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4.1 Vibrations

This is a sizeable subject, which leads to powerful predictions about the thermal properties of 
solids. When considering the counting of modes, we will see how reciprocal space notation is a 
useful tool.

We will start by considering simple models of vibrations and progress towards a more general case. 
Although strictly necessary, we will not study elasticity theory.

Probably the simplest model of lattice vibrations is a 1-dimensional monoatomic infinite chain of 
identical particles.

a) 1D Monoatomic Chain

From Fig 4.1, we can see that the force (to the right) of a mass at a point s on the chain, M S is 
given by:

(4.1)

This equation has a wave solution. As usual, we have an amplitude equal to the value at t = 0 and a 
complex exponential term:

(4.2)

We can drop the “0”after substituting into equation (4.1) without losing information:

(4.3)
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us=us0 e−i t

−M 2 us=C u s1us−1−2us

Figure 4.1: Monoatomic crystal comprising 
atoms of mass M connected by force constant 

C separated by repeat distance a.
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This is now simply a  recurrence  relation. If we assume that us has a wave-like space 
dependence, we can simplify this further:

(4.4)

Where K is some wavenumber, s is an integer (the number of the particle along the chain) and a is 
the lattice spacing. In other words, s a corresponds to distance along the chain.

Thus, equation (4.3) becomes:

(4.5)

Using the standard identity, cos x≡1
2
e i xe−i x gives:

−M 2=2C cos K a−1

⇒ 2=2 C
M

1−cos K a

(4.6)

This is known as a dispersion relation. It tells us how the frequency of the wave changes with the 
wavenumber. Every value of K can be a solution.

4.2 First Brillouin Zone

The wavenumber has units [L]-1, which suggests that there may be a link between the wavenumber 
and reciprocal space.

If we plot ω against K, we can see that K  is periodic in K. 

We can see the First Brilluoin Zone as the first set of unique solutions of K  about K = 0.
The value of K at the zone boundary can be found by writing e i K s a as:

e i K sa=e i K sa e2 i s=e
iK

2
a sa
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us=ue i K sa

−M 2 ei K s a=C e i K s aei K a
(s+1)

e−i K a
(s-1)

−2

2=4 C
M

sin 2 1
2

K a
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So, we have unique solutions in the range
−

a
≤K≤


a . But, K can be positive or negative, so the 

zone boundary occurs at:

(4.7)

This is a very important result.

We can see from the picture that  the high-frequency wave, corresponding to K beyond the zone 
boundary, is indistinguishable from a lower frequency wave within the FBZ:

It is possible to distinguish the positive and negative states at the zone boundary, but only because 
of the time-dependence of us :

(4.8)

The phase velocity is given by:

(4.9)

The phase velocity can be positive or negative.

However, at the zone boundary, K=±

a , we lose this sense of direction:

(4.10)

– 3 –
Last Modified: 04/12/2006

K ZB=±

a

ust =us0 e i K sa e−i t=us 0 ei K sa−t 

v p=

K

ust K=/a=us0 expi ± s− t =u s0 −1s e−it

Figure 4.2: The wave represented by the solid curve conveys no 
further information than the dashed curve at the atom positions. 

Only wavelengths longer than 2a are needed to represent the 
motion.
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Equation (4.10) represents a standing wave with alternate atoms oscillating in opposite phase. So, at 
the zone boundary, we no longer have a travelling wave.

4.3 Group Velocity

A generally more useful measure of velocity is the group velocity, which represents the movement 
of the wave packets. This is defined as the rate of change of angular velocity with wavenumber:

(4.11)

The group velocity falls smoothly to zero at the zone boundary.

If we take the long wavelength limit, then K≪

a and cos K a

2 ≈1 .

Thus, the long-wavelength group velocity is:

(4.12)

This can also be interpreted as the linear region of the dispersion relation.

The angular frequency in this case is given by:

=2 C
M 

1
2∣sin K a

2 ∣≈2 C
M 

1
2 a

2
∣K∣
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v g=
d 
d K

= d
d K [2 C

M 
1
2 sin K a

2 ]=a C
M 

1
2 cos K a

2 

v g≈a C
M 

1
2=const.

Figure 4.3: Group velocity vg versus K, for 
a 1-dimensional monoatomic chain.
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The long-wavelength group velocity is then:

(4.13)

This is the velocity of long-wavelength elastic waves in the solid, commonly called the speed of 
sound in the material:

(4.14)

A non-dispersive medium has v g=v p .

Dispersion effects set in near the zone boundary. We can consider this as interference with a Bragg-
diffracted wave travelling in the opposite direction, slowing down the wave packets until they 
eventually form a standing wave at the zone boundary.

It is easy to generalise these results to three dimensions by replacing the wavenumber K with the 3-
dimensional wavevector K :

Dispersion Relation:

K  K 

Group Velocity:

v g vg=∇K   K 

Where: ∇K is the gradient (del) operator in wavevector space, which is a vector.

In the long-wavelength limit, an isotropic medium (e.g. cubic structure) has the same v g value in 
all directions.

