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Maclaurin Series 
 

Learning Outcomes 
After reading this theory sheet, you should  

• recognise the difference between a function and its polynomial expansion (if it 
exists!) 

• understand what is meant by a series approximation 
• be able to find series expansions (Maclaurin Series) for algebraic functions 
• be able to find series expansions for certain transcendental functions 
• be able to use Maclaurin Series to find approximate values of functions 

 

From Functions to Polynomial Series Expansions 
 

A Polynomial Series is a mathematical expression consisting of added terms, terms 
which consist of a constant multiplier and one or more variables raised to integral 
powers. For example, 3x2 - 2x + 7 and 5y + 8x3z are closed polynomials (i.e. 
polynomials containing a finite number of terms).  
 

Functions of the type (1 + x)n and their Polynomial Representation 
Under certain conditions mathematical functions can be equated to polynomial series 
- a simple example being the quadratic function f(x) = (x +1)2, in which the brackets 
can be expanded giving f(x) = x2 + 2x + 1. Here x2 + 2x + 1 is a polynomial series. 
 

When considering polynomial expansions of this type, the order is usually reversed, 
i.e.  
  2 2(1 ) 1 2x x x+ = + +   
Similarly 
  3 2(1 ) 1 3 3 3x x x x+ = + + +  
  4 2(1 ) 1 4 6 4 3 4x x x x x+ = + + + +  
  5 2 3(1 ) 1 5 10 10 5 4 5x x x x x x+ = + + + + + , etc 
These expansions are special cases of the more general Binomial Theorem. Namely, 

( ) ( )( ) ( )( )( )
2 3

(1 ) 1 1 1 2 1 2 3
2! 3! 4!

n x xx nx n n n n n n n n n+ = + + − + − − + − − − +…
4x  

where the ‘+…’ indicates an open-ended polynomial (i.e. one which continues 
forever) and 2! (2 factorial) means 2 x 1; 3! (3 factorial) = 3 x 2 x 1; etc. 
 

For a positive integer value of n, application of the Binomial Theorem results in 
closed polynomials. For example, with n = 2, the above Theorem gives, as expected, 
 

2(1 ) 1 2 2x x x+ = + +   (Try it!) 
 

For a negative integer value of n, or a fraction value of n this will result in an open 
polynomial. For example, with n = - 1, the above Binomial Theorem results in 

( ) ( )( ) ( )( )( ) ( )( )( )( )
2 3

1(1 ) 1 1 1 2 1 2 3 1 2 3 4
2! 3! 4!
x xx x−+ = + − + − − + − − − + − − − +…

2 3 41 x x x x= − + − + +…

4x

 
(Try it! Also, note the pattern of successive terms) 
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Let’s consider these examples in more detail. The two functions, f(x) = (1 + x)2 and 
f(x) = (1 + x)-1 are each being equated to a polynomial series. 
 

Plotting f(x) = (1 + x)2, a quadratic function, results in 
a parabolic graph; fundamentally, y = x2 shifted by 1 
unit to the left, i.e. with its vertex at (-1, 0). 
 

Now, since ( ) 2 2(1 ) 1 2f x x x x= + = + + , exactly the 

same parabola will result  for ( ) 21 2f x x x= + +  
 

Note that the function could be approximated by 
incorporating successive terms of the polynomial 
expansion, so that  

y 

x(-1, 0) 
   2(1 ) 1x+ ≈
  2(1 ) 1 2x x+ ≈ +  (“≈ ” – “is approximately equal to”) 
Plotting either of these approximations is obviously not going to give anything like a 
parabola since the first is a horizontal line through y = 1 and the second is a straight 
line gradient 2 and y-intercept 1. Only the full three-term expansion will produce the 
correct parabolic curve. 
 

Plotting the reciprocal function 
f(x) = (1 + x)-1 = 1 / (1 + x), results 
in the graph of a rectangular 
hyperbola; fundamentally, y =1/x 
shifted by 1 unit to the left, i.e. 
with x = - 1 a vertical asymptote 
and y = 0 a horizontal asymptote. 
 

Bringing in successive terms for 
this function results in 

1(1 ) 1x −+ ≈  
1(1 ) 1x x−+ ≈ −  
1 2(1 ) 1x x x−+ ≈ − +  

etc 
The first two of these are straight line approximations, so do not even curve in the 
way that the function does. At least the quadratic approximation produces a curve. 
Note that all three approximations above (and in fact all higher order approximations) 
have a y-intercept of y = 1 – as does the function itself. 
 

Use the accompanying applet on this example to see the effects described above. 
 

