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1 3C25: Density of States, Phonons and Electron States

By thedensity of statesof a system we normally mean the number of allowed energy levels of that
system per unit energy interval. In this note we aim to show why this is a useful concept, and how
the density of states may be derived for a few simple systems. We consider these two points in
reverse order.

1.1 Why is the density of states useful?

The density of states plays a central role in many physical situations. The reason for this is quite
simple: when one considers which states of a system are occupied, the energy of the states is the
controlling factor. Thus such properties as total energies may be derived from a knowledge of the
density of states, as may changes of energy with temperature. Similarly, in a Fermi system, many
properties are determined by the number of electrons which within a small energy (thermal energy)
of the Fermi surface1 – this in turn is determined by the density of states at the Fermi energy. The
fundamental difference between an insulator and a conductor, for example, is that in the former the
density of states at the Fermi energy is zero, in the latter it is non- zero. Paramagnetism of a free
electron gas, too, is determined by the density of states at the Fermi energy.

Some measurements can measure the density of electronic states in a fairly direct way. The
photoelectron spectrum is one example. Electrons released from a material by x-rays of energyhν
are passed through a spectrometer to measure their kinetic energyEk, and their binding energyEb

is thus obtained from

Eb = hν − Ek, (1)

and the number of electrons released with each energy gives the density of states – or, to be more
precise, the product of the density of states with the Fermi function. It is possible to use the inverse
process (inverse photoelectron spectroscopy or bremsstrahlung spectroscopy) to look at the density
of states in the unoccupied regime. In this technique, electrons of known energy are fired at a solid.
Some of them will enter empty states in the energy bands of the solid, emitting a photon in the
process. Again, from the numbers of photons emitted at different energies a picture may be built
up of the product of the density of states and the complement of the Fermi function. Somewhat
similar information may be derived from x-ray spectroscopy, in which electronic transitions are
made to and from the core levels of atoms in the solid, which have sharply-defined energies.

Naturally, the density of states cannot tell us everything about every process. In considering
transport processes such as thermal and electrical conductivity we need to consider the scattering
of the particles or excitations involved in the transport (phonons and/or electrons in the former
case, electrons and holes and/or ions in the latter case). In the scattering event both energy and
momentum must be preserved, so more than a density of states is necessary.

1If one takes, rather arbitrarily, the important energy range to be that over which the Fermi function takes
values between 0.9 and 0.1, the range isEF − 2.2kT to EF + 2.2kT .
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1.2 Evaluating the density of states

In principle, the density of states may be computed exactly, by calculating the energies of all the
allowed states in the specimen. This is foolproof, applicable to liquids and crystalline, defective
and amorphous solids. Unfortunately, except for perfect crystalline systems, it is impossible –
approximations have to be made. The idea of solving the wave equation for the whole system,
however, brings into focus the importance of the boundary conditions without which the problem is
undetermined. Whether we are dealing with phonons and a classical wave equation or electrons and
the Schr̈odinger equation, the size of the macroscopic system determines the boundary conditions.

Consider, then, a perfect periodic system in one dimension, of lengthL, with a unit cell dimen-
siona. There are two ways of choosing the boundary conditions, and in each case the eigenfunc-
tions will satisfy Bloch’s theorem and be labelled by a wavevectork:

1. rigid boundaries, with the wave function equal to zero at the boundaries2, leading to wave
functions of the formφk(x) sin(kx);

2. periodic boundaries, in which the system is looped back on itself and the displacements at
x = 0 are the same as those atx = L. The solutions are then running waves,φk(x) exp(±ikx).

The functionsφk(x) are periodic with the period of thelattice (repeat distancea).

1.2.1 Transition from summation to integral

It is worth justifying the transition from a summation over discrete states to an integral over a
continuous energy distribution. Consider a cubic specimen of side lengthL = 0.01 m, treated as
an infinitely deep potential well. The eigenstates have energiesE = h2

8mL2 (n2
x + n2

y + n2
z), that is,

(n2
x + n2

y + n2
z) × 3 × 10−15 eV. In a typical system, the width of a band will be a few electron

volts - say3 eV. Thus if n2
x = n2

y = n2
z we havenx ≈ 1.6 × 107. To find the energy spacing

near the top of the band we may calculate the energy difference between the state(nx, ny, nz) and
(nx − 1, ny, nz), which is1.2 × 10−7eV. This is very small, and the assumption of a continuum
of energies is a good one.

2For elastic waves, it could be argued that a more realistic boundary condition would be to have zero
stresses, not zero displacements, at the boundaries. This would merely change the form of the eigenfunction
from a sine to a cosine, and would not affect the density of states.
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It is instructive to compare the two choices of boundary condition.
Rigid boundaries Periodic boundaries
The eigenfunctions must be zero atx = 0 and
x = L = Na, so that

sin(kL) = 0 (2)

or
k = n

π

L
, (3)

that is, the states are uniformly distributed ink-
space with separationπ/L. The density of states
in k-space is therefore the inverse of the spacing,

g(k) = L/π.

