
MTH744 Dynamical Systems

Lecture Notes 2011-2012

Thomas Prellberg

Version of December 15, 2011

Contents

0 Introduction 2

1 One-dimensional flows 5

1.1 Flows on the line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Flows on the Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Two-dimensional Flows 15

2.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Phase Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Chaos 27

3.1 Lorenz Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Defining Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



0 Introduction
Lecture

1/2:

29/09/11

Historical review

• 1666: infinitesimal calculus, motion of planets (Newton)

• 18th century: classical mechanics

• 19th century: analytical studies of planetary motions

• 1890: geometric approach, stability of solar system? (Poincaré)

• 1920-1950: nonlinear oscillators, radio, radar, laser

• 1920-1960: complexity in analytical mechanics (Birkhoff, Kolmogorov, Arnold,

Moser)

• 1963: strange attractor in a model of turbulence (Lorenz)

• 1970: turbulence/chaos (Ruelle, Takens), chaos in logistic map (May), univer-

sality, renormalisation, transitions to chaos (Feigenbaum), experimental stud-

ies (Gollub, Libchaber, Swinney), nonlinear oscillators in biology (Winfree),

fractals (Mandelbrot)

• 1980: development of applications

When is a system “nonlinear”?

Dynamical systems are described by

(a) iterated maps (“discrete” time)

Example: logistic map

xn+1 = rxn(1− xn)

(b) Differential equations (ordinary or partial)

Example for ODE: dampened harmonic oscillator (time dependent x(t))
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m
d2x

dt2
+ b

dx

dt
+ kx = 0

Example for PDE: heat equation (space and time dependent u(x, t))

∂u

∂t
=

∂2u

∂t2

We shall consider almost exclusively ODEs. Remember also that we can always

transform ODEs of arbitrary order to systems of ODSs of first order, i.e.

ẋ1 =f1(x1, . . . , xn)

ẋ2 =f2(x1, . . . , xn)

...

ẋn =fn(x1, . . . , xn)

where the dots denote differentiation with respect to time t. For example, in

mẍ + bẋ + kx = 0

let x1 = x, x2 = ẋ. Then

ẋ1 =x2

ẋ2 =− b

m
x2 −

k

m
x1

This is a linear system, because ẋi depends linearly on all xj. Non-linear systems

are systems that don’t just contain linear terms, for example higher powers xm
i ,

products xixj, or more complicated functions such as sin(xi).

Linear systems can be separated into simpler parts (diagonalisation) and these

simpler parts be combined by linear superposition; a linear system is equivalent to

the sum of its parts.

Example: Physical pendulum

ẍ + c sin x = 0 where c = g/L > 0
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or, equivalently,

ẋ1 =x2

ẋ2 =− c sin x1

and where x is the angle of the pendulum.

This is clearly non-linear and cannot be solved easily. The exact solution involves

elliptic functions, which mainly just shifts the problem. For small values of x one

can approximate sin x ≈ x and linearise the system.

But maybe we can “understand” the equations without solving them? Let us

shift to a geometric viewpoint:

(x1(t), x2(t)) , t ∈ R

describes a curve in a two-dimensional space, or, as it is properly called, a trajectory

in the phase space of the system.

The idea is now to investigate the generic behaviour of the trajectories without

solving the system of differential equations explicitly.

Terminology: A dynamical system is an n-th order system if the phase space of

coordinates (x1, x2, . . . , xn) is n-dimensional.

So far, the systems introduced do not depend on time explicitly, they are au-

tonomous. For time-dependent, or non-autonomous n-th order systems we simply

introduce an extra variable xn+1 = t and augment the system with an additional

equation ẋn+1 = 1.

For example, for the forced harmonic oscillator

mẍ + bẋ + kx = F cos t

we let x1 = x, x2 = ẋ, and additionally now x3 = t. Then

ẋ1 =x2

ẋ2 =− k

m
x1 −

b

m
x2 +

F

m
x3

ẋ3 =1
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is a three-dimensional time-independent dynamical system.

The dimension of the system, together with the “degree of non-linearity” deter-

mines the phenomena that can occur (see Figure 1.3.1 in textbook).

1 One-dimensional flows

1.1 Flows on the line

We consider the case n = 1, i.e. the first-order system

ẋ = f(x)

where x = x(t) is a real-valued function of time t, and f(x) is a smooth real-valued

function of the position x.

Note that the system is not time-dependent. Time dependence leads to a two-

dimensional dynamical system. These will be discussed later.

The geometric viewpoint:

Interpret a differential equation as a vector field

We will approach this viewpoint gently in an example. Consider

ẋ = sin x

with initial condition x(0) = x0.

We can solve this differential equation exactly (details in lecture) and get

t = log

∣∣∣∣ csc x0 + cot x0

csc x(t) + cot x(t)

∣∣∣∣
This is exact, but very impractical.

For example, consider the cases

1. x0 = π/4. Describe x(t) for all t > 0, in particular t →∞.

2. For x0 arbitrary, what happens as t →∞?
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Lecture

3/4:

6/10/11

Now turn to a graphical analysis. Turn ẋ = sin(x) into a vector field on the real

line. ẋ describes the length (and direction) of a vector at point x. It is convenient

to think of the vector field as indicating a flow of the system. A trajectory moves

with the flow. If ẋ > 0, the vector points to the right, and the flow is to the right.

