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1 Bloch’s Theorem

(V2 4+ V(r)] (r) = Eg(r)
If V has translational symmetry, it does not follow tljdir) has translation symmetry. At first glance we
need to solve fot) throughout an infinite space.
However, Bloch’'s Theorem proves thatflifhas translational symmetry, the solutions can be written

Ui = exp(ik.r)uk(r)

whereu(r) has the same periodicity a5, andk lies within the reciprocal space unit cell. Agr) is
periodic, one can take its discrete Fourier transform:

Yk = Z e+ exp(itk + G).r)
G

whereG .l is an integer multiple o2= for all lattice vectord.
How does this help, fo& still has infinite range, ank needs to be sampled with infinite density?

As the kinetic energy term of the Hamiltonian is proportional to the square of the wavevector, states of high
|G + k| have high kinetic energy. Above some limit which will depend on the atoms present, this value
will be so high that the weight in these basis functions will be negligible.

It is then assumed that is continuous irk, so that oné value can be taken as representative of a region
of k-space, and the integral over Rlk in the reciprocal space unit cell can be replaced by discrete sums.

Note that though)(r) does not have the same periodicityla&), p(r) = ¥ (r)y*(r) does, so ifV is a
function both of some external potential (e.g. a collection of pseudopotentials) and a potential arising from
p (e.g. Coulomb and LDA exchange-correlation terms), its periodicity will be unaffected.

2 Properties of k-space
2.1 Periodicity and Special Points

Vxre = exp(i(k + G).rjuxic(r)
exp(ik.r) exp(iG.r)uk+c(r)

= exp(ik.r)uy(r)

whereu; (r) is still periodic in the unit cell, asxp(iG.r) must be periodic in the unit cell. We can always
choose to reduce aryin this fashion, and do always choose to work with< G/2.

This also implies that the points-1, +-1, +-1) are all identical, for they are related via the addition/subtraction
of areciprocal lattice vector. This pointis called the L point, and the reciprocal spacé@adint) is called
theT point. A small zoo of other, high-symmetry, points in k-space has also been named.



2.2 Inversion Symmetry

[VZ+V(r)] e Ty (r) = Bxe™ T uy(r)
Assuming thal” and E are real, one can take the complex conjugate of the above to give:
[VZ2+V(r)] e ™ uj(r) = Exe ™ uj(r)

and then one concludes that

and hence

Y1) = Yy (r)

and that these have the same energy, and will give rise to the same charge density.

2.3 Matrix Notation

Given that the wavefunctions etc. will be considered on a discrete grid, one can rewrite the above equations
in matrix notation. This is most obvious for the 1D case where the grid is just a linear set of points. Using
the convention that matrices are given bold capital letters, one has:

[V2+ V] =Ey

Itis clear thafV is simply a diagonal matrix. But what}2? It is not simply the matrix for finding second
derivatives by finite differences: the grid is far too coarse for that to give reasonable answers.

However, in reciprocal spacé? can be represented as a diagonal ma@xywhose diagonal elements are
g%, and a Fourier transform can also be represented as a matrix.

[F'QF + V] ¢y = Ey

This form is useful as the collection of matrices can clearly be collapsed into a single Hdixmath-
ematical convenience, but for numerical convenience one can note that whereas dense matrix-vector mul-
tiplication is orderN?, diagonal matrix-vector multiplication is ord@¢, and the application of a Fourier
transform is ordetV In N. (One can writeF' as the product ofn V sparse matrices, each of which can
multiply a vector in ordelV operations, but that is another subject.)

To restore this form from the Bloch form, premultiply both sidesekp(—ik.r), remembering that this
will not commute withV2, but will with E. If V' is a simple real-space potential, it will with too.

2.4 Chemistry

The k vector describes how the phase/othanges between adjacent unit cells. Some of this is familiar
from chemistry: in a chain of atoms, one might have all of the atomic orbitals in phase, and overlapping to
produce a bonding molecular orbital. This would be associatedith0, also called thd" point. One

might also have adjacent atomic orbitals in anti-phase, giving an antibonding orbital, and corresponding to
k=1

A continuum exists between these extremes (if one has a long chain, rather than a diatomic molecule), and,
of course, the different orbitals have different energies and produce different charge densities (with nodes
in antibonding orbitals, for instance).
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Figure 1: E(k) for a unit cell, and in a supercell three times as long

2.5 Supercells, Equivalence, and the form oF (k)

A calculation att = 0 in the supercell formed by three primitive cells should be identical to thatab,
1 and 2 in the primitive cell. Furthermore = 2 should be equivalent t6 = —1, and by inversion
symmetryk = —1 is equivalent tok = 1.