In this case statesk and−k are equivalent, as

sin(−kx) = − sin(kx), (4)

and the two wavefunctions differ only by a con-
stant multiplier. The allowed values ofn are
n = 1, 2, ..N −1, since if we setn = 0 we have a
wavefunction which is identically zero. Similarly,
if we take the wavefunction to be representative
of the displacements of an atom, ifn = N the
atomic displacements of the atoms atma are

sin(Nπma/Na) = sin(mπ) = 0, (5)

and larger values ofn repeat functions which have
been generated by smaller values ofn. Thus there
areN − 1 distinct wavefunctions, corresponding
to theN − 1 mobile atoms in the chain ofN + 1
atoms which isNa long. Each degree of freedom
is thus accounted for.
The density of states will generally appear in the
form of an integral

F (X) =
∫ ∞
0

f(k|X)g(k)dk (6)

whereX represents such variables as temperature
or field.

The eigenfunctions must be equal atx = 0 andL,
so that

exp(ikL) = 1 (7)

or

k = n
2π

L
, (8)

that is, the states are uniformly distributed ink-
space with separation2π/L. The density of states
in k-space is therefore the inverse of the spacing,

g(k) = L/2π.

In this case statesk and−k are not equivalent, as
exp(−ikx) and exp(ikx) are distinct functions.
The allowed values ofn aren = −N/2,−(N/2−
1), ..., 0, 1, 2, .. (N−1)/2, givingN modes, again
accounting for all the degrees of freedom. Note
that this enumeration of the allowed values ofn
ensures that for evenN one does not include both
n = −N/2 andn = N/2, as these are equivalent:

exp( − 2i(N/2)πma/Na) = (−1)m

= exp(2i(N/2)πma/Na). (9)

The density of states will generally appear in the
form of an integral

F (X) =
∫ ∞
−∞

f(k|X)g(k)dk (10)

whereX represents such variables as temperature
or field: in many cases this may be written

F (X) = 2
∫ ∞
0

f(k|X)g(k)dk (11)

thus recovering the result of the fixed boundary
case.
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1.3 Density of states in energy

Now consider how to relate the density of states in energy to the density of states in wavevector.
First, assume that there is a one-to-one mapping from wavevector to energy through the function
E(k). Then the number of states in the energy intervalE to E + dE is the same as the number of
states in the corresponding interval ink space.

1.3.1 One dimension

Here the number of states in the energy intervalE to E + dE is the same as the number of states
in the corresponding intervalk to k + dk,

g(E)dE = g(k)dk (12)

or
g(E) = g(k)dk/dE. (13)

That is, the density of states in reciprocal space, derived from the macroscopic boundary conditions
on the system, is related through the dispersion relationdE/dk to the density of states in energy.

1.3.2 Two dimensions

Let us suppose thatE depends only on the modulus ofk, that is, that the energy surface is isotropic
(for a more general treatment, see the following section for the three-dimensional case). If we adopt
the fixed boundary condition scheme, for a crystalLx by Ly then in each dimension the allowed
values of the corresponding component ofk are spaced by the appropriateL/π. In an area ofk
spacedkxdky, then, the number of points will be

g(k)dkxdky =
LxLy

π2
dkxdky (14)

which may be written in polar coordinates as

g(k)kdkdθ =
LxLy

π2
kdkdθ (15)

and under the assumption that the property to be studied is also symmetrical ink theθ integral may
be done at once to give

g(k)kdk = 2
LxLy

π
kdk. (16)

Hence we obtain

g(E) = 2
LxLy

π
k/(dE/dk). (17)



1.3 Density of states in energy 5

1.3.3 Three dimensions

Let us adopt a somewhat more formal treatment here. There are two approaches, one using a
geometrical method and the other using properties of the Dirac delta function: we use the former.
For each branch of the dispersion relation, we may write

g(ω)dω =
∫
shell

g(k)d3k, (18)

where the shell represents that volume ofk space for which the frequency lies betweenω and
ω +dω. This shell may be represented geometrically by considering a constant energy surfaceS in
k space. The gradient ofω with respect tok is, of course, perpendicular to the constant frequency
surface, so the volume elementd3k may be written as an elementdSω of the surface of constant
frequencyω multiplied by the heightdk⊥, where

dω = |∇kω|dk⊥. (19)

Thus, asg(k) = (L/2π)3

g(ω)dω =
(

L

2π

)3 ∫
dSωdk⊥ =

(
L

2π

)3 ∫ dSω

|∇kω|
dω, (20)

the integral being taken over the surface of constant frequencyω. Note that the gradient of the
frequency|∇kω| is simply the magnitude of the group velocityvg.

