allowed values of K are:

(5.7)

Since N is generally large, these discrete wavenumbers are closely spaced.

Recall that the solutions are periodic, with repetition outside −

a
K

a , indistinguishable 

from the first Brillouin zone.

The eigenvectors are all orthogonal to each other, so they are are independent modes of oscillation.

In this case, the +  and – K values give the same solutions. Thus, the total number of solutions is N.

For atoms free to move in 3-dimensions, there will be three modes for each atom, which gives 3N 
solutions.

If instead we had used a periodic boundary condition, us=usN , we would find that the allowed 

values of K would be K=±2m
L . This time, the + and – K solutions are different, however, 

the spacing has doubled, so we still have N solutions.

Consider the density of wavenumber states, the number of states in the range K KdK ,  a 

single state occupies K=
L .
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K=m
N

a
=

m
L
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It is clear that for a single state, the density of K states  will satisfy D K K=1 . So, the density 
of K states is given by:

(5.8)

And since ∝K , the density of angular frequency states is given by:

(5.9)

5.4 Density of States in 2D or 3D Cases

It is easiest to consider a square/cubic array of atoms on a square/cubic lattice. The result can be 
shown to generalise to any case.

Let the crystal comprise a cubic lattice with sides of length L=N a .

The vibrations will have discrete wavevector components K x ,K y , K z . We can assume a 
wavefunction of separable wavevector components:

(5.10)

Periodic boundary conditions require that the wavefunction is periodic in all si siN .

Thus, we have:

(5.11)

Where: m∈ℤ is an integer.

So, the 3D reciprocal lattice comprises a set of points with spacing 
L in Kx, Ky and Kz.

For the thermal models we are considering, we only need to consider isotropic cases, where
K  looks the same in all directions.
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D = d k
d 

D K = L


1
d/d k 

= L


1
v g

us1, s2, s3
=u e−it e i K x s1 a e i K y s2 a e i Kz s3 a

K x=K y=K z=
m
N

2
a
=2 m

L

D K = 1
K

= L

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Then, D K d k will be the number of states in a shell of width K KdK .

A sphere of radius K will contain N= 4
3
K 3 L

2 
3

states.

A shell of width dK contains
d N
dK

d K  states.

Thus, we have D K d K=d N
d K

d K , so the density of K states in 3D is given by:

(5.12)

So, the density of angular frequency states in 3D is given by:

(5.13)

5.5 Real Density of States

D  has a tangible meaning in real life. We can see it as indicating the spectrum of vibrational 
frequencies of a solid.

If we can determine K  , we can can use this to determine the density of states.

Frequency “gaps” appear as gaps in the spectrum and in 1-dimension, turning points appear as 
divergences.

In higher dimensions (2D and 3D), the divergences are more spread out and appear as kinks and 
plateaux in the spectrum.

We can measure K  using optical spectroscopy,  neutron scattering or other processes, such as 
inelastic X-ray scattering.

Brillouin scattering is a process in which light in a medium (in our case a crystal) interacts with 
variations in density in the medium, changing its path. We can consider this to occur from photons 
interacting with phonons. This has strong peaks at the optical zone centre.
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D K =d N
d K

=4K 2 L
2

3

=V K 2

22

D =d N
d

=DK  d K
d 

=V K 2

22  d K
d  =V K 2

22
1
vg



 §5  –   Thermal Properties : 

When using the neutron scattering method, we prefer to use a powder sample to average all crystal 
directions. This yields a similar result to Brillouin scattering.

Inelastic X-ray scattering has a much lower resolution than the above two approaches. However, it 
is a viable approach for small volumes (e.g. under high pressure).

5.6 Debye Model

Now we have a general equation for the density of states, we can improve on the Einstein model by 
incorporating the long-wavelength acoustic phonons, ignoring any zone boundary effects.

Let us assume that:

(5.14)

Where: v s≡speed of sound .

The density of states is then given by:

(5.15)

This is the first assumption that Debye made.

The second assumption is that there is no dispersion up to a cut-off frequency, set by the total 
number of allowed modes, N cells ,the number of primitive cells, which is equal to the number of 
atoms in the crystal.

This approximation turns out to be a good one, as the thermal properties are dominated by low 
frequency contributions.

Now, let us consider this cut-off point:

(5.16)

Where: K D is the Debye wavenumber.
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=v s K

D = V K 2

22 v s

=
V 2

22 v s
3

4
3
K D

3


V k−sphere

 L
2 

3


1 /V state

=N cells=N DOF
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Now, set L3=V≡V sample . This  gives the cube of the Debye wavenumber:

(5.17)

 
Where: nV is the number density (N / V).

Substituting equation (5.17) into equation (5.14) gives the cube of the Debye angular frequency:

(5.18)

We can determine the total energy of the system by integrating the density of states over ω, 
including a factor of 3 for the polarisation:

(5.19)

Where: 〈n 〉 is the expectation value of the occupation number of an energy state as a function 

of ω,  given by 〈n 〉= 1
eℏ/ kb T−1

. Thus, substituting equation (5.15) into equation (5.19) gives:

(5.20)

We can define a unitless quantity x≡ ℏ
k B T . This allows us to simplify equation (5.20):

(5.21)

Where: x D≡
ℏD

k B T . 
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K D
3=3 2

3

4
N
V
=62 nV

D
3=62 v s

3 nV

U=3∫ D〈n 〉ℏ d 

U=3∫
0

D V 2

22 vs
3 ℏ

eℏ/ kB T−1d

U=3 V ℏ
22v s

3 k BT
ℏ 

4

∫
0

x D x3

e x−1
d x



 §5  –   Thermal Properties : 

We can also write this as a ratio of temperatures x D=
D

T
, where D is the Debye 

(characteristic) temperature, given by:

D=
ℏD

k B
=
ℏ v s

k B
62 nV 

1
3

We can use the Debye temperature to significantly tidy up equation (5.21).