It has been shown thd (k) is periodic, and obey& (k) = E(—k). Perturbation theory produces a dis-
continuity in E(k) at points wheré corresponds to a periodicity in the potential, and forces the derivative
to zero at these points.

Considering figure 1 in detail, one sees a single band extending across the whole of the reciprocal space
unit cell. The start of the next band is also shown. %) is even, there is no point in plotting negative
values ofk. When one moves to a supercell, here of three times the length, the Brillouin Zone is a third of
the size, and the k-points which now lie outside this Brillouin Zone can be reduced into it by subtracting
multiples of the new, shorter, reciprocal lattice vectors.

The new supercell will contain three times as many electrons as the old unit cell, so it needs to have three
times as many bands to put them in. The “folding” of the original band produces just this. Note that at the
new BZ boundaries there are no band-gaps, and the derivatiiZ€lofis not zero. Only at those points
which correspond to a periodicity in the potential does this behaviour occur.

2.6 The Accuracy of Sums
When integrating functions numerically in one dimension, one often refers to a method as being exact for
polynomials up to some order, and assumes that the higherthe better the integrator.

A similar argument holds for sampling k-space within the reciprocal space unit cell. As functions are
periodic in k-space, the obvious basis set in which to expand an unknown function is a Fourier series in k.

As an example, consider a function in a 1-D reciprocal space unit cell which is real and symmetric (so can
be expressed as a cosine series). Notefiti&) is such a function.

If E(K) is a constant, then any point will integrate it. Otherwise, one needs to extract the coefficient of the
first term in the cosine expansion, for all the other terms will integrate to zero.

If E(k) = b + by cos(2mk/G), then consider sampling &t= G /4.
E(G/4) = by + by cos (g) — by = /E(k;)dk:

A perfect result still, but note that sampling at, for instarice; 0 would not have given this result.



Consider one higher-order expansion:
E(k) = by + by cos(27k/G) + by cos(4nk/G)

and consider sampling &t= G/8 andk = 3G/8.

E(G/8)

T T
bo + by cos (Z) + by cos (5)

E(3G/8) = bg+ bycos (ZZT) + by cos <327T>

And

%E(G/8) + %E(SG/E&) ~ b

One can define a first failure point for a set of k-points. As one is working in reciprocal space, the cor-
responding Fourier components are in real space, and one can find a smallest real-space vector for which
the sum fails to reproduce the integral. The= G/4 point fails to integrate a function with a term like
cos(4mk/G), or cos(kx) wherex = 47 /G = 2L. So one says that the first failure point occurg &t

In 3D similar arguments apply, and one is normally interested in the first set of points in the Fourier
expansion ofF (k) which are not correctly integrated, for several points will have the same modulus and
fail together. This set is referred to as the ‘first failure star.’

3 Grids

The cut-off energy defines a highest frequency Fourier component which may be presgn}.inn

turn, this defines a maximum required sampling density in real space. One can therefore regrgsent

on a discrete real-space grid, without any loss of information, and a Fourier transform moves one to a
corresponding reciprocal space grid which includes components at this cut-off frequency. The spacing of
the reciprocal space grid points &g the reciprocal space lattice vectors. The cutggff is more usually
expressed as an energy, where one is referring to the kinetic energy of a plane wave with this g-vector.

The densityp = uu*, will have components at frequencies up to twice the above cut-off frequency, leading
to a grid stretching twice as far in reciprocal space, and of twice the density in real space, if one wishes to
storep without loss of information.

The potential is an awkward function pfand in the general case must be assumed to have components at
all frequencies.

The number of grid points will scale as the cube of modulus of the cut-off g-vector, @rmwer of the
cut-off energy.