Conversely if ẋ < 0, the vector points to the left, and the flow is to the left. When

ẋ = 0, the flow vanishes and these points are therefore fixed points of the flow. They

can be stable (attractors) or instable (repellers).

We can now easily answer the two questions posed above (see Figures 2.1.2, 2.1.3

in textbook).

Fixed Points and Stability: The ideas can be extended to any kind of smooth one-

dimensional system ẋ = f(x): simply plot the graph of f(x) and use it to sketch

the associated vector field on the real line.

The phase space is separated by fixed points, which correspond to stationary

solutions. If the flow is directed toward the fixed point, the stationary solution is

stable, and the fixed point is an attractor. If the flow is directed away from the fixed

point, the stationary solution is unstable, and the fixed point is a repeller.

Example: ẋ = x2 − 1

Example: ẋ = x− cos x

Example: Logistic equation, Ṅ = rN(1−N/K)

Remark: Ṅ = rN leads to exponential growth. Assuming additonally that the

growth rate decreases linearly with N down to zero when N = K leads to the logistic

equation.

Linear stability analysis:

Let x∗ be a fixed point of ẋ = f(x), i.e. f(x∗) = 0. To consider the effect of a

small perturbation η(t) = x(t)− x∗ we calculate

η̇ = ẋ− ẋ∗ = f(x) = f(x∗ + η)

A Taylor-expansion of f(x) about x∗ gives

f(x∗ + η) ≈ f(x∗) + ηf ′(x∗) + O(η2)
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so that

η̇ = ηf ′(x∗) + O(η2)

If f ′(x∗) 6= 0 then we have in good approximation the linearization

η̇ ≈ f ′(x∗)

This implies

• f ′(x∗) > 0: |η(t)| increases exponentially as t grows

• f ′(x∗) < 0: |η(t)| decreases exponentially as t grows

We see that the sign of f ′(x∗) determines the stability of the fixed point. A charac-

teristic timescale is given by its magnitude, i.e. τ = 1/|f ′(x∗)| is a measure for the

time it takes for η(t) to change significantly.

If f ′(x∗) = 0, we need to consider higher derivatives.

Example: ẋ = sin x

Example: Logistic equation, Ṅ = rN(1−N/K)

Example: ẋ = x2

Existence and Uniqueness

So far, informal treatment of ẋ = f(x). Can anything go wrong?

Example for non-uniqueness: ẋ = x1/3, x(0) = 0

x(t) = 0 is a solution, but so is x(t) = (2t/3)3/2.

The reason is that x∗ = 0 is very unstable, f ′(0) is infinite.

Existence and Uniqueness Theorem: Let f(x) and f ′(x) be continuous in an open

interval I with x0 ∈ I. Then there exists a unique solution of the initial value

problem

ẋ = f(x) x(0) = x0

on some open interval (−τ, τ).

In other words, if f is smooth enough, then solutions exist locally. This does not

imply global existence for all times t, however.

Example: ẋ = 1 + x2 with x(0) = x0
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The above theorem guarantees (local) existence and uniqueness for any choice

of x0.

If x0 = 0 then the solution is x(t) = tan(t), i.e. we only have a solution for

|t| < π/2. As t approaches π/2, the solution diverges (blow-up).

Exercises: 2.2.8,9; 2.3.1,2,3,4; 2.4.7,8 Lecture

5/6:

13/10/11

Impossibility of Oscillations

So far, we have seen stable and unstable fixed points, decay and growth. And this

is about it. For example, there are no oscillations possible: the direction of a flow

on the real line is always uniquely determined, there is no possibility of a reversal of

direction of motion. Oscillations, or overshoot beyond a fixed point cannot happen.

Physical example: overdamped mechanical system

Consider mẍ + bẋ = F (x) where m is very small (or more accurately, where mẍ

is much smaller than bẋ). We can then write ẋ = f(x) = F (x)/b and no oscillations

can occur (light particle on a spring in honey).

Movement in a Potential

If we write ẋ = f(x) with f(x) = −dV
dx

, then we can visualise the motion of x(t)

as downhill motion of a particle in the potential V (x).

Claim: V (x) never increases along a trajectory.

Proof: d
dt

V (x(t)) = dV
dx

ẋ = −
(

dV
dx

)2 ≤ 0.

We can also conclude that local minima of V correspond to stable fixed points

and local maxima of V correspond to unstable fixed points.

Example: ẋ = −x

Example: ẋ = x− x3

1.2 Bifurcations

One-dimensional dynamics is rather simple, but it gets more interesting if we con-

sider parameter dependence. Upon changing a parameter in the dynamical system,

we can create or destroy fixed points, change their stability, and so on.

Qualitative changes in the dynamical behaviour are called bifurcations, the

parameters values at which these bifurcations happen are called bifurcation points.
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Example: a beam buckling under a weight.

Saddle-Node Bifurcation: two fixed points collide and get destroyed.

Example: ẋ = r + x2

r < 0: two fixed points; one stable, one unstable

r = 0: one half-stable fixed point

r > 0: no fixed point

The vector fields for r < 0 and r > 0 are qualitatively different, a bifurcation

occurred at the bifurcation point r = 0.

Graphical conventions:

Change from a vertical “stack of vector fields” depending on r to a bifurcation

diagram, in which the vector field is graphed as a function of the bifurcation pa-

rameter r. Note that the line of stable fixed points is drawn solid, and the line of

unstable fixed points is drawn dashed.