There are two types of polarization: longitudinal and transverse, denoted by L and T. Altogether, 
there a 3 modes, 1 L mode and 2 T modes.

Typical values for the constants are:

M=Z mp~50×10−27 kg

a~0.3 nm

v s~104 m s−1
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v p=

K
=a C

M 
1
2=v g

v s≈v p≈v g
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Using these values gives a spring constant of:

C=M  vs

a 
2

=5×10−26⋅3×10132=50 N m−1

This is a typical macroscopic value for a light spring.

4.4 Structure with a Basis

So far, we have considered the 1-dimensional primitive lattice. The next level of complexity is a 
two-atom basis, or equivalently, a basis with two spring constants. An example of this is the [1 1 1] 
planes of a NaCl structure.

This time, we have two coupled equations of motion:

(4.15)

(4.16)

Again, the solution will be a wave, but there will be different amplitudes for the two masses. There 
will be the same frequency and wavenumber for each wave-mode of the system:

(4.17)

(4.18)
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M 1
d 2 us

d t 2 =C v sv s−1−2 us

M 2
d2 v s

d t 2 =C us1us−2v s

us=u e−it ei K s a 

v s=v e−it ei K s a 

Figure 4.4: Diatomic crystal structure with 
masses M1 and M2 connected by force 

constant C. The repeat distance a is twice 
that of the monoatomic crystal.

M1 M2 M1

us vs us+1

a
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We can substitute and cancel the common factors of the exponentials:

(4.19)

(4.20)

We can write the coupled bilinear equations (4.19) and (4.20) in terms of a matrix:

(4.21)

This is an eigenvalue problem. As with all eigenvalue problems (in matrix form), the determinant of 
the matrix must be zero is order to obtain solutions:

4 M 1 M 2−22 C M 12C M 24C2−C2 1exp [−i K a ] exp [i K a]1=0

Using the identity 2 cos x=e xe−x :

M 1 M 2
4−2CM 1M 2

22C2 1−cos K a =0

Finally, completing the square gives solutions to 2 as:

(4.22)

There are two frequencies for each K wavenumber. This corresponds to the two “branches” of the 
dispersion relation.

Before we plot this result, it will be useful to examine the limits of this solution.

a) Small-K Limit

In this case, K≪

a

, so 1−cos K a≈1
2

K 2a2 .
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−2 M 1u=C vve−i Ka−2u

−2 M 2 v=C ue i K au−2v

 2C−2 M 1 −C 1exp[−i K a ]
−C exp[ i K a ]1 2C−2 M 2

uv=0
0

2=
2C M 1M 2±4C 2M 1M 2

2−8 M 1 M 2C2 1−cosK a
2 M 1 M 2
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So, we have:

M 1 M 2
4−2C M 1M 2

2C2 K 2a2=0

Let us look at the general equation for the roots of a quadratic in the limit c0 :

For the negative solution:

(4.23)

The positive solution is slightly more complicated, but we can use a series expansion of the form

x y 1/2=x1 /21 y
x 

1 /2

=x1/211
2

y
x
O y

x 
2 :

(4.24)

Thus the two small-K solutions are:

(4.25)

(4.26)

Equation (4.25) is proportional to the reciprocal of the reduced mass =
M 1 M 2

M 1M 2
. There is 

also no dispersion in this branch.
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lim
c0 [−b−b2−4 a c

2a ]=−b−b2

2a
=−b

a

−bb2−4 a c
2 a ≈

−bb1−4 a c/ 2 b2
2a =

c
b

1
2=

2 C M 1M 2
M 1 M 2

=2C 1
M 1

 1
M 2

2
2= C2 K 2a2

2 C M 1M 2
= C

2M 1M 2
K 2 a2
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Equation (4.26) is like the solution to the monoatomic problem, where the group velocity 
incorporates both masses:

v g=a C
M 

1/2

 a C
2 M 1M 2

1/2

b) Zone Boundary

At the zone boundary, we know that K=
±

a . Since the  solutions at these two limits will be 

equivalent, but with opposite sign, we will just consider the positive limit. At K=

a we have

cos K a=−1 , which gives:

M 1 M 2
4−2C M 1M 2

24C2=0

So, solving for 2 gives:

2=
2 C M 1M 2±4C2M 1M 2

2−16C2M 1 M 2
2 M 1 M 2

Take the term in the square root:

4C2M 1M 2
2−16C 2M 1 M 2=4C2M 1

22M1 M 2M 2
2−4M 1 M 2

4C2M 1M 2
2−16C 2M 1 M 2=4C2M 1

2−2M1 M 2M 2
2=4C2M 1−M 2

2

Thus, the solutions of 2 are:

(4.27)
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2=
2CM 1M 2±2C M 1−M 2

2 M 1 M 2
= C

M 1 M 2
[M 1M 2±M 1−M 2]
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This clearly has two solutions, given by:

(4.28)

(4.29)

So, at the zone boundary, the branches separate into  solutions related to an individual mass.

We can use these limit solutions to project the final curves:

As before, we do not consider states outside ±

a , since for discrete atoms, these will be identical 

to those shown.