CASTEP stores just the plane wave components which lie within the cut-off sphere. When an FFT needs
to be done, they are copied onto an FFT grid, which is mostly empty, for the grid will be a parallelpiped
which will enclose a sphere of (probably)75x the diameter of the cut-off sphere. The FFT grid thus
takes approximately ten times as much memory as storing a single band. However, if there are more than
ten bands, the bands are likely to dominate. (And yes, CASTEP needs more than a single copy of the
wavefunction and a single copy of the FFT grid, so this order-of-magnitude calculation is just that.)

Note that for a cubic system, a reciprocal space grid containing all componentsgup t@ill contain
components up ta/3g..; along the (111) direction in reciprocal space. For non-orthorhombic systems,
this waste is worse.



Figure 2: The cut-off sphere in a square reciprocal lattice. This is for theint, for the grid includes the
origin.

3.1 Orthogonality

If we desire that); andy- be orthogonal, i.e.
Y in)ys(r) =

then, from the transformeg’s.

Z(Zd)l( g) exp zgr) (21/12 ) exp(ig r)) =0

r g

One can then admire the orthogonal exponential functions eliminating the sums, and can conclude that
> tilg)i(e) =
g

Similar arguments hold fa, for the first equation can be multiplied by one as follows:

Ze—1kr 1krw2< ):0

which is then

S ui(r)uz(r) =



3.2 Scattering

The Schodinger equation is usually written in real space. If one considers the effect of the Hamiltonian
in k-space, one sees immediately that Yfreterm is diagonal: it operates on each component in k-space
independently.

The V(r) term does not have this property. However, if one considéns) to have a single Fourier
component

[V? + Vexp(go.r)] ¥(r)

can be Fourier transformed to give

—g*P(g) + V(g — gv)

as the Fourier transform df (r) is now a delta function, and multiplication in real space is equivalent to
convolution in reciprocal space. So this componenV¢f) has mixed states qf andg — g,. As the
Schiddinger equation is linear in the potential we can generalise thigg tiedg’ components of) will

be independent unled5(r) has a component with a Fourier co-efficiengof g’

Fourier components df (r) which are of higher frequency th&g... are uninteresting: these components
will scatter a component af within the g-space cut-off to something outside it, which is outside the basis
set and thus disregarded. The highest frequency which can possibly be of int@rest wshich will move
across the diameter of the cut-off sphere.

3.3 Aliasing

If the FFT grid contains components of updg.., then any higher frequency components generated by
the action of the potential on the wavefunction will be aliased back into this range by adding / subtracting
multiples of2ag..¢. If Oone assumes that = 2 and that the highest frequency component of the potential

is also2g.ut, then this component will scatter a component/ofit —geus 10 +geut, and one of+geyt, tO

+3g.us Which will be aliased back te-g.,;. Increase: infinitesimally, and the aliased points lie outside

the sphere of radiug.,, and are thus irrelevant.

If one chooses = 1.75, then a component in the potentiallat5g.,; will scatter a component ity from
Jeut 10 2.75g.4¢, Which will be aliased back te-0.75¢.,¢. This now lies within the sphere of radiys,,
so it is part of the basis set for the plane wave.

The smaller FFT grid has caused th&5g.,.; component of the potential to scatter betweendghe and
—0.75g.4¢ cOmponents ofy, when no such scattering should occur.

3.4 Grids and Supercells

One can successfully solve the Satlinger equation by forcing to have the same periodicity & This
is equivalent to usings = 0 only.

One could then consider constructing a supercell, a multiple of the unit cell which is the periodic thit for
and constraining to be periodic in that supercell. Clearly as the supercell gets larger, this approximation
becomes more accurate.

If one considers a supercell of twice the length of the original unit cell (and unchanged in the other dimen-
sions), the real-space grid fgretc. needs twice as many points in the extended direction, for it needs to
extend twice as far at the same spacing. Conversely, the reciprocal space grid now has its spacing halved,
but needs to extend as far as before, so needs twice as many points. In the reciprocal space grid, half the
points were in the original grid for the unit cell, but one extra point appears between each pair.
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Figure 3: Real and reciprocal space grids in a cell addkal supercell

One could therefore consider the reciprocal space grid in the supercell to be made of the original grid, plus
the original shifted by half a grid spacing.