Changing the sign of r, one can view the saddle-node bifurcation also as a bifur-

cation at which two fixed points appear “out of nowhere.”

Example: linear stability analysis of ẋ = r − x2

Solving f(x∗) = 0 gives two solutions x∗ = ±
√

r for r > 0, one solution x∗ = 0

for r = 0 and no solutions for r < 0.

For r > 0 we find f ′(±
√

r) = ∓2
√

r, so x∗ =
√

r is stable and x∗ = −
√

r is

unstable. The characteristic time scale τ = 1/2
√

r diverges as r → 0.

Example: does ẋ = r − x− e−x have a saddle-node bifurcation?

We can argue graphically that there must be a bifurcation point rc such that

there are two fixed points for r > rc and no fixed point for r < rc.

At the bifurcation point rc we must have f(x) = 0 and f ′(x) = 0, i.e. e−x = r−x

and e−x = 1. This implies rc = 1 and x = 0.

Normal Forms

ẋ = r + x2 and ẋ = r − x2 are representative of all saddle-node bifurcations, in

that the dynamical system locally “looks like” x = r ± x2.

For example, an expansion of ẋ = r− x− e−x near the bifurcation at x = 0 and
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r = 1 gives

ẋ = r − x− (1− x + x2/2 + . . .) = (r − 1)− x2/2 + . . .

Rescaling with r̃ = r − 1 and x̃ = x/2 gives ˙̃x = r̃ − x̃2 + . . .. In fact, one can

show that by some non-linear rescaling one can get locally entirely rid of the + . . .

to obtain

˙̃x = r̃ − x̃2

Graphically, fixed points occur where the graph of f(x) intersects the x-axis. If

f is locally parabolic, a saddle-node bifurcation occurs if the local extremum of f(x)

crosses the x-axis upon changing a parameter.

Consider f as a function of both x and r and analyse

ẋ = f(x, r) near the bifurcation point x = x∗ and r = rc

An expansion gives

ẋ = f(x∗, rc) + (x− x∗)
∂f

∂x

∣∣∣∣
(x∗,rc)

+ (r − rc)
∂f

∂r

∣∣∣∣
(x∗,rc)

+
1

2
(x− x∗)2 ∂2f

∂x2

∣∣∣∣
(x∗,rc)

+ . . .

As f(x∗, rc) = 0 and ∂f
∂x

∣∣
(x∗,rc)

= 0, we are left with

ẋ = a(r − rc) + b(x− x∗)2 + . . .

which again shows the normal form behaviour, provided a, b 6= 0.

Exercises: 2.7.7; 3.1.2,3,5 Lecture

7/8:

20/10/11

Transcritical Bifurcation: Two fixed points change their stability

Normal Form: ẋ = rx− x2

r < 0: two fixed points; a stable one at x∗ = 0, an unstable one at x∗ = −r

r = 0: one half-stable fixed point at x∗ = 0

r > 0: two fixed points; an unstable one at x∗ = 0, a stable one at x∗ = r

The fixed point at x∗ = 0 collides with the fixed point at x∗ = r and changes

stability. In contrast to the saddle-node bifurcation, fixed points don’t disappear in

a transcritical bifurcation.
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Example: Show that ẋ = x(1−x2)−a(1−e−bx) undergoes a transcritical bifurcation

at x = 0:

f(x) = x(1− x2)− a(1− e−bx) satisfies f(0) = 0, so x∗ = 0 is a fixed point. An

expansion for small x gives

f(x) = x− x3 − a(1− 1 + bx− (bx)2/2 + O(x3)) = (1− ab)x +
ab2

2
x2 + O(x3)

We find a transcritical bifurcation when ab = 1, where necessarily also ab2 6= 0.

The second fixed point occurs at x∗ ≈ 2(ab− 1)/ab2.

Example: Show that ẋ = r log x + x − 1 undergoes a transcritical bifurcation at

x = 1:

f(x) = r log x+x− 1 satisfies f(1) = 0, so x∗ = 0 is a fixed point. An expansion

for x close to 1 gives

f(x) = r
(
(x− 1)− (x− 1)2/2 + O((x− 1)3)

)
+x−1 = (r+1)(x−1)−r

2
(x−1)2+O((x−1)3)

We find a transcritical bifurcation at rc = −1.

Pitchfork Bifurcation: fixed point changes stability in “systems with lef-right sym-

metry”

Two kinds: supercritical and subcritical pitchfork bifurcation

Supercritical Pitchfork Bifurcation

Normal Form: ẋ = rx− x3

Where is the symmetry? Invariant under change of variables x → −x.

r < 0: one stable fixed point at x∗ = 0

r = 0: one weakly stable fixed point x∗ = 0

r > 0: three fixed points; an unstable one at x∗ = 0, two stable ones at x∗ = ±
√

r

Bifurcation diagram has the shape of a pitchfork, hence it’s name.

Example: ẋ = −x + β tanh x as β changes

Example: ẋ = rx− x3 using potentials

Subcritical Pitchfork Bifurcation

Normal Form: ẋ = rx + x3

Here the cubic term destabilises.
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r < 0: three fixed points; a stable fixed point at x∗ = 0, two unstable ones at

x∗ = ±
√
−r

r = 0: one weakly unstable fixed point x∗ = 0

r > 0: one unstable fixed point at x∗ = 0

Bifurcation diagram has the shape of an inverted pitchfork.