4.5 Nature of Branches

The splitting of the dispersion relation into optical and acoustic branches is a fundamental paradigm 
of solid state physics.

We can determine the nature of the modes from the eigenvalues of the matrix equation.

In the optical mode, u and v have opposite sign.

In the acoustic mode, u and v have the same sign.
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1= 2C
M 1

2= 2C
M 2

Figure 4.5: Optical and acoustic branches of the 
dispersion relation of a diatomic linear lattice in 
the positive half of the first Brillouin zone. Here, 

a is the lattice constant.
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The ratio of u and v varies with K.

We saw before that a wave appears to have a low-frequency and high-frequency modes. For 
transverse waves, these correspond to the acoustic and optical modes respectively.

At the zone centre (K = 0) of the optical mode, the wave is flat.

At the zone boundary, only one of the ions oscillates.

We have not shown how the 2-branch dispersion evolves into a single branch when the two masses 
are equal.

The problem is that we used a in both cases. However, these are not the same. Once the masses 
become the same, the diatomic length is twice the monoatomic length as defined in Fig. 4.1 and 4.4.

We can shift the negative section of the optical branch into a doubled Brillouin Zone.

We can close the gap between the acoustic branch and shifted part of the optical branch by setting
M 1=M 2 .

Let us check the frequencies:

c=2C 1
M 1

 1
M 2  for a diatomic chain.

If M 1=M 2 , then:

c= 4C
M

for a monoatomic chain.
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Figure 4.6: Transverse optical and acoustic waves 
in a diatomic linear lattice. Both modes have the 

same wavelength.
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General Case:

In a general 3-dimensional monoatomic system, there will be always be 3 acoustic branches:

Transverse – 2 modes

Longitudinal – 1 mode

This means there are three angular frequencies for each value of the wavevector k  .

For a 2-atom basis, there will be twice this number of modes. However, since there are always 3 
acoustic modes,  these extra 3 modes with be optical modes.

For a p-atom basis, there will be p×3 number of total modes.

It is clear that the most general case of an n-dimensional system with a  p-atom basis, will have:

n  p−1 optical modes

n acoustic modes

Where the optical modes will be of mixed polarisation.

4.6 Quantisation of Vibrations

A mechanical oscillator has discrete excitation energies. We have shown  in quantum mechanics, 
that the energy, ε of an oscillator, with quantum number n (corresponding to the energy level) and 
angular frequency ω is given by:

(4.30)

Where n is a non-negative integer.

Mechanical vibrations correspond to bosons, which means that any number of them can occupy an 
energy state, i.e. n can be any non-negative integer.

The quanta of mechanical excitation are called phonons, by an obvious analogy with the quanta of 
optical oscillation: the photons.

If n = 0, then we have the lowest energy state, which has zero-point energy, which we can see from 

equation (4.30) is equal to
1
2
ℏ .
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=n1
2ℏ
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The zero-point energy is a result of Heisenberg's uncertainty principle: the angular frequency has 
units of inverse time, and we know that the uncertainty between energy and time is given by:

 t≥ℏ
2

.

Each K-value of the excitation of the crystal corresponds to a different mode, like an independent 
oscillator.

We will show later that the eigenvectors for all values of K are orthogonal to one another. We can 
write the energy as a function of K, since ω is a function of K:

K=n1
2ℏK 

We can consider the phonon to be a particle inside the crystal (because of wave-particle duality). 
Thus, we can consider the phonon to have a momentum:

(4.31)

Note:

This is not a physical momentum in the standard sense. We call it the crystal momentum and can be 
seen as a “potential momentum” which can be gained or lost by interacting with an external probe, 
such as a photon or neutron.

Since neutrons are electrically neutral, they are much more effective at measuring the phonon 
dispersion relation than other methods, such as photon scattering.

A neutron's energy is given by n=
1
2

m v2 . This energy can be gained or lost when interacting 

with a crystal. 

(4.32)

This is an inelastic scattering, meaning that the neutron's energy is not conserved.

However, since energy cannot be created or destroyed, we can use the conservation of energy and 
momentum to relate the initial E ,k  and final E ' ,k '  energy-momentum:
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p K=ℏ K

1
2

m v2=
ℏ2

2m
k 2
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From the conservation of energy:

(4.33)

And, from the conservation of “momentum”:

(4.34)

Where lowercase k represents neutron wavenumber and uppercase K represents phonon 
wavenumber.

Thus, we can reconstruct both K and  K  .

We can use the results from the measurement of the neutron's final energy and momentum, with 
equations (4.33) and (4.34) to plot the experimental dispersion curves shown below for Sodium, 
Silicon and Germanium.
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E '=E±ℏK 

k '=kG± K


	§4  –Vibrations
	4.1Vibrations
	a)1D Monoatomic Chain

	4.2First Brillouin Zone
	4.3Group Velocity
	4.4Structure with a Basis
	a)Small-K Limit
	b)Zone Boundary

	4.5Nature of Branches
	4.6Quantisation of Vibrations