But the potential is periodic in the original unit cell. Therefore the Fourier transform of the potential must
be zero on all these extra grid points in reciprocal space. Althaughnot necessarily periodic in the
original unit cell, and therefore is not zero on the extra grid points in reciprocal space, the ‘original’ and
‘extra’ points will behave independently: there is no term in the Hamiltonian which can take a component
of 4y on the original points and create one on the ‘extra’ points. So one can solve for these points as two
distinct sets.

But this merely repeats what we know from Bloch’s Theorem: the orginal set we equate wkh=the

k-point, and the new points tHe = (%, 0,0) k-point. The solutions at these two points are independent,

and guaranteed to be orthogonal, for in k-space they are clearly orthogonal as each is zero when the other
is non-zero.

4 Symmetry

If V(r) is invariant under a symmetry operator, it does follow that (r) will also be invariant.
Consider a rotation or reflectiof

(V2 +V(r)] ¢(r) = By(r)

[vQ + V(S‘r)] »(Sr) = By(8r)
asV? is invariant under such an operation, and/ds) is also
[V2 + V(r)] %(Sr) = Ey(Sr)

Sov(Sr) andy(r) are either identical or degenerateifr) is known, then)(Sr) is also a solution with
the same eigenvalue.

Consider benzene, and its six-fold rotation. There are six possible real solutions for a wave as one moves
from atom to atom with these boundary conditions:



e All atoms in phase
e Adjacent atoms in anti-phase

e Three atoms in phase, the middle one having a greater amplitude, and the other three atoms in
antiphase to the first three

e A diagonally opposite pair stationary, the pair between them in phase

e Three atoms in anti-phase, the middle one having a greater amplitude, and the other three atoms
being identical to their diagonal partners

e A diagonally opposite pair stationary, the pair between them in anti-phase

The rotation operator maps the first solution to itself, and the second to a muktiple{ itself. The third

it maps to a multiple €1) of itself if applied thrice. If applied once or twice (thus changing the position

of the nodal line), the result is a linear combination of the third and forth states, which are degenerate.
Similarly for the fifth and sixth.

5 Kk-points and Symmetry

Assume some symmetry operator leaV&a) and hencef invariant. Although it need not leave(r)
invariant, it may produce a collection of degeneratewhose total contribution to the charge density is
invariant under the symmetry operator. (Degeneracy implies symmetry, symmetry does not imply degen-
eracy.)

This also implies that quantities such as forces must obey the symmetry operator, once the wavefunction is
converged (i.e. is an eigenfunction of the equation). Thus in a cubic system the forces will zero no matter
how poor the cut-off and pseudo-potentiall

Once one adds a k-point to the equation:
[V2 + V(r)} eik‘ruk(r) = Ekeik'ruk(r)

symmetry disappears (except for certain choicek)oflf one calculates a cubic system with the k-point
(0.1,0.2,0.3) one will find all sorts of forces arise.

When one applies a symmetry operator to the co-ordinates, one must also apply it to the k-point, and one
finds (assumind{ invariant):

(V2 4V (r)] 5k50y, (Sr) = Biee Skt (Sr)

In other words, if we know)(r) atk, then«(Sr) is the solution atS;k and has the same eigen-value.
UnlessSik = k these solutions must be orthogonal.

We state without proof that relections and rotations in real space are equivalent to the same reflection or
rotation in k-space.

So solving for one k-point can readily yield solutions for all symmetry-related k-points. Indeed, one is
probably not interested in thés themselves, only their eigenvalues (all the same), and their contribution to
the charge density, which can be obtained by acting on the charge density frafmvattethe symmetry
operators.



5.1 Real Space Inversion Symmetry

It may be the case that one has real space inversion symméfry:= V' (—r). However, once one uses

a k-point other thad (or L, or a few of its friends), this symmetry is removed from the new Hamiltonian.

It is the case that df the eigenfunctions are not simply real, but also either odd or even, if real space
inversion symmetry exists.

Martin, in Electronic Structure, Basic Theory and Practical Methasisction 4.4, claims that(r) is real

at all k if real space inversion symmetry exists. | have failed to follow his proof, beyond showing that
u(r) = u*(—r), which follows from the Hamiltonian being Hermitian in reciprocal space, and hence in
reciprocal space the eigenvalues are real, southgtis real, butu(g) is not necessarily(—g).

6 Monkhorst Pack

The k-point selection scheme favoured by Monkhorst and Piador a regular grid of k-points, usually
shifted by one-half of the grid spacing.