Note that for r > 0 the unstable fixed point is “enhanced” by the term +x3,

which leads to blowup. To stabilise, one needs to add another term, such as

ẋ = rx + x3 − x5

Now the unstable branches “turn around” and become stable. Near the origin, this

is still a subcritical pitchfork bifurcation, but now we find “hysteretic” behaviour:

changing r changes the state of the system, but this is not necessarily reversible!

Exercises: 3.2.4,6; 3.4.2,16 Lecture

9/10:

27/10/11

Imperfect Bifurcations and Catastrophes

Perturbing a supercritical pitchfork bifurcation by adding an imperfection

ẋ = h + rx− x3

The symmetry apparent at h = 0 is broken if h 6= 0.

To analyse this, keep r fixed and change h. A graphical analysis shows that

for r < 0 nothing much changes, but for r > 0 the fixed point structure changes

depending on the value of h. Indeed, we find saddle-node bifurcations when

0 =
d

dx
(h + rx− x3) = r − 3x2

i.e. at x = ±
√

r/3. Inserting this into 0 = h + rx− x3 gives bifurcation curves for

the critical value h = hc(r) as a function of r as

hc(r) = ±2r
√

r

3
√

3

These curves delineate regions of “similar” behaviour. Note that the two branches

of hc(r) meet in a “cusp point”.

It is instructive to plot this in a conventional bifurcation diagram, now with h

fixed but r changing. For h 6= 0, the pitchfork splits into two pieces. One piece is
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now a line of stable fixed points, whereas the other piece has two lines of stable and

unstable fixed points.

The full picture shows only in three-dimensional plots in which we show the fixed

points as a function of r and h. We see an catastrophe develop as the surface of

fixed points folds over on itself.

Example: bead on a tilted wire

This scenario may seem complicated, but a simple mechanical model allows to

understand what’s happening. Tilting a mechanical model with two locally stable

equilibria leads to one of these becoming unstable, causing the system to jump to

the remaining stable fixed point.

1.3 Flows on the Circle

We consider

θ̇ = f(θ)

where θ is now an angle and f(θ) is a vector field on a circle. (Equivalently, we could

have considered ẋ = f(x) with periodic x and analysing the dynamics modulo the

period of f .) The main change is that now periodic motion is possible in the form

of rotation around the circle.

Example: θ̇ = sin θ

non-Example: θ̇ = θ

Uniform Oscillation:

θ̇ = ω with ω a constant gives

θ = θ0 + ωt

θ changes by 2π after a period T = 2π/ω.

Example: How often will two oscillators with ω1 6= ω2 meet?

Relevance of phase difference, beat phenomenon.

Non-uniform Oscillators:

θ̇ = ω − a sin θ
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a = 0: uniform oscillation

a > 0 but small: θ̇ assumes maximum/minimum at ±π/2

a → ω: θ̇ approaches zero, trajectory slows down near bottleneck

a ≥ ω: system stops oscillating through saddle-node bifurcation

Plot f(θ) versus θ in Cartesian coordinates, but also vector fields on the circle.

Example: Linear stability analysis for θ̇ = ω − a sin θ

Example: Oscillation period for θ̇ = ω − a sin θ

We find

T =
2π√

ω2 − a2

which for a = 0 reduces to T = 2π/ω and for a → ω diverges as

T ∼ π
√

2√
ω
√

ω − a

Exercises: 3.5.8, 3.6.2, 4.3.7; Lecture

11/12:

3/11/11

This square root divergence is generic for saddle-node bifurcations. Locally, near

the bottle neck, we can write the dynamical system in the normal form

ẋ = r + x2

whence we get t1 − t0 =
∫ x1

x0

dx
r+x2 = 1√

r
arctan(x/

√
r)|x1

x0
and thus for r → 0 we find

t1 − t0 ∼ π/
√

r

One could say that there is a saddle-node ghost moving through the bottle neck.

Example: Estimate the period of θ̇ = ω − a sin θ using the normal form method.

Overdamped pendulum with constant torque: Approximate

mL2θ̈ + bθ̇ + mgL sin θ = Γ

by neglecting the inertial term mL2θ̈ to get

bθ̇ + mgL sin θ = Γ

To simplify this, divide through by mgL,

b

mgL
θ̇ =

Γ

mgL
− sin θ
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Now let γ = Γ/mgL and τ = (mgL/b)t (i.e. measure time in units of b/mgL) to get

θ′ = γ − sin θ

where θ′ = dθ/dτ . But this is just what the equation we have been discussing all

along.

Here, γ is the ratio of the applied torque Γ to the maximal gravitational torque

mgL. If γ > 1 then the pendulum rotates continually. As γ = 1 a fixed point appears

at γ = π/2 and splits into a pair of stable and unstable fixed points. Finally, as

γ = 0 the stable fixed point is at the bottom and the unstable one at the top.

2 Two-dimensional Flows

2.1 Linear Systems

A two-dimensional linear dynamical system is given by

ẋ = ax + by

ẏ = cx + dy

where a, b, c, d ∈ R, or, equivalently

ẋ = Ax with A =

a b

c d

 and x =

x

y


Linear Superposition Principle: if x1 and x2 are solutions, then so is c1x1 + c2x2 for

c1, c2 ∈ R.

x = 0 is a fixed point, and solutions to ẋ = Ax can be visualised as trajectories

in the (x, y)-plane, the phase plane of the system.

Example: simple harmonic oscillator

mẍ + kx = 0

Let v = ẋ to get

ẋ = v

v̇ = −ω2x
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where ω2 = k/m.