Bearing in mind that the polynomial expansion of this function is an infinite series, it 
would take an infinite number of terms to produce a true polynomial approximation of 
this function. Erm, well yes, you would think so. Unfortunately, the polynomial 
expansion of f(x) = (1 + x)-1 only matches the true function curve in the range 

 no matter how many terms are included. Outside that range of values the 
polynomial approximation either does not exist or is extremely inappropriate. 

1 x− ≤ < +1

 

Again, these effects can be seen using the accompanying applet. 
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Already then, it can be seen that 
• some functions can be approximated successfully for all values of x 
• some give a good approximation only over a restricted range and 
• some do not have a polynomial representation at all (as will be seen later). 

 

Using the Binomial Expansion gives polynomial representations of functions of the 
type (1 + x)n. But is it possible to represent other types of function (sine, log, 
exponential, for example - so-called transcendental functions) as polynomial series. 
The answer is yes – but not always! 
 
Transcendental Functions and their Polynomial Representation 
It takes a great leap of faith to accept that it is going to be possible to represent a 
transcendental function such as sin x in terms of an algebraic polynomial expansion – 
but this is exactly what Maclaurin Series analysis allows us to do. 
 

So, is it possible to expand any function f(x) as a power series? Yes, possibly, but note 
all the assumptions (below) that have to be made on the way! 
 

Assume that a function, f(x), can be expanded as 
   ( ) 2 3 4 5 6

0 1 2 3 4 5 6f x a a x a x a x a x a x a x= + + + + + + +…
Here the ascending powers of x show the function expanded as a polynomial series. 
This series has, at present, undetermined coefficients (constants that multiply 
successive terms in the series),  0 1 2 3 4 5 6, , , , , ,a a a a a a a …
 

Now, putting x = 0 in the above series, assuming the function exists at x = 0 (watch 
out, functions like f(x) = 1/x don’t!), gives 

( ) 00f a=   or ( )0 0a f=  
Next, assuming that the function and its polynomial representation are differentiable, 
then 
  ( ) 2 3 4 5

1 2 3 4 5 62 3 4 5 6f x a a x a x a x a x a x′ = + + + + + +…  
Putting x = 0 in this series, assuming the differential of the function exists at x = 0, 
gives 

( ) 10f a′ =   or ( )1 0a f ′=  
 

Next, assuming that the function and its polynomial representation are now twice 
differentiable, then 
  ( ) 2 3 4

2 3 4 5 62 3 2 4 3 5 4 6 5f x a a x a x a x a x′′ = + × + × + × + × +…  
Putting x = 0 in this series, assuming the second differential of the function exists at  
x = 0, gives 

( ) 20 2 1f a′′ = × ×   or ( )
2

0
2!

f
a

′′
=  

 

Similarly, ( )
3

0
3!

f
a

′′′
=  , ( )( )

4

0
4!

ivf
a = , ( )( )

5

0
5!

vf
a = , … 

Note the pattern involved here. 
 

So, with the unknown coefficients found in terms of the value of the function and its 
derivatives at x = 0, the general Maclaurin Theorem can be written as: 
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The polynomial series representation (i.e. Maclaurin Series) of any infinitely 
differentiable function, f(x), whose value, and the values of all of its derivatives, exist 
at x = 0 is given by the infinite series 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2 3 4 5 60 0 0 0 0

0 0
2! 3! 4! 5! 6!

iv v vif f f f f
f x f f x x x x x x

′′ ′′′
′= + + + + + + +…

… note the strict conditions about differentiability and existence at x = 0. 
 
Maclaurin Series of sin x    (NOTE: x in RADIANS) 
Let  ( ) sinf x x=   so ( )0 sin 0f 0= =  

so ( ) cosf x x′ =   so ( )0 cos0f ′ 1= =  

and ( ) sinf x′′ = − x  so ( )0 sin 0f ′′ 0= − =  

so ( ) cosf x′′′ = − x  so ( )0 cos0f ′′′ 1= − = −  

and ( )( ) sinivf x = x  so ( )( ) 0 sin 0ivf 0= =  
Note that the fourth derivative takes us back to the start point, so these values repeat 
in a cycle of four as 0, 1, 0, -1,    0, 1, 0, -1,    0, 1, 0, -1,    0, 1, 0, -1,    etc 
 

Note that the function is infinitely differentiable and that it, and all its derivatives, 
exist at x = 0. 
 

Substitution of these values back into the Maclaurin Series gives 
( ) 2 3 4 5 6sin 0 1. 0. 1. 0. 1. 0f x x x x x x x x= = + + + − + + + +…  

 

or  
3 5 7

sin
3! 5! 7!
x x xx x= − + − +…  

 

When you think about it, this result is amazing! A transcendental, trigonometrical 
function being represented by an algebraic, polynomial function! Almost more 
amazing is how the series comes out in a regular form in which there is a pattern. 
There are no prizes for guessing that the next term would have been x9 / 9! and the 
next – x11 / 11! 
 