6.1 Monkhorst Pack and Symmetry

Suppose one wished to use the k-point grid of the eight k-points given by all combinatiohsuod ¢,
and2,1 and2). This would be more normally written as:¢,+1,+1), and, in a cubic system, all those
points are related by symmetry operators, so just one needs to be calculated, @sddnes) for the
others then determined by symmetry.

This grid would be called & x 2 x 2 MP grid, for obvious reasons.
Consider thel x 4 x 4 MP grid in a cubic system. It clearly contains 64 k-points.

The k-point ¢, £,1) maps to seven others (all possible sign combinations).

The k-point (g,é,%) maps to 23 others (all possible sign cominations, and interchangingndz).
The k-point (g,g,%) maps to 23 others (all possible sign combinations, and interchargingndz).

The k-point €,2,2) maps to seven others (all possible sign combinations).
So the calculation should be done with just four k-points, but their weights when their charge densities are
symmetrised and added should be in the ratio 8:24:24:8 (or 1:3:3:1).

6.2 Monkorst Pack and Hexagonal Symmetry

In a cubic (or similar) system one produces the MP set with the highest first failure star for a given number
of points by shifting all the points by half their spacing so as to excludé'theint.

In a hexagonal (or similar) system, this is a bad strategy. If one shifts in this fashion, the symmetry

operations will generate additional kpoints not in the original MP mesh, as shown in figure 4. This is

probably not helpful, and is very confusing when attempting to compare symmetrised and unsymmetrised
calculations.

This problem arises because on the cubic grid, each grid point has a four-fold axis through it, as does the
point at the centre of each grid cell. In the hexagonal case, there is a six-fold axis through each grid point,

but not through the centre of each grid cell. If one shifts the cubic grid by an amount othéEthan, )

then again one is attempting to generate a grid which does not have the expected four-fold axis about the
origin, and the symmetry operations will produce a mess.

IMonkhorst, H.J and Pack, J.Bhys Rev B.35188 (1976)



Figure 4: A3 x 3 MP mesh in a hexagonal system, shifted to includdtpeint, and & x 2 mesh shifted to
exclude it. Required non-equivalent points are marked by ‘X', required points generated by the symmetry
operations on these by, and unwanted points generated are markedohy *

6.3 Equivalent k-points

Suppose one wishes to compare the energetics of two systems, one of which reconstructs to form a unit cell
of length two units in the z direction, the other of length three units. To ensure that one’s calculated energy
difference do not have terms arising from the use of different k-points, FFT grids, etc., one could perform
both calculations in a cell of length six units. However, this would be expensive.

So, instead, one can perform calculations in the three-unit cell with k-poiits-at £ and 2, and in the
two unit cell with k-points at, = ﬁ 1—32 and%. Assuming that one can also choose the FFT grid sizes
to be in the ratid3 : 2, these calculations should be precisely equivalent to a calculation in the six-unit

supercell with, = 1.

7 Nasty Symmetry

Just because the crystal as a whole has a particular symmetry is no guarentee that the primitive unit cell, or,
worse, a random unit cell, will have the same symmetry. This is obvious: a cubic system can be described
by a cubic unit cell, which has all the right symmetry]l & 2 x 3 supercell of that cell, which has very

little symmetry, or a strange ‘2-atom’ cell which has always confused CASTEP somewhat.

In the case of hexagonal systems, life is worse. A unit cell is a parallelpiped described by three axes.
A hexagonal prism, which is the obvious repeat unit with the symmetry of a hexagonal system, is not a
parallelpiped.

This becomes painfully obvious when looking at the reciprocal space unit cell of a hexagonal system. The
directionsa* + b* anda* — b* are equivalent: they are related byrA3 rotation about the 6-fold axis.
However, the reciprocal space unit cell, and thus also the reciprocal space grid, extends twice as far in the
a* — b* direction as it does in the* + b* direction.

This results in the reciprocal space grid not mapping back onto itself under the operation of a symmetry
operation of the Hamiltonian. By truncating the grid, we have reduced the symmetry of the system. The
‘correct’ thing to do is probably to set all the potential and wavefunction components which lie in this
orphaned part of the reciprocal space grid to zero, which effectively produces a hexagonal cylinder as the
FFT grid shape. Does your favourite code do this?