At each point (x, v) in the phase plane, there is a vector (ẋ, v̇) = (v,−ω2x),

representing an vector field in the plane.

Trajectories in the phase plane are closed ellipses ω2x2 + v2 = 1, representing

oscillations. The origin is a fixed point.

Example: Show the qualitatively different phase plots occurring for ẋ = Ax with

A =

a 0

0 −1

 for a ∈ R.

The motion is uncoupled (ẋ does not depend on y and vice versa), and we find

x = x0e
at and y = y0e

−t. We distinguish (a) a < −1, (b) a = −1, (c) −1 < a < 0,

(d) a = 0, and (e) a > 0.

A graphical inspection shows stable nodes (a),(b),(c), a star or symmetric node

(b), a line of fixed points (d), and a saddle point (e) with a stable and an unstable

manifold.

The stable manifold of a saddle point x∗ is defined as the set of all points reaching

x∗ as t →∞, and the unstable manifold of a saddle point x∗ is defined as the set of

all points having been at x∗ as t → −∞,

A typical trajectory approaches the unstable manifold as t →∞ and approaches

the stable manifold as t → −∞.

Some Terminology: In (a),(b),(c) x∗ = 0 is an attractive fixed point, i.e. all trajec-

tories in a neighbourhood of x∗ approach x∗ as t →∞ (if this is true for the whole

plane then x∗ is called globally attractive).

In (a), (b), (c), (d) x∗ = 0 is Liapunov stable, i.e. all trajectories starting

sufficiently close to x∗ remain close to it for all time. (d) is an example of a fixed

point that is Liapunov stable, but not attracting. This is called neutrally stable.

The simple harmonic oscillator has a neutrally stable fixed point at the origin.

On the other hand, θ̇ = 1 − cos θ has an attracting fixed point at θ = 0, which is

however not Liapunov stable.

If a fixed point is both attracting and Liapunov stable then it is called stable.

(e) has a fixed point that is unstable, i.e. neither attracting nor Liapunov stable.
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Exercises: 4.4.4; 5.1.2,9

READING WEEK: read about Insect Outbreak and Fireflies (sections 3.7

and 4.5) Lecture

13/14:

17/11/11

Classification of Linear Systems:

Using some linear algebra, we find that solutions of ẋ = Ax are linear superpo-

sitions of x = eλtv where λ satisfies the characteristic equation

det(λ− A) = 0

For A =

a b

c d

 this yields

0 = (λ− a)(λ− d)− bc = λ2 − τλ + ∆

where τ = a + d is the trace of A and ∆ = ad− bc is the determinant of A. We find

λ1 =
τ +

√
τ 2 − 4∆

2
, λ2 =

τ −
√

τ 2 − 4∆

2

Generally, λ1 6= λ2, and the complete solution of ẋ = Ax is given by

x = c1e
λ1tv1 + c2e

λ2tv2

where v1 and v2 are the eigenvectors of A associated to the corresponding eigenvalues

λ1 and λ2.

Example: Solve ẋ = x + y, ẏ = 4x− 2y for (x0, y0) = (2,−3).

Example: Plot the phase portrait for the preceding dynamical system.

Example: Sketch a typical phase portrait for the case λ2 < λ1 < 0.

Example: What happens if the eigenvalues are complex numbers?

Example: What happens if the eigenvalues are equal?

Putting it together: General classification of Fixed Point Structure in the (∆, τ)-

plane.

• ∆ < 0: saddle point (real eigenvalues with opposite sign)

• ∆ > 0 and τ 2 > 4δ: nodes (real eigenvalues with same sign)
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• ∆ > 0 and τ 2 < 4δ: spirals and centres (complex conjugate eigenvalues)

On the borderline ∆ = 0 we find non-isolated fixed points (at least one eigenvalue

is zero), and on the borderline τ 2 = 4δ we find stars and degenerate nodes (both

eigenvalues are equal). If τ = 0 and ∆ > 0 we find centres (the eigenvalues are

purely imaginary).

Example: Classify the fixed point for

A =

1 2

3 4

 and A =

2 1

3 4

 .

2.2 Phase Plane

We now turn to two-dimensional nonlinear systems. We consider general smooth

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

or ẋ = f(x) in vector notation. At each point x in the phase plane there is a velocity

vector ẋ. Trajectories x(t) flow along this vector field, and the entire phase plane is

filled with trajectories.

Generally nonlinear systems will be analytically intractable, so we will want to

determine the quantitative behaviour by considering

1. fixed points f(x∗) = 0

2. closed orbits x(t + T ) = x(t)

3. trajectories near fixed points and closed orbits

4. stability of fixed points and closed orbits

Example: ẋ = x + e−y, ẏ = −y.

There is only one fixed point (x∗, y∗) = (−1, 0). To consider its stability, notice

that ẏ = −y implies that y(t) → 0 as t →∞). Therefore e−y(t) → 1, and ẋ ≈ x + 1

for large t. On the x-axis ẋ = x + 1 precisely, so the fixed point is unstable.
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To sketch the phase portrait, it is helpful to consider the so-called nullclines,

which is the name for curves where ẋ = 0 or ẏ = 0, i.e. where the flow is purely

vertical or horizontal.

We find ẋ = 0 for x = −e−y and ẏ = 0 for y = 0. These two lines separate

the phase plane into four regions in which the flow points north-east, north-west,

south-west, and south-east, respectively. This is sufficient to give a general picture

of the phase portrait.