Maclaurin Series of ex 

Let  ( ) xf x e=   so ( ) 00 1f e= =  

so ( ) xf x e′ =   so ( ) 00 1f e′ = =  

and ( ) xf x e′′ =   so ( ) 00f e′′ 1= = , etc 
of course, the function and all its successive derivatives are the same, so these values 
repeat indefinitely as 1, 1, 1, 1, 1, 1, 1, 1,    etc 
 

Note again that the function was infinitely differentiable and that it, and all its 
derivatives, exist at x = 0. 
 

Substitution of these values back into the Maclaurin Series gives 

( ) 2 3 4 5 61 1 1 1 11 1. . .
2! 3! 4! 5! 6!

xf x e x x x x x x= = + + + + + + +…  
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or  
2 3 4 5

1
2! 3! 4! 5!

x x x x xe x= + + + + + +…  
 

Another truly amazing result! The exponential function can also be represented by a 
polynomial expansion with, again, a regular pattern. Again, there are no prizes for 
guessing subsequent terms! 
 
Maclaurin Series of ln x
Let  ( ) lnf x = x   so ( )0 ln 0f ?= =  

so ( ) 1f x
x

′ =   so ( ) 10 ?
0

f ′ = =  

and ( ) 2

1f x
x

′′ = −   so ( ) 2

10 ?
0

f ′′ = − = , etc 
 

Neither the function nor any of its derivatives exist at x = 0, so there is no polynomial 
Maclaurin expansion of the natural logarithm function ln x. 
 

Not wishing to be put off by this, is it possible to produce a Maclaurin series for any 
natural logarithm function at all? The answer is ‘yes’. All that has to be done is to 
shift the function/curve left by 1 unit and an expansion for logarithm can be found 
since the new function and all its derivative now all exist at x = 0. 
 
Maclaurin Series of ln (1 + x)
Let  ( ) ( )ln 1f x = + x   so ( ) ( )0 ln 1 0 ln1f 0= + = =  

so ( ) ( )
1

1
f x

x
′ =

+
  so ( ) 10 1

1 0
f ′ = =

+
 

and ( )
( )2

1
1

f x
x

′′ = −
+

  so ( )
( )2

10 1
1 0

f ′′ = − =
+

− , 

and ( )
( )3

2
1

f x
x

′′′ =
+

  so ( )
( )3

20 2
1 0

f ′′′ = =
+

, 

and ( )
( )

( )
4

3 2
1

ivf x
x
×

= −
+

  so ( ) ( )
( )3

3 20
1 0

ivf 3 2×
= − = −

+
× , etc 

Substituting these values back into the general Maclaurin Series gives 

( )
2 3 4 5

ln 1
2 3 4 5
x x x xx x+ = − + − + −…  

note that there are no factorial values in the denominators. 
 

IMPORTANT NOTE: Although the series for ln (1 + x) exists (owing to the function 
and its derivatives existing and the function and its derivatives being defined at x = 0, 
the function itself doesn’t exist for 1x ≤ − . In which case the function expansion does 
not exist for  either. In fact, the series approximation is only valid within the 1x ≤ −
‘narrow’ range  (as can be seen when using the accompanying Maclaurin 1 x− < ≤ +1
Series applet). 
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Maclaurin Series of cos x
The series for cos x, applying the same procedure is  
 

  
2 4 6

cos 1
2! 4! 6!
x x xx = − + − +…  

This series, as with the sine series, is valid for all values of x (unlike the ln (1 +x) 
series), as is exhibited when using the accompanying Maclaurin Series applet. 
 

Note, though, that there is a quick way of deriving the series for cos x if the series for 
sin x is already known. Since both sin x and cos x are both infinitely differentiable and 
their function and differential values all exist at x = 0, the Maclaurin Series for cos x 
could have been found by differentiating both sides of the series expansion for sinx 
term by term. (Try it) 
 

Note that, by applying the same procedure, differentiating the series for ln (1 + x) 
term by term results in the series for 1 / (1 + x). 
 
Maclaurin Series of inverse trigonometrical functions
Series for inverse trigonometrical functions can be complicated to find directly since 
successive differentials become unmanageable quite quickly. The idea of 
differentiability of functions and their series is useful in finding series of inverse 
trigonometrical functions. 
 

Consider ( ) 1sinf x x−= . 

The differential of this function is ( ) ( ) ( )( )
11 222 2

2

1 1 1
1

f x x x
x

−−
′ = = − = + −

−
. 

 

The polynomial series expansion for the last expression here can be found using the 
Binomial Theorem. 