7.1 It's not just Hexes
Many people relax on reading the above section, resolving never to touch anything with non orthorhombic

cells, believing this solves the problem. It doesn’t. Consider a 2-D system with square symmetry, and a
4 x 4 grid, such as shown in figure 6.
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Figure 5: The reciprocal space cell of a conventional hexagonal lattice

Figure 6: A4 x 4 cubic grid does not have rotational symmetry about the origin.
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The grid will run from—1 to 2 in each direction, which means that the four-fold axis will map thingsat
to non-existant points at2. This problem does not arise if the grid is odd, and thus has equal numbers of
points either side of the origin, but does for even grids.

8 Unit cell to Supercell

A calculation at a k-point o% should correspond to a calculation at theoint in a cell three times as
long. To construct the full real-space wavefunction in the longer cell, one can write

U(r) = e*ru(r) 0<r<L
=e*ru(r — L) L<r<2L
= e*ru(r — 2L) 2L <r < 3L (1)

for u(r) will have been calculated fdr < r» < L only. One can express the above in other ways too:

¥(r) = () 0<r<L
= e*Layp(r — L) L<r<2L
= e2kLy(r — 2L) 2L <r<3L

8.1 Continuity

Itis clear physically that) must be continuous in real space: a discontinuity would be extremely expensive
energetically. Itis also clear from the form of equation 1 thatill be continuous as long asis continuous
with u(L) = u(0). However,p)(L) = +(0) does not necessarily hold.

8.2 Real or Complex?

There appears to be an inconsistency here. Af'theint, a wavefunction can be expressed as real, but the
above functions are not obviously real.

However, the above wavefunctions do occur in degenerate pairg,idr) = v (r). Clearly any linear
combination of these degenerate eigenvectors must also be an eigenvector, and the two obvious combina-
tions are

bi(r) = %wk(r)w*(r))
balr) = ﬁwk(r)—wik(r»

These must both be real by construction. Note thatind+, constructed thus are real, degenerate, and
orthogonal, but, in general, give rise to different charge densities, whéigamd ¢, are complex,
degenerate, orthogonal, and give rise to identical charge densities. The charge density prodycaadby
1o together is, of course, identical to that produced/fyand+_y togther.

Finally, given thaty; andy are real and degenerate, any linear combination of them (using real coeffi-
cents) will also be real and an eigenfunction. Howeverthe ¢y pair are uniquely specified by the
additional contraint that they are purely of the fossp(ik.r) and notexp(—ik.r) (and vice versa).
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One can invert these equations:

1 )
U(r) = ﬁ(dn(r)ﬂw(r))

1 )
Yox(r) = ﬁ(dn(r)*%%(r))

and thus form two complexys which clearly produce the same densities from two degenerate seal
which need not produce the same density.

8.3 Degeneracy and Symmetry

Finding a degeneracy is surprising: it implies the existance of a symmetry operator. In this case, there is a
symmetry operation in the supercell: a displacement corresponding to the unit cell vector.

Furthermorey)y is invariant under this operation, as it is simply multiplied by a phase factor.

8.4 Really Fast

If one uses thé&' point, themyy, anduy can both be written as real functions. This halves memory require-
ments, and speeds up calculations. It is also true for the k-points whose components are %eimamd
combination, for in these cases the phase difference between adjacent cells is a fadtor of

9 Theory meets CASTEP

9.1 FFT grids and symmetry

In the eight-atom cubic cell, of, for example, silicon, the atom@at, 0) and (0.5, 0.5, 0) are equivalent.
(Indeed, the cubic cell contains just two types of atoms, distinguished by the orientation of their nearest
neighbours.) A translation b§.5, 0.5, 0) is a symmetry operation of the Hamiltonian.

However, if one uses an odd FFT grid, one of these atoms is on a grid point in real space, and one is not. A
translation by(0.5, 0.5, 0) is no longer a symmetry operation of the Hamiltonian, whereas for an even grid
it would be.

This can be seen in the resulting eigenvalues. Eigenvalues from a calculation using an eight-atom cell
of silicon and two different FFT grids are shown in figure 7. States which are degenerate have acquired
eigenvalues which are identical t62 in the last digit, whereas the odd FFT grid has less degeneracy,
splitting previously degenerate levels #20 in the last digit.