Using Maple, for example, we can confirm the sketch.

with(plots):

plot1:=fieldplot([x+exp(-y),-y],x=-2..1,y=-1.5..1.5,grid=[10,10]):

plot2:=implicitplot({y=0,x+exp(-y)=0},x=-2..1,y=-1.5..1.5,thickness=5):

display(plot1,plot2,view=[-2..1,-1.5..1.5]);

produces

Exercises: 5.2.11, 6.1.3,8 Lecture

15/16:

24/11/11

Existence, Uniqueness, and Topological Consequences

The existence and uniqueness theorem encountered earlier can be generalised to

higher dimensions.

Existence and Uniqueness Theorem: Let f(x) and ∂fi/∂xj be continuous in a neigh-

bourhood D ∈ Rn with x0 ∈ D. Then there exists a unique solution of the initial

19



value problem

ẋ = f(x) x(0) = x0

on some open interval (−τ, τ).

As a result, trajectories through a point are well-defined. In other words, tra-

jectories cannot intersect. This implies that closed orbits separate trajectories in

the phase plane. We will see later that this has important consequences (Poincare-

Bendixson Theorem).

Fixed points and linearisation:

Consider the effect of a small perturbation near a fixed point (x∗, y∗) of a non-

linear system

ẋ = f(x, y) , ẏ = g(x, y) .

Denote u = x− x∗ and v = y − y∗, so u and v are small.

We find

u̇ = ẋ = f(x∗ + u, y∗ + v) ≈ u
∂f

∂x
(x∗, y∗) + v

∂f

∂y
(x∗, y∗)

v̇ = ẏ = g(x∗ + u, y∗ + v) ≈ u
∂g

∂x
(x∗, y∗) + v

∂g

∂y
(x∗, y∗)

or u̇

v̇

 ≈ A

u

v


where

A =

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣∣
(x∗,y∗)

is the Jacobian matrix at the fixed point (x∗, y∗). This means we can expect to use

the results obtained for linear systems to discuss non-linear systems. This turns out

to be correct for saddles, nodes, and spirals, i.e. as long as we stay away from the

borders of the regions. Centres, degenerate nodes, stars, or non-isolated fixed points

require some extra care.

Example: Classify all fixed points of ẋ = −x + x3, ẏ = −2y.

Example: Linearisation gives the wrong result for ẋ = −y + ax(x2 + y2), ẏ =

x + ay(x2 + y2).
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In the linearisation, the origin is always a centre. However, a change to polar

coordinates (r, θ) gives ṙ = ar3 and θ̇ = 1, which implies that for a > 0 there is an

unstable spiral and for a < 0 there is a stable spiral.

As borderline cases are not stable under perturbation, it is convenient to consider

another coarser classification of fixed points. The robust cases are

• Repelling fixed points: both eigenvalues have positive real part

• Attracting fixed points: both eigenvalues have negative real part

• Saddle points: eigenvalues have opposite signs

The marginal cases are then

• Centres: both eigenvalues are imaginary

• Higher-order or non-isolated fixed points: at least one eigenvalue is zero

or in other words, marginal cases are present when the real part of at least one

eigenvalue is zero.

If both eigenvalues have non-zero real part, the fixed point is called hyperbolic.

Hyperbolic fixed points are structurally stable: a small perturbation cannot change

the structure of the phase portrait near the fixed point.

The Lotka-Volterra model:

Two species, e.g. rabbits and sheep, are individually modelled by logistic growth,

and rabbits (x) grow faster than sheep (y). In the absence of sheep (y = 0), the

rabbit population might grow as ẋ = x(3−x) and in the absence of rabbits (x = 0),

the sheep population might grow as ẏ = y(2 − y). Now assume that rabbits and

sheep compete for the same resource, with rabbits being affected more than sheep.

This can be described by a dynamical system such as

ẋ = x(3− x)− 2xy

ẏ = y(2− y)− xy

21



Fixed points are (0, 0), (0, 2), (3, 0) and (1, 1). The Jacobi matrix is∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

 =

3− 2x− 2y −2x

−y 2− x− 2y


We discuss the four fixed points individually:

• (0, 0): here the matrix is

3 0

0 2

, and the eigenvalues are 3 and 2, we have

an unstable node. The slow eigenvector is (0, 1).

• (0, 2): here the matrix is

−1 0

−2 −2

, and the eigenvalues are −1 and −2, we

have stable node. The slow eigenvector is (1,−2).

• (3, 0): here the matrix is

−3 −6

0 −1

, and the eigenvalues are −3 and −1, we

have a stable node. The slow eigenvector is (3,−1).

• (1, 1): here the matrix is

−1 −2

−1 −1

, and the eigenvalues are −1 ±
√

2, we

have a saddle point.

This suffices to produce a sketch of the phase portrait. The stable manifold of the

saddle point separates two basins of attraction for the fixed points (0, 2) and (3, 0),

respectively. The stable manifold is a basin boundary, consisting of two trajectories

called separatrices.

Returning to the model at hand, we conclude that species competing for the

same limited resource cannot coexist.

