Supernova Shock Breakout

SN 2008D O

SN 2007uy O Lorenzo Sironi AST 541 Theoretical Seminar 11th November 2009

SN Shock Breakout (SB)

 For any core-collapse SN, a flash of thermal UV (or soft X-ray) radiation is expected when the SN shock breaks out of the stellar surface (Falk & Arnett 1977, Klein & Chevalier 1978)

SN 1987A:

IUE missed the breakout by ~35 hrs

T_{eff}~15,000 K for earliest EUV observations, already declining from higher values...

How can we determine the conditions at SB?

(Kirshner et al. 1987)

SN 1987A

 After ~1000 days, brightest narrow (UV & optical) emission lines come from a ring around the SN: recombination lines of gas that was photo-ionized by the SN breakout radiation

• Temperature and energy of the breakout flash can be reconstructed from the light curves of the lines: $T_C \sim 10^6$ K; number of ionizing photons (>100 eV) is ~10⁵⁶ (~10⁴⁶ ergs)

SNLS-04D2dc

Type II P (RSG progenitor)

HIGH-SOFT CASE: high energy ($E_{SB} \sim 10^{48}$ ergs) - low temperature ($k_B T_{eff} \sim 10 \text{ eV}$) - long duration ($\Delta t \sim 6 \text{ hrs}$)

→ extended progenitor (R_{\star} ~1000 R_{sun} : RSG!)

SN 2008D (2/2)

(Soderberg et al. 2008)

LOW-HARD CASE: low energy ($E_{SB} \sim 10^{46} \text{ ergs}$) - high temperature ($k_B T_{eff} \sim 5 \text{ keV}$, IF thermal) - short duration ($\Delta t \sim 100 \text{ s}$) E_{SB} and $T_{eff} \rightarrow$ IF thermal, VERY compact progenitor ($R_{\star} \sim 0.1 R_{sun}$), inconsistent with duration $\Delta t \sim 100 \text{ s} \rightarrow ???$

Candidate core-collapse SN progenitors

- RED SUPERGIANT (RSG): type II P
- BLUE SUPERGIANT (BSG): type II
- WOLF-RAYET (WR): type Ib/Ic (stripped hydrogen envelopes)

SB for dummies

 SN shock in the stellar envelope is radiation-mediated (via Compton scattering) and radiation-dominated (post-shock energy dominated by radiation)

• Shock thickness is set by balance between advection time across the shock $\sim \Delta_s / v_s$ and diffusion time of photons $\simeq \tau_s \Delta_s / c$ \Rightarrow shock optical depth is $\tau_s \simeq c / v_s$

• As the shock propagates, the Thomson optical depth to the surface τ decreases faster than τ_s : radiation escapes when

 $\tau < \tau_{\rm s}$ \Rightarrow breakout radiation

Shock propagation and SB (BSG)

(Ensman & Burrows 2002)

Optically-thick radiation-mediated shock, photons trapped inside the star

- Radiation precurs or starts leaking from the stellar surface: breakout starts
- Peak of breakout radiation, photons leaking out damp the shock

SB light curves

BSG

RSG

• Overall structure of light curve very similar, but different duration ($\Delta t \sim 2000$ s for RSG vs $\Delta t \sim 100$ s for BSG) : information on R_{*}?

From SB to SN progenitors (1/3)

SB properties determined by the structure of the stellar envelope Assumptions:

- If the shock flow before breakout is adiabatic, radiation-dominated and non-gravitating, the only scales are the explosion energy (E_{in}), ejected mass (M_{ej}) and initial stellar radius (R_{\star})
- Mass density profile in the outer envelope is a polytrope:

$$\rho(r) = \rho_1 \left(\frac{R_\star - r}{r}\right)^n$$

- RSG: convective envelope (n=3/2)
- BSG: radiative envelope with constant opacity (n=3)
- SB when $au \simeq au_{
 m s}
 ightarrow {
 m v}_{
 m s}$ (SB) as a function of E_{in}, M_{ej}, R_{\star}

From SB to SN progenitors (2/3)

Results (Matzner & McKee 1999):

 Post-shock temperature T_{se} (~SB temperature?), assuming postshock region is radiation-dominated:

$$T_{\rm se} = 5.55 \times 10^5 \,\mathrm{K} \quad \left(n = \frac{3}{2}\right) \quad \uparrow \quad T_{\rm se} = 1.31 \times 10^6 \,\mathrm{K} \quad (n = 3)$$

 Breakout energy E_{se} (~SB energy?), i.e., all thermal energy in shock front at breakout:

$$E_{\rm se} = 1.7 \times 10^{48} \,\mathrm{ergs} \quad \left(n = \frac{3}{2}\right) \checkmark E_{\rm se} = 7.6 \times 10^{46} \,\mathrm{ergs} \quad (n = 3)$$

• Photon diffusion time across the shock (~SB duration?):

$$t_{\rm se} = \frac{790 {\rm s}}{\rm RSG} \left(n = \frac{3}{2}\right) \qquad \checkmark \qquad t_{\rm se} = 40 {\rm s}_{\rm BSG} \left(n = 3\right)$$