1.3.4 The Debye approximation in three dimensions

In the Debye approximation the phase and group velocities are both taken to be equal to the same
constant,v. Then the constant frequency surfaces are spheres, and the surface area of the constant
frequency surface corresponding toω is 4πk(ω)2 = 4π(ω/v)2. Then

g(ω) =
ω2L3

2π2v3
. (21)

Again here it is necessary to introduce the cut-off Debye freqency

ωD =
v(6π2N)1/3

L
. (22)

Remember that an expression similar to equation 22 will result from each polarisation and each
branch.

1.3.5 Free electrons in three dimensions

For free electrons, the dispersion relation

E = h̄2k2/2m (23)
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gives a group velocity
vg = (1/h̄)(dE/dk) = h̄k/m. (24)

From equation 21, then,

g(ω) =
(

L

2π

)3 ∫
dSωdk⊥ =

(
L

2π

)3 4πk2
ω

|h̄kω/m|
, (25)

for each spin state, or

g(E) =
L3

2π2

(
2m

h̄2

)3/2

E1/2. (26)

Contrast this with the energy-independent density of states in two dimensions, and proportionality
to E−1/2 in one dimension.

At absolute zero, states will be filled in ascending order of energy, two electrons of antiparallel
spin in each energy level, until the total number of electronsNe have been accommodated. The
topmost occupied energy level is the Fermi energy,EF , which is therefore

EF =
h̄

2m

(
3π2Ne

L3

)2/3

. (27)

1.4 Simple features of densities of states

In what follows, we shall adopt the fixed boundary condition scheme, so that in each dimension
g(k) = L/π.

1.4.1 The oscillations of a linear chain of atoms

In the Debye approximation, the dispersion relation is taken to be

ω = v|k|, (28)

where the velocity of soundv is taken to be a constant, and the density of states in frequency is
thus

g(ω) = g(k)/v = L/πv. (29)

In order to obtain the correct number of degrees of freedom, it is necessary to impose a cut-off
frequency, the Debye frequencyωD, defined by the requirement that

N =
∫ ωD

0
g(ω)dω (30)

that is,
ωD = vπ/a. (31)
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A more accurate treatment of the physics, however, removes the need for the artificial cutoff.
From the true dispersion relation for waves on a linear atomic chain of atomic massM and spring
constantλ

ω =
√

4λ/M | sin ka/2| (32)

= ωm| sin ka/2| (33)

we obtain (see problem sheet)
dk

dω
=

2
a

1√
(ω2

m − ω2)
. (34)

The density of states in energy, then, is

g(ω) =
2L

πa

1√
(ω2

m − ω2)
, (35)

which is singular atω = ωm, but which when integrated over all the allowed values ofω automat-
ically givesN , the correct number of degrees of freedom (strictly for a lengthL = Na we expect
N − 1 degrees of freedom, but whenN is large the difference is negligible).

1.4.2 Phonons - more than one atom per unit cell

When there is more than one atom per unit cell, there will be more than one solution of the dynam-
ical equation for the system – that is, more than one phonon mode. These branches of the spectrum
may be treated independently, and the final expression for the density of states written as the sum
over modess

g(ω) =
L

π

∑
s

1
vs

, (36)

with similar expressions in 2 and 3 dimensions. Often the optical branches are much flatter than
the acoustic branches, and to a good approximationω is independent ofk. The density of states
in such branches may be replaced by a delta function, that is, the branch may be represented as an
Einstein oscillator.

1.4.3 Electrons - beyond free electrons

There are similar differences between the density of states curves for electrons when the band
structure is considered and the free electron picture to those between the Debye and discrete atomic
lattice for phonons. For example, the distortion of the dispersion relation away from the free
electron dispersion at the Brillouin zone boundaries will produce zero group velocities at the zone
boundary. This, in turn, produces peaks in the density of states.

Even stronger deviations from the free electron model occur in the noble metals and transition
metals, in which the broad, quasi-free s electron band overlaps the much narrower d band. The
peak in the density of states arising from the d states has profound effects, for example on the
colour of the metals and on their magnetic properties (see problem sheets).
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1.4.4 Electrons - semiconductors

The densities of states in the valence and conduction bands of semiconductors are normally treated
in the effective mass approximation. That is, the carriers in the bands are assumed to behave like
particles withE(k) = h̄2k2/2m∗. The equations for free electrons derived above then apply.

1.4.5 Electrons - amorphous solids

Although amorphous solids do not possess translational symmetry, so that Bloch’s theorem does
not hold, it must be possible to write down a Schrödinger equation for the system and extract a
density of states from it. The density of states can be very different in an amorphous material from
that in the crystalline equivalent: even the character of the states may differ, in that they may be
localised rather than delocalised. These localised states occur at the edges of the energy bands, and
may profoundly affect the electrical properties by allowing hopping conductivity in an otherwise
insulating material.

A.H. Harker
October 2002