Exercises: 6.2.2; 6.3.4,16 Lecture

17/18:

1/12/11

Conservative Systems:

In a mechanical system described by mẍ = F (x) with F (x) = −dV/dx the total

energy

E = mẋ2/2 + V (x)

is conserved:
d

dt
E = mẋẍ +

dV

dx
ẋ = ẋ(mẍ− F (x)) = 0
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Generally, a real-valued function that is constant on trajectories (and is non-constant

on open sets) is called a conserved quantity. A system that has a conserved quantity

is called conservative.

A conservative system cannot have any attracting fixed points.

Assume there is an attracting fixed point. Then the conserved quantity would

assume the same value in the whole basin of attraction, i.e. it would be constant in

a neighbourhood of the fixed point. This is a contradiction.

A conservative system can have saddles and centres.

Example: ẍ = −dV/dx for V (x) = −x2/2 + x4/4

We rewrite this as ẋ = y and ẏ = x − x3. Fixed points are (0, 0), (−1, 0), and

(1, 0). The first one is a saddle, the linearisation of the latter two would indicate

centres. Considering the conserved quantity

E = y2/2− x2/2 + y4/4

confirms this. Trajectories are closed curves defined by the contours of constant

energy. There are two neutrally stable centres at (−1, 0) and (1, 0). Note that there

are two special trajectories starting and ending at the same saddle point, so-called

homoclinic orbits. They separate trajectories encircling each centre and trajectories

encircling both centres.

Note that the presence of a conserved quantity implies that centres are made

more robust:

Theorem on nonlinear centres for conservative systems: Consider the dynamical sys-

tem ẋ = f(x) where x ∈ R2 and f is continuously differentiable, and a conserved

quantity E(x). If x∗ is an isolated fixed point which is a local minimum of E then

all trajectories sufficiently close to x∗ are closed.

Sketch of proof : Near the fixed point, a trajectory lies on a closed contour of E.

The trajectory goes all the way around the fixed point, unless it stops at another

fixed point. But x∗ is isolated, so this cannot happen.

Reversible Systems:

The presence of a symmetry of the dynamical system can have a profound ef-

fect on its behaviour. Here we consider systems with time-reversal symmetry, i.e.
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systems have a symmetry involving the change of variables t → −t.

An example for such a system is a mechanical system of the form mẍ = F (x),

as ẍ remains unchanged under t → −t. The equivalent system

ẋ = y

ẏ = F (x)/m

is invariant if we change t → −t and y → −y (both time and velocity change

sign). Associated trajectories in the phase plane get reflected at the x-axis, and the

direction of traversal changes, i.e. every trajectory has a “twin”.

We use this as a motivation to define an reversible system as a second-order

system invariant under t → −t and y → −y.

ẋ = f(x, y)

ẏ = g(x, y)

is reversible if f(x, y) is odd in y and g(x, y) is even in y.

Theorem on nonlinear centres for reversible systems: Consider the dynamical sys-

tem ẋ = f(x) where x ∈ R2 and f is continuously differentiable. If this system is

reversible, and if the origin is a linear centre for this system, then sufficiently close

to the origin all trajectories are closed curves.

Sketch of proof : A trajectory in the upper half plane staring on the positive x-axis

and ending on the negative x-axis gets completed to a closed curve by the associated

time-reversed trajectory in the lower half plane.

Example: ẋ = y− y3, ẏ = −x− y2 has a linear center at the origin (A =

 0 1

−1 0

)

and is reversible, therefore has a linear centre. The other two fixed points at (−1,±1)

are saddles (A =

 0 −2

−1 ∓2

). The saddle points are joined by a pair of trajectories

called heteroclinic orbits.
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2.3 Limit Cycles

A limit cycle is an isolated closed trajectory: neigbouring trajectories are not closed

but spiral away or toward the limit cycle.

A limit cycle can be stable (all neighbouring trajectories spiral toward it), un-

stable (all neighbouring trajectories spiral away), or half-stable.

Stable limit cycles occur in models of systems with robust oscillations. They

cannot occur in linear systems.

Example: ṙ = r(1 − r2), θ̇ = 1 for r ≥ 0 has a stable limit cycle on the unit circle

r = 1. The origin is an unstable spiral.

Example: ẍ + µ(x2 − 1)ẋ + x = 0 (van der Pol-oscillator) has a stable limit cycle.

Exercises: 6.5.2; 6.6.3, 7.1.3 Lecture

19/20:

8/12/11

How do we decide whether a dynamical system allows oscillations or not?

1. Gradient systems are systems ẋ = f(x) with f(x) = −∇V (x).

Theorem: Closed orbits are impossible in gradient systems.

Proof : Along a closed orbit with period T ,

0 = V (x(T ))−V (x(0)) =

∫ T

0

d

dt
V (x(t))dt =

∫ T

0

(∇V ·ẋ)dt = −
∫ T

0

(ẋ·ẋ)dt < 0

unless ẋ = 0, which only occurs for a fixed point. Therefore there are no

closed orbits.

Example: There are no closed orbits for ẋ = sin y, ẏ = x cos y, as we have a

gradient function V (x, y) = −x sin y.

2. Given a dynamical system ẋ = f(x) with a fixed point x∗, a Liapunov function

is a continuously differentiable function V (x) with (i) V (x) > 0 for all x 6= x∗

and V (x∗) = 0, and (ii) V̇ < 0 along trajectories, provided x 6= x∗.

Theorem: If a dynamical system has a Liapunov function with respect to

a fixed point x∗, then this fixed point is globally asymptotically stable. In

particular, the dynamical system has no closed orbits.
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Sketch of proof : All trajectories have V̇ < 0, so V keeps decreasing until the

fixed point is reached.