From SB to SN progenitors (3/3)

	RSG			BSG	
T_{se}	E_{se}	t _{se}	T_{se}	E_{se}	t _{se}
6.28	46.49	0.74	6.12	46.88	1.60
-0.10	-0.87	-0.58	-0.14	-0.84	-0.45
0.070	-0.086	-0.28	0.046	-0.054	-0.18
0.20	0.56	-0.79	0.18	0.58	-0.72
-0.052	-0.44	0.21	-0.068	-0.42	0.27
-0.54	1.74	2.16	-0.48	1.68	1.90
	$ \begin{array}{r} 6.28 \\ -0.10 \\ 0.070 \\ 0.20 \\ -0.052 \end{array} $	$\begin{array}{ccc} T_{\rm se} & E_{\rm se} \\ 6.28 & 46.49 \\ -0.10 & -0.87 \\ 0.070 & -0.086 \\ 0.20 & 0.56 \\ -0.052 & -0.44 \end{array}$	T_{se} E_{se} t_{se} 6.2846.490.74-0.10-0.87-0.580.070-0.086-0.280.200.56-0.79-0.052-0.440.21	T_{se} E_{se} t_{se} T_{se} 6.2846.490.746.12-0.10-0.87-0.58-0.140.070-0.086-0.280.0460.200.56-0.790.18-0.052-0.440.21-0.068	T_{se} E_{se} t_{se} T_{se} E_{se} 6.2846.490.746.1246.88-0.10-0.87-0.58-0.14-0.840.070-0.086-0.280.046-0.0540.200.56-0.790.180.58-0.052-0.440.21-0.068-0.42

(Calzavara & Matzner 2004)

- Strongest dependence on R_{*}
- Can we determine the SN progenitor properties? Caveats...

Caveat 1: SB spectrum is BB?

(Klein & Chevalier 1978)

(Ensman & Burrows 2002)

• SB spectrum is NOT BB, but dilute BB with T_C~2-3 T_{eff}

• Scattering-dominated atmosphere: photons retain the color at thermalization depth, but their energy density is diluted as they scatter towards the surface

hv_{peak}~10-100 eV for RSG vs hv_{peak}~0.1-1 keV for BSG

Caveat 2: is SB spectrum always thermal?

SN 2008D

(Soderberg et al. 2008)

 \bullet Thermal fit is poor, and gives estimate for R_{\star} not consistent with SB duration or candidate progenitor

Solutions?

- Non-thermal emission by Fermi (Compton) scattering of SB photons (Wang 2007)
- For $v_s > 0.1$ c, shock photons in Compton equilibrium with pairs at high T (Katz 2009)

Caveat 3: SB duration? (1/2)

- Is SB duration set only by photon diffusion across the shock front? $t_{
 m se}\sim\Delta_s/v_s$
- What about light-travel time between center and limb of stellar disk?
- Observed duration should be larger, $t \simeq \left(t_{
 m se}^2 + t_{
 m c}^2\right)^{1/2}$

Caveat 3: SB duration? (2/2)

- Limb darkening
- Asphericity of the explosion can dramatically change the light curve!

(Couch et al. 2009)

• On the other hand, light curve can constrain asphericity

A gedankenexperiment

- Unknowns: E_{in} , M_{ej} , R_{\star} , D (distance) , N_{H} (obscuring column)
- Observables:

counts $C_1(0.10-0.33 \text{ keV})$, $C_2(0.33-0.54 \text{ keV})$, $C_3(0.54-3.5 \text{ keV})$ t (duration)

(+ D from optical follow-up)

• C₁, C₂, C₃ are affected by interstellar absorption (bluening)

 Assuming dilute BB spectrum, spherical explosion, no limb darkening effects

Constraints from timing alone

• RSG: critical stellar radius in the transition between diffusion limited (t~ t_{se}) and light-travel time limited (t~ t_c) flash duration:

$$R_{\star TZ} = 697 \quad R_{\odot} \quad t_{TZ} = 27.0 \quad \min_{x} t_{TZ} = 27.0 \quad \min_{x} t_{TZ} = 100 \quad \max_{x} t$$

• BSG: t~t_c always

<i>t</i> (s)	Progenitor type	R*
0–116	BSG	ct
116-230	need colour info	ct
230-1100	RSG	ct
1100-2080	RSG	near TZ
>2080	RSG	can constrain using t_{se}

Constraints from timing and color

• Larger progenitors (RSG) produce redder flashes

progenitor degeneracy for t~100-200 s can only be broken if N_H known

Constraints from luminosity and color

- Useful if duration cannot be determined (long flashes, RSG) and if D is given by optical follow-up
- X-ray HR diagram: RSG

Summary

• X-ray SB flashes can constrain the radius of the SN progenitor better than optical estimates (contaminated by radioactive decay, especially for small progenitors)

• But a lot of caveats...

- Where does the >1 keV emission in SN 2008D come from?
- Where does the SB happen in WR progenitors?
- More SB observations by UV telescopes (GALEX) or optical telescopes in the time domain (LSST, PTF) needed!