( ) ( )( ) ( )( ) ( )( ) ( )1
2

22
2 2 23 31 1 1

2 2 2 2 81 1 1
2!
x

f x x x x x
−

⎛ ⎞−⎜ ⎟′ = + − = + − − + − − + = + + +
⎜ ⎟
⎝ ⎠

… …4  

Now reverse the differentiation process to obtain 

( ) ( )( )
1

22 1 2 431
2 81 sin 1f x dx x dx x x x dx

−
−′ = + − = = + + +⌠

⌡∫ ∫ …  
 

so  1 3 531
6 40sin x x x x− = + + +…  

 
A comprehensive list of functions and their Maclaurin Series (including ranges of 
validity) can be found at http://mathworld.wolfram.com/MaclaurinSeries.html. 
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Using Maclaurin Series to Approximate Functions 
 

A commonly used approximation for sin x, for small values of x, is sin . 
(Remember, x HAS to be in RADIANS!) Consider the following table. 

x x≈

 

Angle, x (o) Angle, x (rads) Sin x % error  
1 0.017453292 0.017452406 ∼ 0.005 
2 0.034906585 0.034899496 ∼ 0.02 
5 0.087266462 0.087155742 ∼ 0.13 
10 0.174532925 0.173648177 ∼ 0.51 
20 0.349065850 0.342020143 ∼ 2.06 
90 1.570796327 1.000000000 ∼ 57.07 
180 3.1415926536 0 (!)∞  

 

Obviously as soon as the function value becomes zero (the denominator in the % error 
formula), the % error necessarily becomes infinite. This will happen every time x is a 
multiple of 180o. Even so, notice that the approximation sin x x≈  is good up to about 
10o (< 1% error), but the further from zero the more inaccurate the approximate value 
becomes (e.g. there is a 57% error in the 90∼ o approximation). 
 

You should have noticed that the approximation sin x x≈ uses just the first term 
approximation of its Maclaurin Series. What happens to the accuracy if more terms 
are included? Consider the 90o value again using the first 5 terms of the series. 
 

3 5 7 9

sin
3! 5! 7! 9!
x x x xx x= − + − + …  

 

with x = 90o  ≡ 2
π  = 1.570796327 radians, the series approximation gives 

( ) ( ) ( ) ( )3 5 7 9
2 2 2 2

2 2sin
3! 5! 7! 9!

π π π π
π π= − + − + …  

so 
( ) ( ) ( ) ( )3 5 7

2

1.570796327 1.570796327 1.570796327 1.570796327
1.570796327sin

3! 5! 7! 9!
π = − + − + …

9

 
2 1.570796327 0.645964097 0.079692626 0.004681754 0.000160441sin π = − + − + …  

giving 

2sin 1.000003543π ≈    (this time, a 0.0003543% error) 
 

rather different to the 57% error obtained before! 
 

Although this one example does not form a conclusive proof, it can be said that, in 
general, where a Maclaurin Series approximation is valid, the approximations are 
more accurate 

• the closer the value of x is to zero, and 
• the greater number of terms used from the Maclaurin Series. 

So how many terms of a Maclaurin Series are needed? Well, as many as it takes to 
achieve the accuracy required. 
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You will have noticed in the last example that successive terms of the Maclaurin 
Series become smaller – the series converges. This will always be true for any x 
within the range of validity. So, to find the value of a function using its Maclaurin 
Series to a given accuracy, one only needs to use the number of terms that give the 
appropriate accuracy required. Consider the following example. 
 

Example Use the Maclaurin Series for ex to determine the value of e0.5 to 3 d.p. 
 
Now 

2 3 4 5

1
2! 3! 4! 5!

x x x x xe x= + + + + + +…  

so 

  
2 3 4 5

0.5 0.5 0.5 0.5 0.51 0.5
2! 3! 4! 5!

e = + + + + + +…  

i.e. 
0.5 1 0.5 0.125 0.02083 0.00260416 0.000260416e = + + + + + +� � …�  

 

The last term here does not affect the third decimal place. In fact, the addition of all 
subsequent terms in the infinite series will not affect the third decimal place, so the 
value of e0.5 to 3 d.p. can be found from adding just the first 5 terms ONLY. This 
gives e0.5 = 1.648437499, or, 
 

e0.5 = 1.648 (3 d.p.) 
 
Compare this with the value obtained directly from a calculator, e0.5 = 1.6484721271 
to 11 significant figures. 
 
Try these! 

1. All other things being equal, there are two main reasons why you would 
expect the Maclaurin Series for sin x to converge ‘faster’ than the Maclaurin 
series for ln x. What are these reasons? 

2. Use as many terms of the relevant Maclaurin Series as is necessary to 
determine the values of sin 0.1 and ln 0.1 to 3 decimal places. 

3. Use the accompanying Maclaurin Series applet to see how the series 
expansion for ln(1 + x) is inappropriate for x < -1 and x > +1. 
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