Example: ẋ = −x + 4y, ẏ = −x− y3 has no closed orbits: V (x, y) = x2 + 4y2

satisfies V̇ = 2xẋ + 8yẏ = −2x2 − 8y4 and hence is a Liapunov function with

respect to (x∗, y∗) = (0, 0).

Existence of closed orbits

Poincaré-Bendixson Theorem: suppose that

• (1) R ⊂ R2 is closed and bounded,

• (2) ẋ = f(x) is a continuously differentiable vector field on an open set con-

taining R,

• (3) R does not contain any fixed points, and

• (4) there is a trajectory C ⊂ R starting in R and remaining in R for all future

times).

Then either C is a closed orbit, or it spirals towards a closed orbit as t → ∞. In

either case, R contains a closed orbit.

To check assumptions (1),(2),(3) is easy. In order to check assumption (4), it

suffices to find an trapping region R, a closed and connected set such that the vector

field points “inward” everywhere on the boundary.

Example: ṙ = r(1− r2) + µr cos θ, θ̇ = 1 has a closed orbit for 0 ≤ µ < 1:

We can find 0 < rmin < rmax such that ṙ > 0 for rmin and ṙ < 0 for rmax. Then

the annulus rmin ≤ r ≤ rmax is a trapping region that does not contain any fixed

points (as θ̇ > 0).

Example: ẋ = −x + ay + x2y, ẏ = b− ay − x2y for a, b > 0:

To construct a trapping region, it is instructive to start with the nullclines y =

x/(a + x2) and y = b/(a + x2). These separate the first quadrant in regions with

flows into the NE, NW, SE, and SW directions.

Observing that ẋ+ ẏ < 0 for x > b then leads to the construction of the trapping

region (figure 7.3.5).
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There is a fixed point in the trapping region, however, if this fixed point is

repelling then by considering a modified trapping region obtained by removing a

small disk around the fixed point we can conclude that there exists a closed orbit.

No Chaos in the Phase Plane: the Poincaré-Bendixson Theorem basically states that

the most complicated dynamical behaviour one can observe in a confined region of

the phase plane is a limit cycle. Nothing more complicated is possible, which is

essentially due to the fact that trajectories cannot cross each other.

To see more complicated behaviour, we need to move to three-dimensional sys-

tems.

Exercises: 7.2.6,10; 7.3.1

3 Chaos
Lecture

21/22:

15/12/11

3.1 Lorenz Equations

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

with parameters σ, r, b > 0 are the Lorenz equations. They result from an extremely

simplified model for turbulence in the atmosphere. They also describe exactly the

motion of a particular water wheel (it’s in the book, but the derivation could already

form the basis for an MSc project): in a nutshell, on a wheel that rotates with slight

damping, leaky buckets are fixed and get filled when they are on top. And that’s it

already.

Fixed Points:

The fixed points are (0, 0, 0) (corresponding to a non-rotating water wheel) and

(±
√

b(r − 1),±
√

b(r − 1), r − 1) (corresponding to uniform rotation to the left or

right) if r > 1. As r → 1, we find a pitchfork bifurcation.

Symmetry:

(x, y, z) ↔ (−x,−y, z): solutions are either symmetric or have a “twin”
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Volume contraction:

The volume in phase space shrinks exponentially fast: we have V̇ =
∫

V
∇ · ẋdV

and compute

∇ · ẋ =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
= −σ − 1− b < 0

This implies that there are no quasiperiodic solutions (solutions that densely

fill a torus) or repellers. Therefore all fixed points must be sinks or saddles, and

similarly for closed orbits.

Linear Stability:

A =


−σ σ 0

r −1 −x

y x −b


Origin: stable in z-direction, in (x, y)-plane attractor for r < 1, saddle for r > 1

The other two fixed points are stable for 1 < r < rH = σ(σ + b + 3)/(σ − b− 1)

and are surrounded by “saddle cycles”.

Global Stability for r < 1:

For r < 1, V (x, y, t) = x2/σ + y2 + z2 is a Lyapunov function wrt (0, 0, 0), i.e.

the origin is globally asymptotically stable.

What happens if r > 1?

Trajectories are attracted to a bounded set of measure zero. This set does not

contain fixed points or limit cycles (all fixed points or closed orbits are repellers or

saddles). Numerically, we find a “strange attractor” with a “fractal structure”.

Exponential separation of nearby trajectories:

Numerically, we observe that “on” the attractor trajectories with small initial

distance δ0 separate exponentially fast: δt ≈ δ0e
λt until the size of the attractor is

reached.

This basically makes long-term prediction of dynamics impossible: we speak

about sensitive dependance on initial conditions.
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3.2 Defining Chaos

Chaos is aperiodic long-term behaviour in a deterministic system that exhibits sen-

sitive dependence on initial conditions:

1. no attractive fixed points, limit cycles or such

2. no noise, the irregular behaviour is based on non-linearities

3. exponential separation of nearby trajectories

Example: ẋ = x satisfies 2 and 3 but not 1 (fixed point at infinity).

An attractor is a closed set A with the following properties:

1. A is invariant under the dynamics

2. A attracts an open set of initial conditions

3. A is minimal

Example: ẋ = x− x3, ẏ = −y: the interval [−1, 1] satisfies 1 and 2 but not 3.

Finally, a strange attractor is an attractor that exhibits sensitive dependence on

initial conditions.
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