Note:

D is an intrinsic property of the solid, meaning that it is only dependant on the chemical 
structure of a medium, not on any physical properties such as temperature, pressure etc.

Finally, we can write the total energy as:

(5.22)

From equation (5.22), we immediately find the heat capacity according to the Debye model:

(5.23)

We can consider the two extremes:

a) High-Temperature Limit

In the high-temperature limit, x0 . Expanding e x as a Maclaurin series, and ignoring order 
greater than the linear term, e x1xO x2 . Thus, we can write the high-temperature specific 
heat as:

CV≈9 N k B T
D

3

∫
0

xD x4 1x 
x2 dx=9 N k B T

D
3

∫
0

x D

x21x d x

Now, taking x21 x x2 gives:

CV≈9 N k B T
D

3

∫
0

xD

x2 dx=9 N k B T
D

3 x D
3

3 
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U=9 N k BT  T
D

3

∫
0

x D x3

e x−1
d x

CV=∂U
∂T V=9 N k B T

D 
3

∫
0

xD x 4e x

e x−12
d x
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Finally, replacing x D by 
D

T
gives:

(5.24)

So, in the high-temperature limit, we get the Dulong-Petit value, as before.

b) Low-Temperature Limit

Important:

Make sure to take the limit for U before evaluating CV, as this make the integrals MUCH easier.

In the limit T 0 , x D
D

T
∞ , so we can approximate to the standard integral:

(5.25)

Substituting into equation (5.22) gives:

(5.26)

This gives the heat capacity in the low-temperature limit:

(5.27)

This is known as the Debye T3 law.
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CV≈9 N k B T
D

3[13D

T 
3]=3 N k B

∫
0

xD x3

e x−1
dx∫

0

∞ x3

ex−1
dx=

4

15

U=9 N k BT  T
D

34

15

CV=4T39 N k B 1
D 

3
4

15 =12
4

5
N k B T

D
3
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5.7 Anharmonic Crystal Interactions

So far, we have considered “harmonic” models: a spring compressed by a displacement x exerts the 
same force as a spring expanded by a displacement x.

However, cohesive forces are inherently anharmonic:

For small deviations, a harmonic approximation works relatively well. However, at large deviations 
(high T), such an approximation is insufficient.

There are two main consequences of anharmonicity:

1. Thermal expansion exists in crystals. The average position is generally ≠rmin when 
neighbours travel far from equilibrium separation;

2. Phonons can interact with each other. This is not true in a purely harmonic crystal, where 
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Figure 5.2: Density of states as a function of frequency for 
a) Debye solid b) real crystal structure. For small ω the 

density of states increases as ω2 in both but discontinuities 
appear in the real crystal due to singularities. 

Figure 5.3: Graph of cohesive forces showing 
core repulsion and Coulomb forces. The dashed 

line represents the harmonic solution. 



 §5  –   Thermal Properties : 

the modes are independent.
Instead, one phonon causes a momentary deviation of r min on one side or the other. The second 
phonon then “sees” a different spring constant (larger to the left of graph). So, they are not 
independent.

According to anharmonic models, phonon-phonon interactions follow the energy and momentum-
conservation laws:

Conservation of momentum: ⇒ K 1K 2=K 3

Conservation of energy: ⇒ 12=3

5.8 Thermal Conductivity

From the kinetic theory of gases, we can express the thermal conductivity, κ as:

(5.28)

Where: CV is the specific heat, v s is the speed of sound and l is the mean free path (between 
collisions).
 
To define thermal conductivity, there must be a mechanism in the crystal whereby the phonons may 
be brought into thermal equilibrium.  Anharmonicity alone is insufficient.

Outside the first Brillouin zone, real momentum is not conserved for K 3= K1 K2 because the 
total momentum of the phonon gas is unchanged by this process.

In order to establish equilibrium, we need to introduce the umklapp process, in which a three-
phonon process is of the form:

(5.29)

This has the effect of translating phonons produced in a collision into the first Brillouin zone.
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=1
3

CV vs l

K 1 K 2= K 3G
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The mean free path in equation (5.28), is the mean free path for umklapp collisions only because 
other processes do not cause thermal resistivity.

The variables in equation (5.28) have the following temperature depenence:

Specific heat – CV∝T 3 at low temperatures, and approximately constant at higher temperatures

Speed of sound – v s has no temperature dependence,since it is an intrinsic property of the crystal

Mean free path – l∝ 1
T  at high temperatures. It has a strong activation at high T , where umklapp 

process are predominant.

Note:

Thermal resistivity is not always an intrinsic property of a crystal because it can depend on the size 
of the sample.
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Figure 5.4: Diagram showing a) normal and b) Umklapp 
phonon process. A phonon at K1 K 2  can be translated 

into the first Brillouin zone by displacement by G .
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