Fortunately this is too small to matter to Physicists. It might annoy mathematicians though.

This is related to the rigid shift problem. If one displaces a CASTEP cell, one should get an identical
answer. However, this is only strictly true if the displacement is an exact multiple of the real-space FFT grid
cell vectors. Otherwise, energies and forces can change. So too will symmetries, as CASTEP cannot cope
with rotation axes through arbitrary points. Again, these effects should be small enough to be ignorable
in most circumstances: the thought that as one relaxes a system the atoms are bumping up and down over
an artificial disturbance to the potential caused by the choice of location of the FFT grid points can be
upsetting.
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24 x 24 x 24

r

(0.5,0.5,0)

25 x 25 x 25

r
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Figure 7: Eigenvalues of an eight-atom cubic Si calculation with two different FFT grid sizes

9.2 yYoru?

CASTEP outputs wavefunctions in reciprocal space. If what it outputs is FFTed using an unshifted grid,
thenu(r) is produced. In order to obtain(r) one must either FFT using a shifted grid, for the g-vectors at
which the wavefunction is stored are of the fogm- k, or FFT and then multiply byxp(ik.r), the latter

being much easier numerically.

10 Aperiodic Systems

Sometimes the system one is attempting to model is not a 3D crystal. At this point one does not need
to worry about sampling k-space in order to calculate accurately the unwanted interaction between the
repeat units. For isolated molecules, one often use§ theint, preferably taking advantage of the real
wavefunctions which result.

However, this approach maximises the unwanted interaction between the periodic images, as all the images
are in phase, and thus forming bonding orbitals. If insteac{ihé, i) k-point were used, the interaction
between the images would be reduced, and a smaller cell (with less vacuum) might be possible. However,
this choice of k-point requires the use of a complex code, and favourél thiel) direction over other
directions such a6-1, 1, 1) which should perhaps be equivalent.

For 2D systems, the argument is between using a plane of k-pointgwith0, and noting that inversion
symmetry in k-space will halve the number of points needed, although the interaction between the slab
and its periodic image will be maximised, and using= i, where inversion symmetry merely adds the

k, = —% plane, so twice as many k-points will be needed, but the interaction between periodic images will
be reduced, so less vacuum may be needed.

11 Plotting v

Away from theT' point, i encodes information about two distinct degenerate wavefunctions. These
wavefunctions are periodic in the corresponding supercell, so merely tiling the fraction of them which
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Figure 8: Two possible cells on a hexagonal lattice

appears in the unit cell may make no sense at all (and may introduce discontinuities).
Plotting a complex value throughout a 3D space also confuses humans.

Humans probably wish to see real wavefunctions, and a pair of these could be produced in the supercell in
which the k-point considered maps to thigoint.

Charge densities are easier, far(r)y; (r) is periodic in the unit cell, and is identical to_x (r)y* , (r).
However, it does not correspond to the charge density produced by the real wavefunction referred to above.

Quite simply, there exists a degeneracy, and therefore any linear combination of the degenerate eigenfunc-
tions is an equally valid solution. But they are different.

12 Further Work

There follow some ideas for amusement, using your favourite plane-wave code.

e By how much does the energy change if one rigidly shifts all atoms by one half of an FFT grid cell
in real space? How does this answer change if one uses an FFT grid exten@ing,tstead
of 1.75g.4+? If one uses norm conserving pseudopotentials, not ultrasoft? If one turns off the XC
potential? Is it zero if one does all of these things?

e Do a symmetrised and unsymmetrised calculation give identical results? Or only for orthorhombic
systems with odd FFT grids?

¢ If one has two different-shaped cells on the same lattice, how can one best set up calculations to give
comparable energies? for instance, in figure 8, can one set up calculations such that the orthorhombic
cell gives precisely twice the energy of the hexagonal cell?

e Figure 7 used norm conserving pseudopotentials. Would using gritis® @nd 162 with ultrasofts
be reasonable? What is the artificial splitting in this case?

e Is Martin correct? (Section 5.1)

Acknowledgements

Credit is due to PDH for any concepts and equations which are correct, and to MJR for those which are
not. The figures were prepared using emacs, and this document was typeseflgXing L

15



